Search results for: water management technologies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19816

Search results for: water management technologies

4846 Unveiling the Domino Effect: Barriers and Strategies in the Adoption of Telecommuting as a Post-Pandemic Workspace

Authors: Divnesh Lingam, Devi Rengamani Seenivasagam, Prashant Chand, Caleb Yee, John Chief, Rajeshkannan Ananthanarayanan

Abstract:

Telecommuting Post-Pandemic: Barriers, Solutions, and Strategies. Amidst the COVID-19 outbreak in 2020, remote work emerged as a vital business continuity measure. This study investigates telecommuting’s modern work model, exploring its benefits and obstacles. Utilizing Interpretive Structural Modelling uncovers barriers hindering telecommuting adoption. A validated set of thirteen barriers is examined through departmental surveys, revealing interrelationships. The resulting model highlights interactions and dependencies, forming a foundational framework. By addressing dominant barriers, a domino effect on subservient barriers is demonstrated. This research fosters further exploration, proposing management strategies for successful telecommuting adoption and reshaping the traditional workspace.

Keywords: barriers, interpretive structural modelling, post-pandemic, telecommuting

Procedia PDF Downloads 98
4845 Synthesis and Characterization of Cobalt Oxide and Cu-Doped Cobalt Oxide as Photocatalyst for Model Dye Degradation

Authors: Vrinda P. S. Borker

Abstract:

Major water pollutants are dyes from effluents of industries. Different methods have been tried to degrade or treat the effluent before it is left to the environment. In order to understand the degradation process and later apply it to effluents, solar degradation study of methylene blue (MB) and methyl red (MR), the model dyes was carried out in the presence of photo-catalysts, the oxides of cobalt oxide Co₃O₄, and copper doped cobalt oxides (Co₀.₉Cu₀.₁)₃O₄ and (Co₀.₉₅Cu₀.₀₅)₃O₄. They were prepared from oxalate complex and hydrazinated oxalate complex of cobalt as well as mix metals, copper, and cobalt. The complexes were synthesized and characterized by FTIR. Complexes were decomposed to form oxides and were characterized by XRD. They were found to be monophasic. Solar degradation of MR and MB was carried out in presence of these oxides in acidic and basic medium. Degradation was faster in alkaline medium in the presence of Co₃O₄ obtained from hydrazinated oxalate. Doping of nanomaterial oxides modifies their characteristics. Doped cobalt oxides are found to photo-decolourise MR in alkaline media efficiently. In the absence of photocatalyst, solar degradation of alkaline MR does not occur. In acidic medium, MR is minimally decolorized even in the presence of photocatalysts. The industrial textile effluent contains chemicals like NaCl and Na₂CO₃ along with the unabsorbed dye. It is reported that these two chemicals hamper the degradation of dye. The chemicals like K₂S₂O₈ and H₂O₂ are reported to enhance degradation. The solar degradation study of MB in presence of photocatalyst (Co₀.₉Cu₀.₁)₃O₄ and these four chemicals reveals that presence of K₂S₂O₈ and H₂O₂ enhances degradation. It proves that H₂O₂ generates hydroxyl ions required for degradation of dye and the sulphate anion radical being strong oxidant attacks dye molecules leading to its fragmentation rapidly. Thus addition of K₂S₂O₈ and H₂O₂ during solar degradation in presence of (Co₀.₉Cu₀.₁)₃O₄ helps to break the organic moiety efficiently.

Keywords: cobalt oxides, Cu-doped cobalt oxides, H₂O₂ in dye degradation, photo-catalyst, solar dye degradation

Procedia PDF Downloads 183
4844 Active Exopolysaccharides Based Edible Coating Enriched with Red Seaweed (Gracilaria gracilis) Extract for Improved Preservation of Shrimp Quality during Refrigerated Storage

Authors: Rafik Balti, Mohamed Ben Mansour, Abdellah Arhaliass, Anthony Masse

Abstract:

Unfortunately, shrimps are highly perishable and they start deteriorating immediately after death owing to their high water content and nutritional components. Currently, there has been an increasing interest in bioactive edible films and coatings to preserve the freshness and quality of foods. In this study, active edible coatings from microalgal exopolysaccharides (EPS) enriched with different concentrations of Red Seaweed Extract (RSE) (0.5, 1 and 1.5 % (w/v)) were developed and their effects on the quality changes of white shrimp during refrigerated storage (4 ± 1 °C) were examined over a period of 8 days. The control and the coated shrimp samples were analyzed periodically for microbiological (total viable bacteria, psychrotrophic bacteria, and enterobacteriaceae counts), chemical (pH, TVB-N, TMA-N, PV, TBARS), textural and sensory characteristics. The results indicated that the coating with a mixture of EPS and RSE could significantly decrease the total volatile basic nitrogen (TVB-N), trimethylamine (TMA) and thiobarbituric acid reactive substances (TBARS) (p < 0.05). With storage, EPS coatings containing RSE at both levels (1 and 1.5 %) were more effective in inhibiting the microbial species studied, specially psychrotrophic bacteria. Also, EPS + RSE coated samples had lower polyphenol oxidase (PPO) activity and lipid oxidation (p < 0.05) toward the end of storage. Textural and color properties of coated shrimp were generally more acceptable. Sensory scores indicated no significant changes in all samples during storage. The obtained results indicate that the edible EPS coating solutions enriched with RSE have noticeable effects on the quality and shelf life of shrimps when compared to control group. Finally, the present work demonstrates the effectiveness of EPS enriched coatings, offering a promising alternative to preserve more better the quality characteristics and to extend the shelf life of shrimp during the refrigerated storage

Keywords: active coating, exopolysaccharides, red seaweed, refrigerated storage, white shrimp

Procedia PDF Downloads 220
4843 A Comprehensive Study of Spread Models of Wildland Fires

Authors: Manavjit Singh Dhindsa, Ursula Das, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran

Abstract:

