Search results for: phthalic acid ester
3315 Synergistic Extraction Study of Nickel (II) from Sulfate Medium by Mixtures of Capric Acid and Tri-N-Octylphosphine Oxide in Chloroform
Authors: F. Adjel, S. Almi, D. Barkat
Abstract:
The synergistic solvent extraction of nickel ion from 0.33 mol dm^-3 Na2SO4 aqueous solutions with capric acid (HL) in the absence and presence of Tri-n-octylphosphine oxide (TOPO) in chloroform at 25°C, has been studied. The extracted species when the capric acid compound was used alone, is NiL2 and NiL2(HL). In the presence of TOPO, a remarkable enhancement on the extraction of nickel (II) with 0.02 mol dm^-3 capric acid was observed upon the addition of 0.00125 and 0.0025 mol dm^-3 TOPO in chloroform. From a synergistic extraction- equilibrium study, the synergistic enhancement was ascribed to the adduct formation NiL2(TOPO) and NiL2(HL)(TOPO). The TOPO-HL interaction strongly influences the synergistic extraction efficiency. The synergistic extraction stoichiometry of nickel (II) with capric acid and TOPO is studied with the methods of slope analysis. The equilibrium constants were determined.Keywords: solvent extraction, nickel(II), capric acid, TOPO, synergism
Procedia PDF Downloads 5983314 Evaluation of the Mechanical and Microstructural Properties of Sustainable Concrete Exposed to Acid Solution
Authors: Adil Tamimi
Abstract:
Limestone powder is a natural material that is available in many parts of the world. In this research self-compacting concrete was designed and prepared using limestone powder. The resulted concrete was exposed to the hydrochloric acid solution and compared with reference concrete. Mechanical properties of both fresh and hardened concrete have been evaluated. Scanning Electron Microscopy “SEM” has been unitized to analyse the morphological development of the hydration products. In sulphuric acid solution, a large formation of gypsum was detected in both samples of self-compacting concrete and conventional concrete. The Higher amount of thaumasite and ettringite was also detected in the SCC sample. In hydrochloric acid solution, monochloroaluminate was detected.Keywords: self-compacting concrete, mechanical properties, Scanning Electron Microscopy, acid solution
Procedia PDF Downloads 5113313 Phosphorous Acid: An Efficient and Recyclable Liquid Catalyst for the Synthesis of α-Aminophosphonates
Authors: Hellal Abdelkader, Chafaa Salah, Touafri Lasnouni
Abstract:
A simple, efficient and general method has been developed for the high diastereoselective synthesis of diethyl α-aminophosphonates in water through “one-pot” three-component reaction of aromatic aldehydes, aminophenols and dialkyl phosphites in the presence of a low catalytic amount (10mol%) of phosphorous acid as highly stable catalyst is described.Keywords: DFT, HOMO-LUMO, phosphonic acid, aminophenols
Procedia PDF Downloads 3783312 Effect of Acetic Acid Fermentation on Bioactive Components and Anti-Xanthine Oxidase Activities in Vinegar Brewed from Monascus-Fermented Soybeans
Authors: Kyung-Soon Choi, Ji-Young Hwang, Young-Hee Pyo
Abstract:
Vinegars have been used as an alternative remedy for treating gout, but the scientific basis remains to be elucidated. In this study, acetic acid fermentation was applied for the first time to Monascus-fermented soybeans to examine its effect on the bioactive components together with the xanthine oxidase inhibitory (XOI) activity of the soy vinegar. The content of total phenols (0.47~0.97 mg gallic acid equivalents/mL) and flavonoids (0.18~0.39 mg quercetin equivallents/mL) were spectrophotometrically determined, and the content of organic acid (10.22~59.76 mg/mL) and isoflavones (6.79~7.46 mg/mL) were determined using HPLC-UV. The analytical method for ubiquinones (0.079~0.276 μg/mL) employed saponification before solvent extraction and quantification using LC-MS. Soy vinegar also showed significant XOI (95.3%) after 20 days of acetic acid fermentation at 30 °C. The results suggest that soy vinegar has potential as a novel medicinal food.Keywords: acetic acid fermentation, bioactive component, soy vinegar, xanthine oxidase inhibitory activity
