Search results for: scaffolds materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6991

Search results for: scaffolds materials

6871 Synthesis of Solid Polymeric Materials by Maghnite-H⁺ as a Green Catalyst

Authors: Draoua Zohra, Harrane Amine

Abstract:

The Solid Polymeric Materials have been successfully prepared by the copolymerization of e-caprolactone (CL) and poly (ethylene glycol) (PEG) employing Maghnite-H+ at 80°C. Maghnite-H+ is a solid catalyst non-toxic. The presence of PEG chains leads to a break in the growth of PCL chains and consequently leads to the copolymer tri-block PCL-PEG-PCL. The objective of this study was to synthesize and characterize of Solid Polymeric Materials. The highly hydrophilic nature of polyethylene glycol has sparked our interest in developing a Solid Polymeric based e-caprolactone and poly (ethylene glycol). PCL and PEG are biocompatible materials. Their ring-opening copolymerization using Maghnite H+ makes to the Solid Polymeric Materials. The morphology and structure of Solid polymeric Materials were characterized by ¹H and ¹³C-NMR spectra and Gel Permeation Chromatography (GPC). This paper developed the application of Maghnite-H+ as an efficient catalyst by an easy-to-handle procedure to get solid polymeric materials. A cationic mechanism for the copolymerization reaction was proposed.

Keywords: block copolymers, maghnite, montmorillonite, poly(e-caprolactone)

Procedia PDF Downloads 165
6870 Safety Climate Assessment and Its Impact on the Productivity of Construction Enterprises

Authors: Krzysztof J. Czarnocki, F. Silveira, E. Czarnocka, K. Szaniawska

Abstract:

Research background: Problems related to the occupational health and decreasing level of safety occur commonly in the construction industry. Important factor in the occupational safety in construction industry is scaffold use. All scaffolds used in construction, renovation, and demolition shall be erected, dismantled and maintained in accordance with safety procedure. Increasing demand for new construction projects unfortunately still is linked to high level of occupational accidents. Therefore, it is crucial to implement concrete actions while dealing with scaffolds and risk assessment in construction industry, the way on doing assessment and liability of assessment is critical for both construction workers and regulatory framework. Unfortunately, professionals, who tend to rely heavily on their own experience and knowledge when taking decisions regarding risk assessment, may show lack of reliability in checking the results of decisions taken. Purpose of the article: The aim was to indicate crucial parameters that could be modeling with Risk Assessment Model (RAM) use for improving both building enterprise productivity and/or developing potential and safety climate. The developed RAM could be a benefit for predicting high-risk construction activities and thus preventing accidents occurred based on a set of historical accident data. Methodology/Methods: A RAM has been developed for assessing risk levels as various construction process stages with various work trades impacting different spheres of enterprise activity. This project includes research carried out by teams of researchers on over 60 construction sites in Poland and Portugal, under which over 450 individual research cycles were carried out. The conducted research trials included variable conditions of employee exposure to harmful physical and chemical factors, variable levels of stress of employees and differences in behaviors and habits of staff. Genetic modeling tool has been used for developing the RAM. Findings and value added: Common types of trades, accidents, and accident causes have been explored, in addition to suitable risk assessment methods and criteria. We have found that the initial worker stress level is more direct predictor for developing the unsafe chain leading to the accident rather than the workload, or concentration of harmful factors at the workplace or even training frequency and management involvement.

Keywords: safety climate, occupational health, civil engineering, productivity

Procedia PDF Downloads 318
6869 Development of Thermal Insulation Materials Based on Silicate Using Non-Traditional Binders and Fillers

Authors: J. Hroudova, J. Zach, L. Vodova

Abstract:

When insulation and rehabilitation of structures is important to use quality building materials with high utility value. One potentially interesting and promising groups of construction materials in this area are advanced, thermally insulating plaster silicate based. With the present trend reduction of energy consumption of building structures and reducing CO2 emissions to be developed capillary-active materials that are characterized by their low density, low thermal conductivity while maintaining good mechanical properties. The paper describes the results of research activities aimed at the development of thermal insulating and rehabilitation material ongoing at the Technical University in Brno, Faculty of Civil Engineering. The achieved results of this development will be the basis for subsequent experimental analysis of the influence of thermal and moisture loads developed on these materials.