These days, wildland fires, also known as forest fires, are more prevalent than ever. Wildfires have major repercussions that affect ecosystems, communities, and the environment in several ways. Wildfires lead to habitat destruction and biodiversity loss, affecting ecosystems and causing soil erosion. They also contribute to poor air quality by releasing smoke and pollutants that pose health risks, especially for individuals with respiratory conditions. Wildfires can damage infrastructure, disrupt communities, and cause economic losses. The economic impact of firefighting efforts, combined with their direct effects on forestry and agriculture, causes significant financial difficulties for the areas impacted. This research explores different forest fire spread models and presents a comprehensive review of various techniques and methodologies used in the field. A forest fire spread model is a computational or mathematical representation that is used to simulate and predict the behavior of a forest fire. By applying scientific concepts and data from empirical studies, these models attempt to capture the intricate dynamics of how a fire spreads, taking into consideration a variety of factors like weather patterns, topography, fuel types, and environmental conditions. These models assist authorities in understanding and forecasting the potential trajectory and intensity of a wildfire. Emphasizing the need for a comprehensive understanding of wildfire dynamics, this research explores the approaches, assumptions, and findings derived from various models. By using a comparison approach, a critical analysis is provided by identifying patterns, strengths, and weaknesses among these models. The purpose of the survey is to further wildfire research and management techniques. Decision-makers, researchers, and practitioners can benefit from the useful insights that are provided by synthesizing established information. Fire spread models provide insights into potential fire behavior, facilitating authorities to make informed decisions about evacuation activities, allocating resources for fire-fighting efforts, and planning for preventive actions. Wildfire spread models are also useful in post-wildfire mitigation strategies as they help in assessing the fire's severity, determining high-risk regions for post-fire dangers, and forecasting soil erosion trends. The analysis highlights the importance of customized modeling approaches for various circumstances and promotes our understanding of the way forest fires spread. Some of the known models in this field are Rothermel’s wildland fuel model, FARSITE, WRF-SFIRE, FIRETEC, FlamMap, FSPro, cellular automata model, and others. The key characteristics that these models consider include weather (includes factors such as wind speed and direction), topography (includes factors like landscape elevation), and fuel availability (includes factors like types of vegetation) among other factors. The models discussed are physics-based, data-driven, or hybrid models, also utilizing ML techniques like attention-based neural networks to enhance the performance of the model. In order to lessen the destructive effects of forest fires, this initiative aims to promote the development of more precise prediction tools and effective management techniques. The survey expands its scope to address the practical needs of numerous stakeholders. Access to enhanced early warning systems enables decision-makers to take prompt action. Emergency responders benefit from improved resource allocation strategies, strengthening the efficacy of firefighting efforts.

Keywords: artificial intelligence, deep learning, forest fire management, fire risk assessment, fire simulation, machine learning, remote sensing, wildfire modeling

Procedia PDF Downloads 86
4842 Design of a Small and Medium Enterprise Growth Prediction Model Based on Web Mining

Authors: Yiea Funk Te, Daniel Mueller, Irena Pletikosa Cvijikj

Abstract:

Small and medium enterprises (SMEs) play an important role in the economy of many countries. When the overall world economy is considered, SMEs represent 95% of all businesses in the world, accounting for 66% of the total employment. Existing studies show that the current business environment is characterized as highly turbulent and strongly influenced by modern information and communication technologies, thus forcing SMEs to experience more severe challenges in maintaining their existence and expanding their business. To support SMEs at improving their competitiveness, researchers recently turned their focus on applying data mining techniques to build risk and growth prediction models. However, data used to assess risk and growth indicators is primarily obtained via questionnaires, which is very laborious and time-consuming, or is provided by financial institutes, thus highly sensitive to privacy issues. Recently, web mining (WM) has emerged as a new approach towards obtaining valuable insights in the business world. WM enables automatic and large scale collection and analysis of potentially valuable data from various online platforms, including companies’ websites. While WM methods have been frequently studied to anticipate growth of sales volume for e-commerce platforms, their application for assessment of SME risk and growth indicators is still scarce. Considering that a vast proportion of SMEs own a website, WM bears a great potential in revealing valuable information hidden in SME websites, which can further be used to understand SME risk and growth indicators, as well as to enhance current SME risk and growth prediction models. This study aims at developing an automated system to collect business-relevant data from the Web and predict future growth trends of SMEs by means of WM and data mining techniques. The envisioned system should serve as an 'early recognition system' for future growth opportunities. In an initial step, we examine how structured and semi-structured Web data in governmental or SME websites can be used to explain the success of SMEs. WM methods are applied to extract Web data in a form of additional input features for the growth prediction model. The data on SMEs provided by a large Swiss insurance company is used as ground truth data (i.e. growth-labeled data) to train the growth prediction model. Different machine learning classification algorithms such as the Support Vector Machine, Random Forest and Artificial Neural Network are applied and compared, with the goal to optimize the prediction performance. The results are compared to those from previous studies, in order to assess the contribution of growth indicators retrieved from the Web for increasing the predictive power of the model.

Keywords: data mining, SME growth, success factors, web mining

Procedia PDF Downloads 271
4841 A Framework for Evaluating the QoS and Cost of Web Services Based on Its Functional Performance

Authors: M. Mohemmed Sha, T. Manesh, A. Ahmed Mohamed Mustaq

Abstract:

In this corporate world, the technology of Web services has grown rapidly and its significance for the development of web based applications gradually rises over time. The success of Business to Business integration rely on finding novel partners and their services in a global business environment. But the selection of the most suitable Web service from the list of services with the identical functionality is more vital. The satisfaction level of the customer and the provider’s reputation of the Web service are primarily depending on the range it reaches the customer’s requirements. In most cases the customer of the Web service feels that he is spending for the service which is undelivered. This is because the customer always thinks that the real functionality of the web service is not reached. This will lead to change of the service frequently. In this paper, a framework is proposed to evaluate the Quality of Service (QoS) and its cost that makes the optimal correlation between each other. Also this research work proposes some management decision against the functional deviancy of the web service that are guaranteed at time of selection.

Keywords: web service, service level agreement, quality of a service, cost of a service, QoS, CoS, SOA, WSLA, WsRF

Procedia PDF Downloads 423
4840 Investigation of Input Energy Efficiency in Corn (KSC704) Farming in Khoy City, Iran

Authors: Nasser Hosseini

Abstract:

Energy cycle is one of the essential points in agricultural ecosystems all over the world. Corn is one of the important products in Khoy city. Knowing input energy level and evaluating output energy from farms to reduce energy and increase efficiency in farms is very important if one can reduce input energy level into farms through the indices like poisons, fertilization, tractor energy and labour force. In addition to the net income of the farmers, this issue would play a significant role in preserving farm ecosystem from pollution and wrecker factors. For this reason, energy balance sheet in corn farms as well as input and output energy in 2012-2013 were researched by distributing a questionnaire among farmers in various villages in Khoy city. Then, the input energy amount into farms via energy-consuming factors, mentioned above, with regard to special coefficients was computed. Energy was computed on the basis of seed corn function, chemical compound and its content as well. In this investigation, we evaluated the level of stored energy 10792831 kcal per hectare. We found out that the greatest part of energy depended on irrigation which has 5136141.8 kcal and nitrate fertilizer energy with 2509760 kcal and the lowest part of energy depended on phosphor fertilizer, the rate of posited energy equaled 36362500 kcal and energy efficiency on the basis of seed corn function were estimated as 3.36. We found some ways to reduce consumptive energy in farm and nitrate fertilizer and, on the other hand, to increase balance sheet. They are, to name a few, using alternative farming and potherbs for biological stabilizing of nitrogen and changing kind of fertilizers such as urea fertilizer with sulphur cover, and using new generation of irrigation, the compound of water super absorbent like colored hydrogels and using natural fertilizer to preserve.