Procedia PDF Downloads 3833311 A phytochemical and Biological Study of Viscum schemperi Engl. Growing in Saudi Arabia
Authors: Manea A. I. Alqrad, Alaa Sirwi, Sabrin R. M. Ibrahim, Hossam M. Abdallah, Gamal A. Mohamed
Abstract:
Phytochemical study of the methanolic extract of the air dried powdered of the parts of Viscum schemperi Engl. (Family: Viscaceae) using different chromatographic techniques led to the isolation of five compounds: -amyrenone (1), betulinic acid (2), (3β)-olean-12-ene-3,23-diol (3), -oleanolic acid (4), and α-oleanolic acid (5). Their structures were established based on physical, chemical, and spectral data. Anti-inflammatory and anti-apoptotic activities of oleanolic acid in a mouse model of acute hepatorenal damage were assessed. This study showed the efficacy of oleanolic acid to counteract thioacetamide-induced hepatic and kidney injury in mice through the reduction of hepatocyte oxidative damage, suppression of inflammation, and apoptosis. More importantly, oleanolic acid suppressed thioacetamide-induced hepatic and kidney injury by inhibiting NF-κB/TNF-α-mediated inflammation/apoptosis and enhancing SIRT1/Nrf2/Heme-oxygenase signalling pathway. These promising pharmacological activities suggest the potential use of oleanolic acid against hepatorenal damage.Keywords: oleanolic acid, viscum schimperi, thioacetamide, SIRT1/Nrf2/NF-κB, hepatorenal damage
Procedia PDF Downloads 983310 Fatty Acid Composition of Muscle Lipids of Cyprinus carpio L. Living in Different Dam Lake, Turkey
Authors: O. B. Citil, V. Sariyel, M. Akoz
Abstract:
In this study, total fatty acid composition of muscle lipids of Cyprinus carpio L. living in Suğla Dam Lake, Altinapa Dam Lake, Eğirdir Lake and Burdur Lake were determined using GC. During this study, for the summer season of July was taken from each region of the land and they were stored in deep-freeze set to -20 degrees until the analysis date. At the end of the analyses, 30 different fatty acids were found in the composition of Cyprinus carpio L. which lives in different lakes. Cyprinus carpio Suğla Dam Lake of polyunsaturated fatty acids (PUFAs), were higher than other lakes. Cyprinus carpio L. was the highest in the major SFA palmitic acid. Polyunsaturated fatty acids (PUFA) of carp, the most abundant fish species in all lakes, were found to be higher than those of saturated fatty acids (SFA) in all lakes. Palmitic acid was the major SFA in all lakes. Oleic acid was identified as the major MUFA. Docosahexaenoic acid (DHA) was the most abundant in all lakes. ω3 fatty acid composition was higher than the percentage of the percentage ω6 fatty acids in all lake. ω3/ω6 rates of Cyprinus carpio L. Suğla Dam Lake, Altinapa Dam Lake, Eğirdir Lake and Burdur Lake, 2.12, 1.19, 2.15, 2.87, and 2.82, respectively. Docosahexaenoic acid (DHA) was the major PUFA in Eğirdir and Burdur lakes, whereas linoleic acid (LA) was the major PUFA in Altinapa and Suğla Dam Lakes. It was shown that the fatty acid composition in the muscle of carp was significantly influenced by different lakes.Keywords: Cyprinus carpio L., fatty acid, composition, gas chromatography
Procedia PDF Downloads 5703309 The Effect of Gibberellic Acid on Gamma-Aminobutyric Acid (GABA) Metabolism in Phaseolus Vulgaris L. Plant Exposed to Drought and Salt Stresses
Authors: Fazilet Özlem Çekiç, Seyda Yılmaz
Abstract:
Salinity and drought are important environmental problems in the world and have negative effects on plant metabolism. Gamma-aminobutyric acid (GABA), four-carbon non-protein amino acid, is a significant component of the free amino acid pool. GABA is widely distributed in prokaryotic and eukaryotic organisms. Environmental stress factors increase GABA accumulation in plants. Our aim was to evaluate the effect of gibberellic acid (GA) on GABA metabolism system during drought and salt stress factors in Phaseolus vulgaris L. plants. GABA, Glutamate dehydrogenase (GDH) activity, chlorophyll, and lipid peroxidation (MDA) analyses were determined. According to our results we can suggest that GA play a role in GABA metabolism during salt and drought stresses in bean plants. Also GABA shunt is an important metabolic pathway and key signaling allowing to adapt to drought and salt stresses.Keywords: gibberellic acid, GABA, Phaseolus vulgaris L., salinity, drought