Keywords: insulation materials, rehabilitation materials, lightweight aggregate, fly ash, slag, hemp fibers, glass fibers, metakaolin

Procedia PDF Downloads 235
6868 Computational Material Modeling for Mechanical Properties Prediction of Nanoscale Carbon Based Cementitious Materials

Authors: Maryam Kiani, Abdul Basit Kiani

Abstract:

At larger scales, the performance of cementitious materials is impacted by processes occurring at the nanometer scale. These materials boast intricate hierarchical structures with random features that span from the nanometer to millimeter scale. It is fascinating to observe how the nanoscale processes influence the overall behavior and characteristics of these materials. By delving into and manipulating these processes, scientists and engineers can unlock the potential to create more durable and sustainable infrastructure and construction materials. It's like unraveling a hidden tapestry of secrets that hold the key to building stronger and more resilient structures. The present work employs simulations as the computational modeling methodology to predict mechanical properties for carbon/silica based cementitious materials at the molecular/nano scale level. Studies focused on understanding the effect of higher mechanical properties of cementitious materials with carbon silica nanoparticles via Material Studio materials modeling.

Keywords: nanomaterials, SiO₂, carbon black, mechanical properties

Procedia PDF Downloads 140
6867 Obtaining Bioactive Mg-hydroxyapatite Composite Ceramics From Phosphate Rock For Medical Applications

Authors: Sara Mercedes Barroso Pinzón, Antonio Javier Sanchéz Herencia, Begoña Ferrari, Álvaro Jesús Castro

Abstract:

The current need for durable implants and bone substitutes characterised by biocompatibility, bioactivity and mechanical properties, without immunological rejection, is a major challenge for scientists. Hydroxyapatite (HAp) has been considered for decades as an ideal biomaterial for bone regeneration due to its chemical and crystallographic similarity to the mineral structure bioapatites. However, the lack of trace elements in the hydroxyapatite structure gives it very low mechanical and biological properties. In this sense, the objective of the research is to address the synthesis of hydroxyapatite with Mg from phosphate rock from sedimentary deposits in the central-eastern region of Colombia, taking advantage of the release of the species contained as natural precursors of Ca, P and Mg. The minerals present were studied, fluorapatite as the mineral of interest associated with mineralogical species of magnesium carbonates and quartz. The chemical and mineralogical composition was determined by X-ray fluorescence (XRF) and X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX); as well as the evaluation of the surface physicochemical properties of zeta potential (PZC), with the aim of studying the surface behaviour of the microconstituents present in the phosphate rock and to elucidate the synergistic mechanism between the minerals and establish the optimum conditions for the wet concentration process. From the products obtained and characterised by XRD, XRF, SEM, FTIR, RAMAN, HAp-Mg biocomposite scaffolds are fabricated and the influence of Mg on the morphometric parameters, mechanical and biological properties of the designed materials is evaluated.

Keywords: phosphate rock, hydroxyapatite, magnesium, biomaterials

Procedia PDF Downloads 49
6866 Improving Academic Literacy in the Secondary History Classroom

Authors: Wilhelmina van den Berg

Abstract:

Through intentionally developing the Register Continuum and the Functional Model of Language in the secondary history classroom, teachers can effectively build a teaching and learning cycle geared towards literacy improvement and EAL differentiation. Developing an understanding of and engaging students in the field, tenor, and tone of written and spoken language, allows students to build the foundation for greater academic achievement due to integrated literacy skills in the history classroom. Building a variety of scaffolds during lessons within these models means students can improve their academic language and communication skills.

Keywords: academic language, EAL, functional model of language, international baccalaureate, literacy skills

Procedia PDF Downloads 62
6865 Instructional Material Development in ODL: Achievements, Prospects, and Challenges

Authors: Felix Gbenoba, Opeyemi Dahunsi

Abstract:

Customised, self-instructional materials are at the heart of instructional delivery in Open and Distance Learning (ODL). The success of any ODL institution depends on the availability of learning materials in quality and quantity. An ODL study material is expected to imitate what the teacher does in the face-to-face learning environment. This paper evaluates these expectation based on existing data and evidence. It concludes that the reality has not matched the expectation so far in terms of pedagogic aspect of instructional delivery especially in West Africa. This does not mean that instructional materials development has not produced any significant positive results in improving the overall learning (and teaching) experience in these institutions; it implies what will help further to identify the new challenges. Obstacles and problems of instructional materials development that could have affected the open educational resource initiatives are well established. The first section of this paper recalls some of the proposed values of instructional materials. The second section compares achievements so far and suggests that instructional materials development should be consider first at an early stage to realise the aspirations of instructional delivery. The third section highlights the challenges of instructional materials development in the future.

Keywords: face-to-face learning, instructional delivery, open and distance education, self-instructional materials

Procedia PDF Downloads 371
6864 Obtaining of Nanocrystalline Ferrites and Other Complex Oxides by Sol-Gel Method with Participation of Auto-Combustion

Authors: V. S. Bushkova

Abstract:

It is well known that in recent years magnetic materials have received increased attention due to their properties. For this reason a significant number of patents that were published during the last decade are oriented towards synthesis and study of such materials. The aim of this work is to create and study ferrite nanocrystalline materials with spinel structure, using sol-gel technology with participation of auto-combustion. This method is perspective in that it is a cheap and low-temperature technique that allows for the fine control on the product’s chemical composition.