Keywords: corn (KSC704), output and input, energy efficiency, Khoy city

Procedia PDF Downloads 441
4839 Phytochemical Exploration of Plectranthus stocksii Hook. F. for Antioxidant and Cytotoxic Properties

Authors: Kasipandi Muniyandi, Parimelazhagan Thangaraj

Abstract:

Plants are important prospective wealth of a country, combination of local health care information about a specific plant together with data published by several groups of scientists, can help in deciding whether it should be considered acceptable for medicinal use. In the developed countries, too, plant-derived drugs may be of importance. The wide variety of ailments that are being treated with Plectranthus is an indication of the medicinal value of the genus. A number of species are not toxic and so may be taken orally, whilst others are used topically on the skin or as enemas. This study was designed to evaluate the different properties of Plectranthus stocksii and the aerial parts were collected and extracted with petroleum ether, chloroform, ethyl acetate, acetone and methanol by Soxhlet apparatus and finally macerated with hot water. The quantification assays revealed that, leaf methanol extract showed higher total phenolic (415.41 mg GAE/ g extract) and tannin (177.53 mg GAE/ g extract) contents whereas leaf ethyl acetate exhibited higher flavonoids (777.11 mg RE/ g extract) content. The antioxidant efficiency of the extracts was analyzed by various radical scavenging assays. Among the different antioxidant assays, leaf ethyl acetate extract showed higher free radical scavenging activities against DPPH (IC50 = 3.46 µg/mL), ABTS (27417.65 µM TE/ g extract), FRAP (152.17 mM Fe(II)E/ mg extract) NO• radical (21.46%) and Superoxide radical (IC50 = 24.16 µg/mL) assays. All the parts P. stocksii extracts showed significant protection against OH• induced DNA damage at 50 µg concentration. The HPLC analysis of leaf ethyl acetate extract revealed the presence of Quercetin (30.29 µg/mg of extract) was the major compound. Anticancer activity of leaf ethyl acetate extract showed better IC50 values were 48.87 and 36.08 µg/ mL against MCF-7 and Caco-2 respectively. From this study, P. stocksii can act as a potent antioxidant and cytotoxic antimicrobial agent. The scope for drug development from this plant is endless and there is undoubtedly a call for further research in pharmaceutical industries.

Keywords: antioxidant, cytotoxicity, phenolics, plectranthus stocksii

Procedia PDF Downloads 388
4838 Urban Growth Prediction Using Artificial Neural Networks in Athens, Greece

Authors: Dimitrios Triantakonstantis, Demetris Stathakis

Abstract:

Urban areas have been expanded throughout the globe. Monitoring and modeling urban growth have become a necessity for a sustainable urban planning and decision making. Urban prediction models are important tools for analyzing the causes and consequences of urban land use dynamics. The objective of this research paper is to analyze and model the urban change, which has been occurred from 1990 to 2000 using CORINE land cover maps. The model was developed using drivers of urban changes (such as road distance, slope, etc.) under an Artificial Neural Network modeling approach. Validation was achieved using a prediction map for 2006 which was compared with a real map of Urban Atlas of 2006. The accuracy produced a Kappa index of agreement of 0,639 and a value of Cramer's V of 0,648. These encouraging results indicate the importance of the developed urban growth prediction model which using a set of available common biophysical drivers could serve as a management tool for the assessment of urban change.

Keywords: artificial neural networks, CORINE, urban atlas, urban growth prediction

Procedia PDF Downloads 533
4837 Controlling Differential Settlement of Large Reservoir through Soil Structure Interaction Approach

Authors: Madhav Khadilkar

Abstract:

Construction of a large standby reservoir was required to provide secure water supply. The new reservoir was required to be constructed at the same location of an abandoned old open pond due to space constraints. Some investigations were carried out earlier to improvise and re-commission the existing pond. But due to a lack of quantified risk of settlement from voids in the underlying limestone, the shallow foundations were not found feasible. Since the reservoir was resting on hard strata for about three-quarter of plan area and one quarter was resting on soil underlying with limestone and considerably low subgrade modulus. Further investigations were carried out to ascertain the locations and extent of voids within the limestone. It was concluded that the risk due to lime dissolution was acceptably low, and the site was found geotechnically feasible. The hazard posed by limestone dissolution was addressed through the integrated structural and geotechnical analysis and design approach. Finite Element Analysis was carried out to quantify the stresses and differential settlement due to various probable loads and soil-structure interaction. Walls behaving as cantilever under operational loads were found undergoing in-plane bending and tensile forces due to soil-structure interaction. Sensitivity analysis for varying soil subgrade modulus was carried out to check the variation in the response of the structure and magnitude of stresses developed. The base slab was additionally checked for the loss of soil contact due to lime pocket formations at random locations. The expansion and contraction joints were planned to receive minimal additional forces due to differential settlement. The reservoir was designed to sustain the actions corresponding to allowable deformation limits per code, and geotechnical measures were proposed to achieve the soil parameters set in structural analysis.

Keywords: differential settlement, limestone dissolution, reservoir, soil structure interaction

Procedia PDF Downloads 161
4836 Dimensions of Guest Experience in Themed Hotels

Authors: Katalin Juhasz-Dora

Abstract:

Several studies have shown that physical environments, milieu, atmosphere and service space play a significant role in the consumer experience. In the case of themed servicescapes, different tangible assets (design, decoration, facilities, amenities), intangible assets (service, activities) contribute to the luxury guest experience. This current study summarizes the literature related to the guest experience in the case of luxury hotels. Based on the results of a case study, additional dimensions of guest experience are explored. The research findings contribute to the extension of literature by providing a conceptual framework in specific themed luxury hotels. Understanding the elements of themed servicescape and dimensions of guest experience play a significant role in consumer behavior. Implications for management and future research directions are presented.