Keywords: magnetic materials, ferrites, sol-gel technology, nanocrystalline powders

Procedia PDF Downloads 409
6863 Direct Synthesis of Composite Materials Type MCM-41/ZSM-5 by Hydrothermal at Atmospheric Pressure in Sealed Pyrex Tubes

Authors: Zoubida Lounis, Naouel Boumesla, Abd El Kader Bengueddach

Abstract:

The main objective of this study is to synthesize a composite materials by direct synthesis at atmospheric pression having the MFI structure and MCM-41 by using double structuring. In the first part of this work we are interested in the study of the synthesis parameters, in addition to temperature, the crystallization time and pH. The second part of this work is to vary the ratio of the concentrations of both structuring C9 [C9H19(CH3)3NBr] and C16 [C16H33(CH3)3NBr] and determining the area of formation of the two materials (microporous and mesoporous at same time), for this reason we performed a battery of experiments ranging from 0 to 100% for both structural. To enhance the economic purposes of this study, the experiments were carried out by using very cheap and simple process, the pyrex tubes were used instead of the reactors, and the synthesis were done at atmospheric pressure and moderate temperature. The final products (composite materials) were obtained at high and pure quality.

Keywords: composite materials, syntheisis, catalysts, mesoporous materials, microporous materials

Procedia PDF Downloads 388
6862 Pioneer Synthesis and Characterization of Boron Containing Hard Materials

Authors: Gülşah Çelik Gül, Figen Kurtuluş

Abstract:

The first laboratory synthesis of hard materials such as diamond proceeded to attack of developing materials with high hardness to compete diamond. Boron rich solids are good candidates owing to their short interatomic bond lengths and strong covalent character. Boron containing hard material was synthesized by modified-microwave method under nitrogen atmosphere by using a fuel (glycine or urea), amorphous boron and/or boric acid in appropriate molar ratio. Characterizations were done by x-ray diffraction (XRD), fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy/energy dispersive analyze (SEM/EDS), thermo gravimetric/differantial thermal analysis (TG/DTA).

Keywords: boron containing materials, hard materials, microwave synthesis, powder X-ray diffraction

Procedia PDF Downloads 593
6861 The Role of Nano-Science in Construction of Civil Engineering and Environment

Authors: Mehrdad Abkenari, Naghmeh Pournayeb, Mohsen Ramezan Shirazi

Abstract:

Nano-science has been widely used in different engineering sciences. Generally, materials’ application can be determined through their chemical and physical properties. Nano-science has introduced as a new way in production systems that not only turns the materials into very small particles but also, gives them new and considerable properties. Like other fields of study, civil engineering has not been ignorant of benefits and characteristics of new nanotechnology and has used it in the construction industry and environmental engineering. Therefore, considering such chemical properties as elemental analysis and molecular or atomic structure, the present article is aimed at studying the effects of Nano-materials on different branches of civil engineering. Finally, by identifying new Nano-materials, this study attempts to introduce advantages of using these materials for increasing the strength of materials during construction as well as finding new approaches to prevent or reduce the entrance of chemical pollutants during or after construction to the environment.

Keywords: civil, nano-science, construction, environment

Procedia PDF Downloads 412
6860 The Place of Instructional Materials in Quality Education at Primary School Level in Katsina State, Nigeria

Authors: Murtala Sale

Abstract:

The use of instructional materials is an indispensable tool that enhances qualitative teaching and learning especially at the primary level. Instructional materials are used to facilitate comprehension of ideas in the learners as well as ensure long term retention of ideas and topics taught to pupils. This study examined the relevance of using instructional materials in primary schools in Katsina State, Nigeria. It employed survey design using cluster sampling technique. The questionnaire was used to gather data for analysis, and statistical and frequency tables were used to analyze the data gathered. The results show that teachers and students alike have realized the effectiveness of modern instructional materials in teaching and learning for the attainment of set objectives in the basic primary education policy. It also discovered that reluctance in the use of instructional materials will hamper the achievement of qualitative primary education. The study therefore suggests that there should be the provision of adequate and up-to-date instructional materials to all primary schools in Katsina State for effective teaching and learning process.