Keywords: atmosphere, guest experience, luxury service, themed hotel

Procedia PDF Downloads 169
4835 Modelling the Education Supply Chain with Network Data Envelopment Analysis

Authors: Sourour Ramzi, Claudia Sarrico

Abstract:

Little has been done on network DEA in education, and nobody has attempted to model the whole education supply chain using network DEA. As such the contribution of the present paper is to propose a model for measuring the efficiency of education supply chains using network DEA. First, we use a general survey of data envelopment analysis (DEA) to establish the emergent themes for research in DEA, and focus on the theme of Network DEA. Second, we use a survey on two-stage DEA models, and Network DEA to write a state of the art on Network DEA, particularly applied to supply chain management. Third, we use a survey on DEA applications to establish the most influential papers on DEA education applications, in order to establish the state of the art on applications of DEA in education, in general, and applications of DEA to education using network DEA, in particular. Finally, we propose a model for measuring the performance of education supply chains of different education systems (countries or states within a country, for instance). We then use this model on some empirical data.

Keywords: supply chain, education, data envelopment analysis, network DEA

Procedia PDF Downloads 373
4834 Relationship between Glycated Hemoglobin in Adolescents with Type 1 Diabetes Mellitus and Parental Anxiety and Depression

Authors: Evija Silina, Maris Taube, Maksims Zolovs

Abstract:

Background: Type 1 diabetes mellitus (T1D) is the most common chronic endocrine pathology in children. The management of type 1 diabetes requires a strong diet, physical activity, lifelong insulin therapy, and proper self-monitoring of blood glucose and is usually complicated and, therefore, may result in a variety of psychosocial problems for children, adolescents, and their families. Metabolic control of the disease is determined by glycated haemoglobin (HbA1c), the main criterion for diabetes compensation. A correlation was observed between anxiety and depression levels and glycaemic control in many previous studies. It is assumed that anxiety and depression symptoms negatively affect glycaemic control. Parental psychological distress was associated with higher child self-report of stress and depressive symptoms, and it had negative effects on diabetes management. Objective: The main objective of this paper is to evaluate the relationship between parental mental health conditions (depression and anxiety) and metabolic control of their adolescents with T1DM. Methods: This cross-sectional study recruited adolescents with T1D (N=251) and their parents (N=251). The respondents completed questionnaires. The 7-item Generalized Anxiety Disorder (GAD-7) scale measured anxiety level; The Patient Health Questionnaire – 9 (PHQ-9) measured depressive symptoms. Glycaemic control of patients was assessed using the last glycated haemoglobin (HbA1c) values. GLM mediation analysis was performed to determine the potential mediating effect of the parent’s mental health conditions (depression and anxiety) on the relationship between the mental health conditions (depression and anxiety) of a child on the level of glycated hemoglobin (HbA1c). To test the significance of the mediated effect (ME) for non-normally distributed data, bootstrapping procedures (10,000 bootstrapped samples) were used. Results: 502 respondents were eligible for screening to detect anxiety and depression symptoms. Mediation analysis was performed to assess the mediating role of parent GAD-7 on the linkage between a dependent variable (HbA1c) and independent variables (child GAD-7 un child PHQ-9). The results revealed that the total effect of child GAD-7 (B = 0.479, z = 4.30, p < 0.001) on HbA1c was significant but the total effect of child PHQ-9 (B = 0.166, z = 1.49, p = 0.135) was not significant. With the inclusion of the mediating variable (parent GAD-7), the impact of child GAD-7 on HbA1c was found insignificant (B = 0.113, z=0.98, p = 0.326), the impact of child PHQ-9 on HbA1c was found also insignificant (B = 0.068, z=0.74, p = 0.458). The indirect effect of child GAD-7 on HbA1c through parent GAD-7 was found significant (B = 0.366, z = 4.31, p < 0.001) and the indirect effect of child PHQ-9 on HbA1c through parent GAD-7 was found also significant (B = 0.098, z = 2.56, p = 0.010). This indicates that the relationship between a dependent variable (HbA1c) and independent variables (child GAD-7 un child PHQ-9) is fully mediated by parent GAD-7. Conclusion: The main result suggests that glycated haemoglobin in adolescents with Type 1 diabetes is related to adolescents’ mental health via parents’ anxiety. It means that parents’ anxiety plays a more significant role in the level of glycated haemoglobin in adolescents than depression and anxiety in the adolescent.

Keywords: type 1 diabetes, adolescents, parental diabetes-specific mental health conditions, glycated haemoglobin, anxiety, depression

Procedia PDF Downloads 82
4833 In Vitro Antibacterial Activity of Some Medicinal Plants Against Biofilm-Forming Methicillin-Resistant Staphylococcus aureus

Authors: Tesleem Adewale Ibrahim

Abstract:

Introduction: The prevalence of methicillin-resistant Staphylococcus aureus (MRSA) has been slowly rising in Nigeria for the past few decades. Therefore, novel classes of antibiotics are indispensable to combat the increased incidence of newly emerging multidrug-resistant bacteria like MRSA. Plants have been commonly used in popular medicine of most cultures for the treatment of disease. The in vitro antibacterial activity of some Nigerian common medicinal plants used in traditional medicine has been reported. The aim of this study was to investigate the antibacterial and anti-biofilm of these native plants (Entada abysinnica (leaves), Croton macrostachyus (leaves), Bridelia speciosa (seeds, bark), and Aframomum melegueta (leaves, seeds, and stem) collected in Southwestern Nigeria against a panel of seven biofilm-forming MRSA. Methods: Minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of the plant extracts against MRSA were determined by the broth dilution method, and the anti-biofilm assay of the most potent plant extract was performed. Result: The results revealed that, of the four plants, water extracts of leaves of Entada abysinnica, leaves of Croton macrostachyus, seeds and bark Bridelia speciosa, and seeds of Aframomum melegueta exhibited significant antibacterial activity. Based on the MIC/MBC ratio, the extracts of these plants were determined to be bacteriostatic in nature. Anti-biofilm assay showed that the extract of seeds of Aframomum melegueta and leaves of Croton macrostachyus fairly inhibited the growth of MRSA in the preformed biofilm matrix. Conclusion: These four medicinal plant species may represent a source of alternative drugs derived from plant extracts based on folklore use and ethnobotanical knowledge from southwest Nigeria.

Keywords: extract, MRSA, antibacterial, biofilm, medicinal plants

Procedia PDF Downloads 132
4832 Effect of Loop Diameter, Height and Insulation on a High Temperature CO2 Based Natural Circulation Loop

Authors: S. Sadhu, M. Ramgopal, S. Bhattacharyya

Abstract:

Natural circulation loops (NCLs) are buoyancy driven flow systems without any moving components. NCLs have vast applications in geothermal, solar and nuclear power industry where reliability and safety are of foremost concern. Due to certain favorable thermophysical properties, especially near supercritical regions, carbon dioxide can be considered as an ideal loop fluid in many applications. In the present work, a high temperature NCL that uses supercritical carbon dioxide as loop fluid is analysed. The effects of relevant design and operating variables on loop performance are studied. The system operating under steady state is modelled taking into account the axial conduction through loop fluid and loop wall, and heat transfer with surroundings. The heat source is considered to be a heater with controlled heat flux and heat sink is modelled as an end heat exchanger with water as the external cold fluid. The governing equations for mass, momentum and energy conservation are normalized and are solved numerically using finite volume method. Results are obtained for a loop pressure of 90 bar with the power input varying from 0.5 kW to 6.0 kW. The numerical results are validated against the experimental results reported in the literature in terms of the modified Grashof number (Grm) and Reynolds number (Re). Based on the results, buoyancy and friction dominated regions are identified for a given loop. Parametric analysis has been done to show the effect of loop diameter, loop height, ambient temperature and insulation. The results show that for the high temperature loop, heat loss to surroundings affects the loop performance significantly. Hence this conjugate heat transfer between the loop and surroundings has to be considered in the analysis of high temperature NCLs.

Keywords: conjugate heat transfer, heat loss, natural circulation loop, supercritical carbon dioxide

Procedia PDF Downloads 246
4831 The Role of Building Information Modeling as a Design Teaching Method in Architecture, Engineering and Construction Schools in Brazil

Authors: Aline V. Arroteia, Gustavo G. Do Amaral, Simone Z. Kikuti, Norberto C. S. Moura, Silvio B. Melhado

Abstract:

Despite the significant advances made by the construction industry in recent years, the crystalized absence of integration between the design and construction phases is still an evident and costly problem in building construction. Globally, the construction industry has sought to adopt collaborative practices through new technologies to mitigate impacts of this fragmented process and to optimize its production. In this new technological business environment, professionals are required to develop new methodologies based on the notion of collaboration and integration of information throughout the building lifecycle. This scenario also represents the industry’s reality in developing nations, and the increasing need for overall efficiency has demanded new educational alternatives at the undergraduate and post-graduate levels. In countries like Brazil, it is the common understanding that Architecture, Engineering and Building Construction educational programs are being required to review the traditional design pedagogical processes to promote a comprehensive notion about integration and simultaneity between the phases of the project. In this context, the coherent inclusion of computation design to all segments of the educational programs of construction related professionals represents a significant research topic that, in fact, can affect the industry practice. Thus, the main objective of the present study was to comparatively measure the effectiveness of the Building Information Modeling courses offered by the University of Sao Paulo, the most important academic institution in Brazil, at the Schools of Architecture and Civil Engineering and the courses offered in well recognized BIM research institutions, such as the School of Design in the College of Architecture of the Georgia Institute of Technology, USA, to evaluate the dissemination of BIM knowledge amongst students in post graduate level. The qualitative research methodology was developed based on the analysis of the program and activities proposed by two BIM courses offered in each of the above-mentioned institutions, which were used as case studies. The data collection instruments were a student questionnaire, semi-structured interviews, participatory evaluation and pedagogical practices. The found results have detected a broad heterogeneity of the students regarding their professional experience, hours dedicated to training, and especially in relation to their general knowledge of BIM technology and its applications. The research observed that BIM is mostly understood as an operational tool and not as methodological project development approach, relevant to the whole building life cycle. The present research offers in its conclusion an assessment about the importance of the incorporation of BIM, with efficiency and in its totality, as a teaching method in undergraduate and graduate courses in the Brazilian architecture, engineering and building construction schools.

Keywords: building information modeling (BIM), BIM education, BIM process, design teaching

Procedia PDF Downloads 160
4830 Using Convolutional Neural Networks to Distinguish Different Sign Language Alphanumerics

Authors: Stephen L. Green, Alexander N. Gorban, Ivan Y. Tyukin

Abstract:

Within the past decade, using Convolutional Neural Networks (CNN)’s to create Deep Learning systems capable of translating Sign Language into text has been a breakthrough in breaking the communication barrier for deaf-mute people. Conventional research on this subject has been concerned with training the network to recognize the fingerspelling gestures of a given language and produce their corresponding alphanumerics. One of the problems with the current developing technology is that images are scarce, with little variations in the gestures being presented to the recognition program, often skewed towards single skin tones and hand sizes that makes a percentage of the population’s fingerspelling harder to detect. Along with this, current gesture detection programs are only trained on one finger spelling language despite there being one hundred and forty-two known variants so far. All of this presents a limitation for traditional exploitation for the state of current technologies such as CNN’s, due to their large number of required parameters. This work aims to present a technology that aims to resolve this issue by combining a pretrained legacy AI system for a generic object recognition task with a corrector method to uptrain the legacy network. This is a computationally efficient procedure that does not require large volumes of data even when covering a broad range of sign languages such as American Sign Language, British Sign Language and Chinese Sign Language (Pinyin). Implementing recent results on method concentration, namely the stochastic separation theorem, an AI system is supposed as an operate mapping an input present in the set of images u ∈ U to an output that exists in a set of predicted class labels q ∈ Q of the alphanumeric that q represents and the language it comes from. These inputs and outputs, along with the interval variables z ∈ Z represent the system’s current state which implies a mapping that assigns an element x ∈ ℝⁿ to the triple (u, z, q). As all xi are i.i.d vectors drawn from a product mean distribution, over a period of time the AI generates a large set of measurements xi called S that are grouped into two categories: the correct predictions M and the incorrect predictions Y. Once the network has made its predictions, a corrector can then be applied through centering S and Y by subtracting their means. The data is then regularized by applying the Kaiser rule to the resulting eigenmatrix and then whitened before being split into pairwise, positively correlated clusters. Each of these clusters produces a unique hyperplane and if any element x falls outside the region bounded by these lines then it is reported as an error. As a result of this methodology, a self-correcting recognition process is created that can identify fingerspelling from a variety of sign language and successfully identify the corresponding alphanumeric and what language the gesture originates from which no other neural network has been able to replicate.