Keywords: instructional materials, effective teaching, learning quality, indispensable aspect

Procedia PDF Downloads 250
6859 Evaluation of Gasoline Engine Piston with Various Coating Materials Using Finite Element Method

Authors: Nouby Ghazaly, Gamal Fouad, Ali Abd-El-Tawwab, K. A. Abd El-Gwwad

Abstract:

The purpose of this paper is to examine the piston stress distribution using several thicknesses of the coating materials to achieve higher gasoline engine performance. First of all, finite element structure analysis is used to uncoated petrol piston made of aluminum alloy. Then, steel and cast-iron piston materials are conducted and compared with the aluminum piston. After that, investigation of four coating materials namely, yttria-stabilized zirconia, magnesia-stabilized zirconia, alumina, and mullite are studied for each piston materials. Next, influence of various thickness coating layers on the structure stresses of the top surfaces is examined. Comparison between simulated results for aluminum, steel, and cast-iron materials is reported. Moreover, the influences of different coating thickness on the Von Mises stresses of four coating materials are investigated. From the simulation results, it can report that the maximum Von Mises stresses and deformations for the piston materials are decreasing with increasing the coating thickness for magnesia-stabilized zirconia, yttria-stabilized zirconia, mullite and alumina coated materials.

Keywords: structure analysis, aluminum piston, MgZrO₃, YTZ, mullite and alumina

Procedia PDF Downloads 150
6858 Development of Soft 3D Printing Materials for Textile Applications

Authors: Chi-Chung Marven Chick, Chu-Po Ho, Sau-Chuen Joe Au, Wing-Fai Sidney Wong, Chi-Wai Kan

Abstract:

Recently, 3D printing becomes popular process for manufacturing, especially has special attention in textile applications. However, there are various types of 3D printing materials, including plastic, resin, rubber, ceramics, gold, platinum, silver, iron, titanium but not all these materials are suitable for textile application. Generally speaking, 3D printing of textile mainly uses thermoplastic polymers such as acrylonitrile butadiene styrene (ABS), polylactide (PLA), polycaprolactone (PCL), thermoplastic polyurethane (TPU), polyethylene terephthalate glycol-modified (PETG), polystyrene (PS), polypropylene (PP). Due to the characteristics of the polymers, 3D printed textiles usually have low air permeability and poor comfortable. Therefore, in this paper, we will review the possible materials suitable for textile application with desired physical and mechanical properties.

Keywords: 3D printing, 3D printing materials, textile, properties

Procedia PDF Downloads 63
6857 Biogas Production from Lake Bottom Biomass from Forest Management Areas

Authors: Dessie Tegegne Tibebu, Kirsi Mononen, Ari Pappinen

Abstract:

In areas with forest management, agricultural, and industrial activity, sediments and biomass are accumulated in lakes through drainage system, which might be a cause for biodiversity loss and health problems. One possible solution can be utilization of lake bottom biomass and sediments for biogas production. The main objective of this study was to investigate the potentials of lake bottom materials for production of biogas by anaerobic digestion and to study the effect of pretreatment methods for feed materials on biogas yield. In order to study the potentials of biogas production lake bottom materials were collected from two sites, Likokanta and Kutunjärvi lake. Lake bottom materials were mixed with straw-horse manure to produce biogas in a laboratory scale reactor. The results indicated that highest yields of biogas values were observed when feeds were composed of 50% lake bottom materials with 50% straw horse manure mixture-while with above 50% lake bottom materials in the feed biogas production decreased. CH4 content from Likokanta lake materials with straw-horse manure and Kutunjärvi lake materials with straw-horse manure were similar values when feed consisted of 50% lake bottom materials with 50% straw horse manure mixtures. However, feeds with lake bottom materials above 50%, the CH4 concentration started to decrease, impairing gas process. Pretreatment applied on Kutunjärvi lake materials showed a slight negative effect on the biogas production and lowest CH4 concentration throughout the experiment. The average CH4 production (ml g-1 VS) from pretreated Kutunjärvi lake materials with straw horse manure (208.9 ml g-1 VS) and untreated Kutunjärvi lake materials with straw horse manure (182.2 ml g-1 VS) were markedly higher than from Likokanta lake materials with straw horse manure (157.8 ml g-1 VS). According to the experimental results, utilization of 100% lake bottom materials for biogas production is likely to be impaired negatively. In the future, further analyses to improve the biogas yields, assessment of costs and benefits is needed before utilizing lake bottom materials for the production of biogas.