Keywords: convolutional neural networks, deep learning, shallow correctors, sign language

Procedia PDF Downloads 104
4829 Mangrove Plantation in a Reclaimed Land From the Sea

Authors: Anusree Ghosh, Nahid Morshed, Tapas Ranjan Chakraborty, Moniruzzaman Khan, Liakath Ali

Abstract:

To establish the Bangabandhu Sheikh Mujib Shilpa Nagar in Mirsarai, Chattogram land was reclaimed from the river mouth of the Feni River in the Bay of Bangle. The sandy land has a salinity of 9.5 EC ds/m, and the water of the adjacent Bay was 13.2 EC ds/m during winter, i.e., it has moderate salinity. The selection of plant species for the plantation was following the local practices. Mangrove plantation in a such landscape is not common in the country, and some actions towards the plantation seem ineffective and could be accomplished differently. The aim of this paper is to analyze the trial and develop a strategy for mangrove afforestation in reclaimed land where the tidal effect does not occur year-round. Though the Keora (Sonneratia apetala) is the priority species in a typical mangrove plantation, the success rate is comparatively high for the Baen (Avcennia officinalis) and Sada Baen (Avicennia alba). The natural growth was recorded for Keora, Goran (Ceriops decandra), Lal Jhau (Tamarix dioica) and Baen. Though there was the natural growth of Durba grass (Cynodon dactylon) and Motha Gash (Cyperus rotundus), no growth of climber was reported at the early stage of the natural growth. The transplanted growth of Keora, Gewa (Excoecaria agallocha), and Baen was found not suitable for plantation. The saplings growing from the viviparous germinated bean show no germination failure. Since the plantation site remains dry for 5 months, there was irrigation from the river; though it resulted in an increase in land salinity. To increase fertility, cow dung was used, and green manuring by planting Doincha (Sesbania bispinosa) shows a very insignificant contribution. The plantation of, only one and a half years old, is now a habitat of more than 100 species. The learning from the mangrove plantation from August 2021 to February 2023 assumes that in reclaimed land where there is inundation during monsoon only and salinity is moderate, the plantation from viviparous germinated Baen is better.

Keywords: mangrove plantation, reclaimed land, climate change, habitat restoration

Procedia PDF Downloads 112
4828 Inactivation of Semicarbazide-Sensitive Amine Oxidase Induces the Phenotypic Switch of Smooth Muscle Cells and Aggravates the Development of Atherosclerotic Lesions

Authors: Miao Zhang, Limin Liu, Feng Zhi, Panpan Niu, Mengya Yang, Xuemei Zhu, Ying Diao, Jun Wang, Ying Zhao

Abstract:

Background and Aims: Clinical studies have demonstrated that serum semicarbazide-sensitive amine oxidase (SSAO) activities positively correlate with the progression of atherosclerosis. The aim of the present study is to investigate the effect of SSAO inactivation on the development of atherosclerosis. Methods: Female LDLr knockout (KO) mice were given the Western-type diet for 6 and 9 weeks to induce the formation of early and advanced lesions, and semicarbazide (SCZ, 0.125%) was added into the drinking water to inactivate SSAO in vivo. Results: Despite no impact on plasma total cholesterol levels, abrogation of SSAO by SCZ not only resulted in the enlargement of both early (1.5-fold, p=0.0043) and advanced (1.8-fold, p=0.0013) atherosclerotic lesions, but also led to reduced/increased lesion contents of macrophages/smooth muscle cells (SMCs) (macrophage: ~0.74-fold, p=0.0002(early)/0.0016(advanced); SMC: ~1.55-fold, p=0.0003(early) /0.0001(advanced)), respectively. Moreover, SSAO inactivation inhibited the migration of circulating monocytes into peripheral tissues and reduced the amount of circulating Ly6Chigh monocytes (0.7-fold, p=0.0001), which may account for the reduced macrophage content in lesions. In contrast, the increased number of SMCs in lesions of SCZ-treated mice is attributed to an augmented synthetic vascular SMC phenotype switch as evidenced by the increased proliferation of SMCs and accumulation of collagens in vivo. Conclusion: SSAO inactivation by SCZ promotes the phenotypic switch of SMCs and the development of atherosclerosis. The enzymatic activity of SSAO may thus represent a potential target in the prevention and/or treatment of atherosclerosis.

Keywords: atherosclerosis, phenotype switch of smooth muscle cells, SSAO/VAP-1, semicarbazide

Procedia PDF Downloads 331
4827 Scattered Places in Stories Singularity and Pattern in Geographic Information

Authors: I. Pina, M. Painho

Abstract:

Increased knowledge about the nature of place and the conditions under which space becomes place is a key factor for better urban planning and place-making. Although there is a broad consensus on the relevance of this knowledge, difficulties remain in relating the theoretical framework about place and urban management. Issues related to representation of places are among the greatest obstacles to overcome this gap. With this critical discussion, based on literature review, we intended to explore, in a common framework for geographical analysis, the potential of stories to spell out place meanings, bringing together qualitative text analysis and text mining in order to capture and represent the singularity contained in each person's life history, and the patterns of social processes that shape places. The development of this reasoning is based on the extensive geographical thought about place, and in the theoretical advances in the field of Geographic Information Science (GISc).

Keywords: discourse analysis, geographic information science place, place-making, stories

Procedia PDF Downloads 203
4826 Automatic Identification and Classification of Contaminated Biodegradable Plastics using Machine Learning Algorithms and Hyperspectral Imaging Technology

Authors: Nutcha Taneepanichskul, Helen C. Hailes, Mark Miodownik

Abstract:

Plastic waste has emerged as a critical global environmental challenge, primarily driven by the prevalent use of conventional plastics derived from petrochemical refining and manufacturing processes in modern packaging. While these plastics serve vital functions, their persistence in the environment post-disposal poses significant threats to ecosystems. Addressing this issue necessitates approaches, one of which involves the development of biodegradable plastics designed to degrade under controlled conditions, such as industrial composting facilities. It is imperative to note that compostable plastics are engineered for degradation within specific environments and are not suited for uncontrolled settings, including natural landscapes and aquatic ecosystems. The full benefits of compostable packaging are realized when subjected to industrial composting, preventing environmental contamination and waste stream pollution. Therefore, effective sorting technologies are essential to enhance composting rates for these materials and diminish the risk of contaminating recycling streams. In this study, it leverage hyperspectral imaging technology (HSI) coupled with advanced machine learning algorithms to accurately identify various types of plastics, encompassing conventional variants like Polyethylene terephthalate (PET), Polypropylene (PP), Low density polyethylene (LDPE), High density polyethylene (HDPE) and biodegradable alternatives such as Polybutylene adipate terephthalate (PBAT), Polylactic acid (PLA), and Polyhydroxyalkanoates (PHA). The dataset is partitioned into three subsets: a training dataset comprising uncontaminated conventional and biodegradable plastics, a validation dataset encompassing contaminated plastics of both types, and a testing dataset featuring real-world packaging items in both pristine and contaminated states. Five distinct machine learning algorithms, namely Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Logistic Regression, and Decision Tree Algorithm, were developed and evaluated for their classification performance. Remarkably, the Logistic Regression and CNN model exhibited the most promising outcomes, achieving a perfect accuracy rate of 100% for the training and validation datasets. Notably, the testing dataset yielded an accuracy exceeding 80%. The successful implementation of this sorting technology within recycling and composting facilities holds the potential to significantly elevate recycling and composting rates. As a result, the envisioned circular economy for plastics can be established, thereby offering a viable solution to mitigate plastic pollution.

Keywords: biodegradable plastics, sorting technology, hyperspectral imaging technology, machine learning algorithms

Procedia PDF Downloads 85
4825 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker

Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.

Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation

Procedia PDF Downloads 31
4824 A Case Study of Kick Control in Tough Potohar Region

Authors: Iftikhar Raza

Abstract:

Well control is the management of the hazardous effects caused by the unexpected release of formation fluid, such as natural gas and/or crude oil, upon surface equipment of oil or gas drilling rigs and escaping into the atmosphere. Technically, oil well control involves preventing the formation fluid, usually referred to as kick, from entering into the wellbore during drilling. Oil well control is one of the most important aspects of drilling operations. Improper handling of kicks in oil well control can result in blowouts with very grave consequences, including the loss of valuable resources. Even though the cost of a blowout (as a result of improper/no oil well control) can easily reach several millions of US dollars, the monetary loss is not as serious as the other damages that can occur: irreparable damage to the environment, waste of valuable resources, ruined equipment, and most importantly, the safety and lives of personnel on the drilling rig. In this paper, case study of a well is discussed with field data showing the properties of the well. The whole procedure of controlling this well is illustrated in this which may be helpful for professional dealing with such kind of problems.

Keywords: kick control, kill sheet, oil well, gas drilling

Procedia PDF Downloads 515
4823 Impact of Drainage Defect on the Railway Track Surface Deflections; A Numerical Investigation

Authors: Shadi Fathi, Moura Mehravar, Mujib Rahman

Abstract:

The railwaytransportation network in the UK is over 100 years old and is known as one of the oldest mass transit systems in the world. This aged track network requires frequent closure for maintenance. One of the main reasons for closure is inadequate drainage due to the leakage in the buried drainage pipes. The leaking water can cause localised subgrade weakness, which subsequently can lead to major ground/substructure failure.Different condition assessment methods are available to assess the railway substructure. However, the existing condition assessment methods are not able to detect any local ground weakness/damageand provide details of the damage (e.g. size and location). To tackle this issue, a hybrid back-analysis technique based on artificial neural network (ANN) and genetic algorithm (GA) has been developed to predict the substructurelayers’ moduli and identify any soil weaknesses. At first, afinite element (FE) model of a railway track section under Falling Weight Deflection (FWD) testing was developed and validated against field trial. Then a drainage pipe and various scenarios of the local defect/ soil weakness around the buried pipe with various geometriesand physical properties were modelled. The impact of the soil local weaknesson the track surface deflection wasalso studied. The FE simulations results were used to generate a database for ANN training, and then a GA wasemployed as an optimisation tool to optimise and back-calculate layers’ moduli and soil weakness moduli (ANN’s input). The hybrid ANN-GA back-analysis technique is a computationally efficient method with no dependency on seed modulus values. The modelcan estimate substructures’ layer moduli and the presence of any localised foundation weakness.

Keywords: finite element (FE) model, drainage defect, falling weight deflectometer (FWD), hybrid ANN-GA

Procedia PDF Downloads 160
4822 Application of Multivariate Statistics and Hydro-Chemical Approach for Groundwater Quality Assessment: A Study on Birbhum District, West Bengal, India

Authors: N. C. Ghosh, Niladri Das, Prolay Mondal, Ranajit Ghosh

Abstract:

Groundwater quality deterioration due to human activities has become a prime factor of modern life. The major concern of the study is to access spatial variation of groundwater quality and to identify the sources of groundwater chemicals and its impact on human health of the concerned area. Multivariate statistical techniques, cluster, principal component analysis, and hydrochemical fancies are been applied to measure groundwater quality data on 14 parameters from 107 sites distributed randomly throughout the Birbhum district. Five factors have been extracted using Varimax rotation with Kaiser Normalization. The first factor explains 27.61% of the total variance where high positive loading have been concentrated in TH, Ca, Mg, Cl and F (Fluoride). In the studied region, due to the presence of basaltic Rajmahal trap fluoride contamination is highly concentrated and that has an adverse impact on human health such as fluorosis. The second factor explains 24.41% of the total variance which includes Na, HCO₃, EC, and SO₄. The last factor or the fifth factor explains 8.85% of the total variance, and it includes pH which maintains the acidic and alkaline character of the groundwater. Hierarchical cluster analysis (HCA) grouped the 107 sampling station into two clusters. One cluster having high pollution and another cluster having less pollution. Moreover hydromorphological facies viz. Wilcox diagram, Doneen’s chart, and USSL diagram reveal the quality of the groundwater like the suitability of the groundwater for irrigation or water used for drinking purpose like permeability index of the groundwater, quality assessment of groundwater for irrigation. Gibb’s diagram depicts that the major portion of the groundwater of this region is rock dominated origin, as the western part of the region characterized by the Jharkhand plateau fringe comprises basalt, gneiss, granite rocks.

Keywords: correlation, factor analysis, hydrological facies, hydrochemistry

Procedia PDF Downloads 217
4821 Mentha piperita Formulations in Natural Deep Eutectic Solvents: Phenolic Profile and Biological Activity

Authors: Tatjana Jurić, Bojana Blagojević, Denis Uka, Ružica Ždero Pavlović, Boris M. Popović

Abstract:

Natural deep eutectic solvents (NADES) represent a class of modern systems that have been developed as a green alternative to toxic organic solvents, which are commonly used as extraction media. It has been considered that hydrogen bonding is the main interaction leading to the formation of NADES. The aim of this study was phytochemical characterization and determination of the antioxidant and antibacterial activity of Mentha piperita leaf extracts obtained by six choline chloride-based NADES. NADES were prepared by mixing choline chloride with different hydrogen bond donors in 1:1 molar ratio following the addition of 30% (w/w) water. The mixtures were then heated (60 °C) and stirred (650 rpm) until the clear homogenous liquids were obtained. The Mentha piperita extracts were prepared by mixing 75 mg of peppermint leaves with 1 mL of NADES following by the heating and stirring (60 °C, 650 rpm) within 30 min. The content of six phenolics in extracts was determined using HPLC-PDA. The dominant compounds presented in peppermint leaves - rosmarinic acid and luteolin 7-O-glucoside, were extracted by NADES at a similar level as 70% ethanol. The microdilution method was applied to test the antibacterial activity of extracts. Compared with 70% ethanol, all NADES systems showed higher antibacterial activity towards Pseudomonas aeruginosa (Gram -), Staphylococcus aureus (Gram +), Escherichia coli (Gram -), and Salmonella enterica (Gram -), especially NADES containing organic acids. The majority of NADES extracts showed a better ability to neutralize DPPH radical than conventional solvent and similar ability to reduce Fe3+ to Fe2+ ions in FRAP assay. The obtained results introduce NADES systems as the novel, sustainable, and low-cost solvents with a variety of applications.