Keywords: anaerobic digestion, biogas, lake bottom materials, sediments, pretreatment

Procedia PDF Downloads 333
6856 Performance of Segmented Thermoelectric Materials Using 'Open-Short Circuit' Technique under Different Polarity

Authors: N. H. S. Mustafa, N. M. Yatim

Abstract:

Thermoelectric materials arrange in segmented design could increase the conversion of heat to electricity performance. This is due to the properties of materials that perform peak at narrow temperature range. Performance of the materials determines by dimensionless figure-of-merit, ZT which consist of thermoelectric properties namely Seebeck coefficient, electrical resistivity, and thermal conductivity. Since different materials were arrange in segmented, determination of ZT cannot be measured using the conventional approach. Therefore, this research used 'open-short circuit' technique to measure the segmented performance. Segmented thermoelectric materials consist of bismuth telluride, and lead telluride was segmented together under cold press technique. The results show thermoelectric properties measured is comparable with calculated based on commercially available of individual material. Performances of segmented sample under different polarity also indicate dependability of material with position and temperature. Segmented materials successfully measured under real condition and optimization of the segmented can be designed from the study of polarity change.

Keywords: thermoelectric, segmented, ZT, polarity, performance

Procedia PDF Downloads 202
6855 Understanding Neuronal and Glial Cell Behaviour in Multi-Layer Nanofibre Systems to Support the Development of an in vitro Model of Spinal Cord Injury and Personalised Prostheses for Repair

Authors: H. Pegram, R. Stevens, L. De Girolamo

Abstract:

Aligned electrospun nanofibres act as effective neuronal and glial cell scaffolds that can be layered to contain multiple sheets harboring different cell populations. This allows personalised biofunctional prostheses to be manufactured with both acellular and cellularised layers for the treatment of spinal cord injury. Additionally, the manufacturing route may be configured to produce in-vitro 3D cell based model of spinal cord injury to aid drug development and enhance prosthesis performance. The goal of this investigation was to optimise the multi-layer scaffold design parameters for prosthesis manufacture, to enable the development of multi-layer patient specific implant therapies. The work has also focused on the fabricating aligned nanofibre scaffolds that promote in-vitro neuronal and glial cell population growth, cell-to-cell interaction and long-term survival following trauma to mimic an in-vivo spinal cord lesion. The approach has established reproducible lesions and has identified markers of trauma and regeneration marked by effective neuronal migration across the lesion with glial support. The investigation has advanced the development of an in-vitro model of traumatic spinal cord injury and has identified a route to manufacture prostheses which target the repair spinal cord injury. Evidence collated to investigate the multi-layer concept suggests that physical cues provided by nanofibres provide both a natural extra-cellular matrix (ECM) like environment and controls cell proliferation and migration. Specifically, aligned nanofibre layers act as a guidance system for migrating and elongating neurons. On a larger scale, material type in multi-layer systems also has an influence in inter-layer migration as cell types favour different material types. Results have shown that layering nanofibre membranes create a multi-level scaffold system which can enhance or prohibit cell migration between layers. It is hypothesised that modifying nanofibre layer material permits control over neuronal/glial cell migration. Using this concept, layering of neuronal and glial cells has become possible, in the context of tissue engineering and also modelling in-vitro induced lesions.

Keywords: electrospinning, layering, lesion, modeling, nanofibre

Procedia PDF Downloads 138
6854 Resources and Strategies towards the Development of a Sustainable Construction Materials Industry in Botswana

Authors: G. Malumbela, E. U. Masuku

Abstract:

The economy of Botswana has increased extensively since its independence. In contrast to this increase, the construction industry which is one of the key indicators of a developing nation continues to be highly dependent on imported building material products from the neighbouring countries of South Africa, Namibia, Zimbabwe, and Zambia. Only two companies in the country currently blend cement. Even then, the overwhelming majority of raw materials used in the blends are imported. Furthermore, there are no glass manufacturers in Botswana. The ceramic industry is limited to the manufacture of clay bricks notwithstanding a few studios on crockery and sanitary ware which nonetheless use imported clay. This paper presents natural resources and industrial waste products in Botswana that can be used for the development of sustainable building materials. It also investigates at the distribution and cost of other widely used building materials in the country. Finally, the present paper looks at projects and national strategies aimed at a country-wide development of a sustainable building materials industry together with their successes and hitches.

Keywords: Botswana construction industry, construction materials, natural resources, sustainable materials

Procedia PDF Downloads 301
6853 Acoustic Performance and Application of Three Personalized Sound-Absorbing Materials

Authors: Fangying Wang, Zhang Sanming, Ni Qian

Abstract:

In recent years, more and more personalized sound absorbing materials have entered the Chinese room acoustical decoration market. The acoustic performance of three kinds of personalized sound-absorbing materials: Flame-retardant Flax Fiber Sound-absorbing Cotton, Eco-Friendly Sand Acoustic Panel and Transparent Micro-perforated Panel (Film) are tested by Reverberation Room Method. The sound absorption characteristic curves show that their performance match for or even exceed the traditional sound absorbing material. Through the application in the actual projects, these personalized sound-absorbing materials also proved their sound absorption ability and unique decorative effect.

Keywords: acoustic performance, application prospect personalized sound-absorbing materials

Procedia PDF Downloads 190
6852 Effects of Roof Materials on Onion Storage

Authors: Imoukhuede Oladunni Bimpe, Ale Monday Olatunbosun

Abstract:

Periodic scarcity of onion requires urgent solution in Nigerian agro-economy. The high percentage of onion losses incurred after harvesting period is due to non-availability of appropriate facility for its storage. Therefore, some storage structures were constructed with different roofing materials. The response of the materials to the weather parameters like temperature and relative humidity were evaluated to know their effects on the performance of the storage structures. The temperature and relative humidity were taken three times daily alongside with the weight of the onion in each of the structures; the losses as indicated by loss indices like shrinkage, rottenness, sprouting and colour were identified and percentage loss per week determined. The highest mean percentage loss (22%) was observed in the structure with iron roofing materials while structure with thatched materials had the lowest (9.4%); The highest temperature was observed in the structure with Asbestos roofing materials and no significant difference in the temperature value in the structure with thatched and Iron materials; highest relatively humidity was found in Asbestos roofing material while the lowest in the structure with Iron materials. It was conclusively found that the storage structure with thatched roof had the best performance in terms of losses.

Keywords: onion, storage structures, weather parameters, roof materials, losses

Procedia PDF Downloads 612
6851 The Effectiveness of Using MS SharePoint for the Curriculum Repository System

Authors: Misook Ahn

Abstract:

This study examines the Institutional Curriculum Repository (ICR) developed with MS SharePoint. The purpose of using MS SharePoint is to organize, share, and manage the curriculum data. The ICR aims to build a centralized curriculum infrastructure, preserve all curriculum materials, and provide academic service to users (faculty, students, or other agencies). The ICR collection includes core language curriculum materials developed by each language school—foreign language textbooks, language survival kits, and audio files currently in or not in use at the schools. All core curriculum materials with audio and video files have been coded, collected, and preserved at the ICR. All metadata for the collected curriculum materials have been input by language, code, year, book type, level, user, version, and current status (in use/not in use). The qualitative content analysis, including the survey data, is used to evaluate the effectiveness of using MS SharePoint for the repository system. This study explains how to manage and preserve curriculum materials with MS SharePoint, along with challenges and suggestions for further research. This study will be beneficial to other universities or organizations considering archiving or preserving educational materials.

Keywords: digital preservation, ms sharepoint, repository, curriculum materials

Procedia PDF Downloads 105
6850 Study of Receiving Opportunity of Water Soluble and Non-Ballast Micro Fertilizer on the Base of Manganese-Containing Materials

Authors: Marine Shavlakadze

Abstract:

From the raw material base existed in Georgia (manganese ores, manganese containing mud), particularly, within the point of view of production availability, especial interest is paid to micro- fertilizers containing manganese. As a result of conducted investigation, there was established receiving of such manganese containing materials on the basis of manganese raw-material base (ore, mud) existed in Georgia, which shall be able to maximally provide assimilation ability of manganese, as microelement, in the desired period of time. And also, determinant of effectiveness and competitiveness of received materials with new composition shall become high content (more than 30%) of microelements in them (in comparison with existed similar products), when the total sum of useful components presented in them (active i.e. assimilated) is more than 50-70%, i.e. received materials belong to the materials having low-ballast and functionally revealed possibilities.

Keywords: manganese, fertilizers, non-ballast, micro- fertilizers

Procedia PDF Downloads 266
6849 Acoustic and Thermal Insulating Materials Based on Natural Fibres Used in Floor Construction

Authors: Jitka Hroudova, Jiri Zach

Abstract:

The majority of contemporary insulation materials commonly used in the building industry is made from non-renewable raw materials; furthermore, their production often brings high energy costs. A long-term trend as far as sustainable development is concerned has been the reduction of energy and material demands of building material production. One of the solutions is the possibility of using easily renewable natural raw material sources which are considerably more ecological and their production is mostly less energy-consuming compared to the production of normal insulations (mineral wool, polystyrene). The paper describes the results of research focused on the development of thermal and acoustic insulation materials based on natural fibres intended for floor constructions. Given the characteristic open porosity of natural fibre materials, the hygrothermal behaviour of the developed materials was studied. Especially the influence of relative humidity and temperature on thermal insulation properties was observed.