Keywords: antibacterial activity, antioxidant activity, green extraction, natural deep eutectic solvents, polyphenols

Procedia PDF Downloads 191
4820 Comparison of the Thermal Characteristics of Induction Motor, Switched Reluctance Motor and Inset Permanent Magnet Motor for Electric Vehicle Application

Authors: Sadeep Sasidharan, T. B. Isha

Abstract:

Modern day electric vehicles require compact high torque/power density motors for electric propulsion. This necessitates proper thermal management of the electric motors. The main focus of this paper is to compare the steady state thermal analysis of a conventional 20 kW 8/6 Switched Reluctance Motor (SRM) with that of an Induction Motor and Inset Permanent Magnet (IPM) motor of the same rating. The goal is to develop a proper thermal model of the three types of models for Finite Element Thermal Analysis. JMAG software is used for the development and simulation of the thermal models. The results show that the induction motor is subjected to more heating when used for electric vehicle application constantly, compared to the SRM and IPM.

Keywords: electric vehicles, induction motor, inset permanent magnet motor, loss models, switched reluctance motor, thermal analysis

Procedia PDF Downloads 229
4819 Effectiveness of Using Multiple Non-pharmacological Interventions to Prevent Delirium in the Hospitalized Elderly

Authors: Yi Shan Cheng, Ya Hui Yeh, Hsiao Wen Hsu

Abstract:

Delirium is an acute state of confusion, which is mainly the result of the interaction of many factors, including: age>65 years, comorbidity, cognitive function and visual/auditory impairment, dehydration, pain, sleep disorder, pipeline retention, general anesthesia and major surgery… etc. Researches show the prevalence of delirium in hospitalized elderly patients over 50%. If it doesn't improve in time, may cause cognitive decline or impairment, not only prolong the length of hospital stay but also increase mortality. Some studies have shown that multiple nonpharmacological interventions are the most effective and common strategies, which are reorientation, early mobility, promoting sleep and nutritional support (including water intake), could improve or prevent delirium in the hospitalized elderly. In Taiwan, only one research to compare the delirium incidence of the older patients who have received orthopedic surgery between multi-nonpharmacological interventions and general routine care. Therefore, the purpose of this study is to address the prevention or improvement of delirium incidence density in medical hospitalized elderly, provide clinical nurses as a reference for clinical implementation, and develop follow-up related research. This study is a quasi-experimental design using purposive sampling. Samples are from two wards: the geriatric ward and the general medicine ward at a medical center in central Taiwan. The sample size estimated at least 100, and then the data will be collected through a self-administered structured questionnaire, including: demographic and professional evaluation items. Case recruiting from 5/13/2023. The research results will be analyzed by SPSS for Windows 22.0 software, including descriptive statistics and inferential statistics: logistic regression、Generalized Estimating Equation(GEE)、multivariate analysis of variance(MANOVA).

Keywords: multiple nonpharmacological interventions, hospitalized elderly, delirium incidence, delirium

Procedia PDF Downloads 85
4818 Engineering Study on the Handling of Date Palm Fronds to Reduce Waste and Used as Energy Environmentally Friendly Fuel

Authors: Ayman H. Amer Eissa, Abdul Rahman O. Alghannam

Abstract:

The agricultural crop residuals are considered one of the most important problems faced by the environmental life and farmers in the world. A study was carried out to evaluate the physical characteristics of chopped date palm stalks (fronds and leaflets). These properties are necessary to apply normal design procedures such as pneumatic conveying, fluidization, drying, and combustion. The mechanical treatment by cutting, crushing or chopping and briquetting processes are the primary step and the suitable solution for solving this problem and recycling these residuals to be transformed into useful products. So the aim of the present work to get a high quality for agriculture residues such as date palm stalks (fronds), date palm leaflets briquettes. The results obtained from measuring the mechanical properties (average shear and compressive strength) for date palm stalks at different moisture content (12.63, 33.21 and 60.54%) was (6.4, 4.7 and 3.21MPa) and (3.8, 3.18 and 2.86MPa) respectively. The modulus of elasticity and toughness were evaluated as a function of moisture content. As the moisture content of the stalk regions increased the modulus of elasticity and toughness decreased indicating a reduction in the brittleness of the stalk regions. Chopped date palm stalks (palm fronds), date palm leaflets having moisture content of 8, 10 and 12% and 8, 10 and 12.8% w.b. were dandified into briquettes without binder and with binder (urea-formaldehyde) using a screw press machine. Quality properties for briquettes were durability, compression ratio hardness, bulk density, compression ratio, resiliency, water resistance and gases emission. The optimum quality properties found for briquettes at 8 % moisture content and without binder. Where the highest compression stress and durability were 8.95, 10.39 MPa and 97.06 %, 93.64 % for date palm stalks (palm fronds), date palm leaflets briquettes, respectively. The CO and CO2 emissions for date palm stalks (fronds), date palm leaflets briquettes were less than these for loose residuals.

Keywords: residues, date palm stalks, chopper, briquetting, quality properties

Procedia PDF Downloads 554
4817 Park Improvements in a High-Density City: Ecological, Social and Economy Concerns

Authors: Yuchen Niu, Liang Zhao, Fangfang Xie, Weiyu Liu

Abstract:

In the past decades, rapid urbanization in China has significantly promoted economic growth and caused a large number of environmental problems. In consideration of land resources shortage, high-density cities will become a common phenomenon in the future. How to improve the living environment under high density is a new challenge. Shenzhen is a typical high-density city, but also the forefront of China's development and reform area. This study selects 9 urban parks with different natural attributes in Shenzhen and explores the relationship of natural, economic, and social conditions within the service scope. Based on correlation analysis and system analysis, the results indicate that improvement of park design and management methods contribute to obtaining higher ecological value and promote economic and social development.

Keywords: correlation analysis, high-density city, park improvement, urban green spaces

Procedia PDF Downloads 133