Keywords: Green thermal and acoustic insulating materials, natural fibres, technical hemp, flax, floor construction

Procedia PDF Downloads 334
6848 Getting to Know the Types of Asphalt, Its Manufacturing and Processing Methods and Its Application in Road Construction

Authors: Hamid Fallah

Abstract:

Asphalt is generally a mixture of stone materials with continuous granulation and a binder, which is usually bitumen. Asphalt is made in different shapes according to its use. The most familiar type of asphalt is hot asphalt or hot asphalt concrete. Stone materials usually make up more than 90% of the asphalt mixture. Therefore, stone materials have a significant impact on the quality of the resulting asphalt. According to the method of application and mixing, asphalt is divided into three categories: hot asphalt, protective asphalt, and cold asphalt. Cold mix asphalt is a mixture of stone materials and mixed bitumen or bitumen emulsion whose raw materials are mixed at ambient temperature. In some types of cold asphalt, the bitumen may be heated as necessary, but other materials are mixed with the bitumen without heating. Protective asphalts are used to make the roadbed impermeable, increase its abrasion and sliding resistance, and also temporarily improve the existing asphalt and concrete surfaces. This type of paving is very economical compared to hot asphalt due to the speed and ease of implementation and the limited need for asphalt machines and equipment. The present article, which is prepared in descriptive library form, introduces asphalt, its types, characteristics, and its application.

Keywords: asphalt, type of asphalt, asphalt concrete, sulfur concrete, bitumen in asphalt, sulfur, stone materials

Procedia PDF Downloads 67
6847 Proposal for Sustainable Construction of a New College Hostel Building

Authors: Reshma Raskar-Phule, Abhay Shinde, Manesh Konkani, Rohit Nighot, Shrirang Mahajan, Viraj Thorat

Abstract:

Sustainability in construction projects can be considered from three dimensions - environment, economy and society. Key concepts of sustainable construction include the protection of the natural environment, choice of non-toxic materials, reduction and reuse of resources, waste minimization, and life cycle analysis. The present paper attempts to identify and analyze the use of sustainable construction materials for a new college hostel building in terms of sustainability development indices (SDIs). Low SDI materials, say as composite fiberglass reinforcement (SDI 4074.96), compressed earth blocks (SDI 0.47), and fiber-reinforced doors (SDI 0.13) are the proposed sustainable materials for the hostel building. Indian Green Building Certification (IGBC) is applied for the hostel building and it earns 5 points out of total 16 points for criterion 5 – Building Materials and Resources of IGBC.

Keywords: sustainable development, construction materials, IGBC, hostel building

Procedia PDF Downloads 115
6846 Sterilization Effects of Low Concentration of Hydrogen Peroxide Solution on 3D Printed Biodegradable Polyurethane Nanocomposite Scaffold for Heart Valve Regeneration

Authors: S. E. Mohmad-Saberi, W. Song, N. Oliver, M. Adrian, T.C. Hsu, A. Darbyshire

Abstract:

Biodegradable polyurethane (PU) has emerged as a potential material to promote repair and regeneration of damaged/diseased tissues in heart valve regeneration due to its excellent biomechanical profile. Understanding the effects of sterilization on their properties is vital since they are more sensitive and more critical of porous structures compared to bulk ones. In this study, the effects of low concentration of hydrogen peroxide (H₂O₂) solution sterilization has been investigated to determine whether the procedure would be efficient and non-destructive to porous three-dimensional (3D) elastomeric nanocomposite, polyhedral oligomeric silsesquioxane-terminated poly (ethylene-diethylene glycol succinate-sebacate) urea-urethane (POSS-EDSS-PU) scaffold. All the samples were tested for sterility following sterilization using phosphate buffer saline (PBS) as control and 5 % v/v H₂O₂ solution. The samples were incubated in tryptic soy broth for the cultivation of microorganisms under agitation at 37˚C for 72 hours. The effects of the 5 % v/v H₂O₂ solution sterilization were evaluated in terms of morphology, chemical and mechanical properties using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and tensile tester apparatus. Toxicity effects of the 5 % v/v H₂O₂ solution decontamination were studied by in vitro cytotoxicity test, where the cellular responses of human dermal fibroblast (HDF) were examined. A clear, uncontaminated broth using 5 % v/v H₂O₂ solution method indicated efficient sterilization after 3 days, while the non-sterilized control shows clouding broth indicated contamination. The morphology of 3D POSS-EDSS-PU scaffold appeared to have similar morphology after sterilization with 5 % v/v H₂O₂ solution regarding of pore size and surface. FTIR results show that the sterilized samples and non-sterilized control share the same spectra pattern, confirming no significant alterations over the surface chemistry. For the mechanical properties of the H₂O₂ solution-treated scaffolds, the tensile strain was not significantly decreased, however, become significantly stiffer after the sterilization. No cytotoxic effects were observed after the 5 % v/v H₂O₂ solution sterilization as confirmed by cell viability assessed by Alamar Blue assay. The results suggest that low concentration of 5 % v/v hydrogen peroxide solution can be used as an alternative method for sterilizing biodegradable 3D porous scaffold with micro/nano-architecture without structural deformation. This study provides the understanding of the sterilization effects on biomechanical profile and cell proliferation of 3D POSS-EDSS-PU scaffolds.

Keywords: biodegradable, hydrogen peroxide solution, POSS-EDSS-PU, sterilization

Procedia PDF Downloads 159
6845 An Environmental Method for Renovation of Sewer Systems in Building Structures

Authors: Parastou Kharazmi

Abstract:

Degradation of building materials particularly pipelines causes environmental damage during the renovation or replacement, disturbance for people living in the buildings, is time-consuming and last but not least is very costly. Rehabilitation by composite materials is a solution for renovation of degraded pipeline in residential buildings and any other structures which is less costly, faster and causes less damage to the environment. This study provides a brief state of technology, methods, and materials which are being used in Nordic and some other European countries and an investigation on the performance of the relined pipes after they have been in working condition. The investigation was carried by different analyses in laboratory as well as numerous field inspections.

Keywords: buildings, pipeline, rehabilitation, polymer materials

Procedia PDF Downloads 240
6844 Adsorption of Phenol and 4-Hydroxybenzoic Acid onto Functional Materials

Authors: Mourad Makhlouf, Omar Bouchher, Messabih Sidi Mohamed, Benrachedi Khaled

Abstract:

The objective of this study was to investigate the removal of two organic pollutants; 4-hydroxybenzoic acid (p-hydroxybenzoic acid) and phenol from synthetic wastewater by the adsorption on mesoporous materials. In this context, the aim of this work is to study the adsorption of organic compounds phenol and 4AHB on MCM-41 and FSM-16 non-grafted (NG) and other grafted (G) by trimethylchlorosilane (TMCS). The results of phenol and 4AHB adsorption in aqueous solution show that the adsorption capacity tends to increase after grafting in relation to the increase in hydrophobicity. The materials are distinguished by a higher adsorption capacity to the other NG materials. The difference in the phenol is 14.43% (MCM-41), 14.55% (FSM-16), and 16.72% (MCM-41), 13.57% (FSM-16) in the 4AHB. Our adsorption results show that the grafted materials by TMCS are good adsorbent at 25 °C.

Keywords: MCM-41, FSM-16, TMCS, phenol, 4AHB

Procedia PDF Downloads 274
6843 Beyond Typical Textbooks: Adapting Authentic Materials for Engaged Learning in the ELT Classroom

Authors: Fatemeh Miraki

Abstract:

The use of authentic materials in English Language Teaching (ELT) has become increasingly prominent as educators recognize the value of exposing learners to real-world language use and cultural contexts. The integration of authentic materials in ELT aligns with the understanding that language learning is most effective when situated within authentic contexts (Richards & Rodgers, 2001). Tomlinson (1998) highlights the significance of authentic materials in ELT by research indicating that they offer learners exposure to genuine language use and cultural contexts. Tomlinson's work emphasizes the importance of creating meaningful learning experiences through the use of authentic materials. Research by Dörnyei (2001) underscores the potential of authentic materials to enhance students' intrinsic motivation through their relevance to real-life language use. The goal of this review paper is to explore the use of authentic materials in English Language Teaching (ELT) and its impact on language learning. It also discusses best practices for selecting and integrating such authentic materials into ELT curriculum, highlighting the benefits and challenges of using authentic materials to enhance student engagement, motivation, and language proficiency. Drawing on current research and practical examples, this paper provides insights into how teachers can effectively navigate the world of authentic materials to create dynamic and meaningful learning experiences for 21st century ELT learners. The findings of this study advocates for a shift towards embracing authentic materials within the ELT classroom, acknowledging their profound impact on language proficiency, intercultural competence, and learner engagement. It showed the transformative potential of authentic materials, educators can undergo a vibrant and immersive language learning experience, enriched with real-world application and cultural authenticity.

Keywords: authentic materials, ELT Classroom, ELT curriculum, students’ engagement

Procedia PDF Downloads 57
6842 Composite Components Manufacturing in SAE Formula Student, a Case Study of AGH Racing

Authors: Hanna Faron, Wojciech Marcinkowski, Daniel Prusak, Władysław Hamiga

Abstract:

Interest in composite materials comes out of two basic premises: their supreme mechanical and strength properties,combined with a small specific weight. Origin and evolution of modern composite materials bonds with development of manufacturing of synthetic fibers, which have begun during Second World War. Main condition to achieve intended properties of composite materials is proper bonding of reinforcing layer with appropriate adhesive in manufacturing process. It is one of the fundamental quality evaluation criterion of fabrication processes.

Keywords: SAE, formula student, composite materials, carbon fiber, Aramid fiber, hot wire cutter

Procedia PDF Downloads 514