Procedia PDF Downloads 4233308 Bioproduction of L(+)-Lactic Acid and Purification by Ion Exchange Mechanism
Authors: Zelal Polat, Şebnem Harsa, Semra Ülkü
Abstract:
Lactic acid exists in nature optically in two forms, L(+), D(-)-lactic acid, and has been used in food, leather, textile, pharmaceutical and cosmetic industries. Moreover, L(+)-lactic acid constitutes the raw material for the production of poly-L-lactic acid which is used in biomedical applications. Microbially produced lactic acid was aimed to be recovered from the fermentation media efficiently and economically. Among the various downstream operations, ion exchange chromatography is highly selective and yields a low cost product recovery within a short period of time. In this project, Lactobacillus casei NRRL B-441 was used for the production of L(+)-lactic acid from whey by fermentation at pH 5.5 and 37°C that took 12 hours. The product concentration was 50 g/l with 100% L(+)-lactic acid content. Next, the suitable resin was selected due to its high sorption capacity with rapid equilibrium behavior. Dowex marathon WBA, weakly basic anion exchanger in OH form reached the equilibrium in 15 minutes. The batch adsorption experiments were done approximately at pH 7.0 and 30°C and sampling was continued for 20 hours. Furthermore, the effect of temperature and pH was investigated and their influence was found to be unimportant. All the adsorption/desorption experiments were applied to both model lactic acid and biomass free fermentation broth. The ion exchange equilibria of lactic acid and L(+)-lactic acid in fermentation broth on Dowex marathon WBA was explained by Langmuir isotherm. The maximum exchange capacity (qm) for model lactic acid was 0.25 g La/g wet resin and for fermentation broth 0.04 g La/g wet resin. The equilibrium loading and exchange efficiency of L(+)-lactic acid in fermentation broth were reduced as a result of competition by other ionic species. The competing ions inhibit the binding of L(+)-lactic acid to the free sites of ion exchanger. Moreover, column operations were applied to recover adsorbed lactic acid from the ion exchanger. 2.0 M HCl was the suitable eluting agent to recover the bound L(+)-lactic acid with a flowrate of 1 ml/min at ambient temperature. About 95% of bound L(+)-lactic acid was recovered from Dowex marathon WBA. The equilibrium was reached within 15 minutes. The aim of this project was to investigate the purification of L(+)-lactic acid with ion exchange method from fermentation broth. The additional goals were to investigate the end product purity, to obtain new data on the adsorption/desorption behaviours of lactic acid and applicability of the system in industrial usage.Keywords: fermentation, ion exchange, lactic acid, purification, whey
Procedia PDF Downloads 5023307 Effective Photodegradation of Tetracycline by a Heteropoly Acid/Graphene Oxide Nanocomposite Based on Uio-66
Authors: Anasheh Maridiroosi, Ali Reza Mahjoub, Hanieh Fakhri
Abstract:
Heteropoly acid nanoparticles anchored on graphene oxide based on UiO-66 were synthesized via in-situ growth hydrothermal method and tested for photodegradation of a tetracycline as critical pollutant. Results showed that presence of graphene oxide and UiO-66 with high specific surface area, great electron mobility and various functional groups make an excellent support for heteropoly acid and improve photocatalytic efficiency up to 95% for tetracycline. Furthermore, total organic carbon (TOC) analysis verified 79% mineralization of this pollutant under optimum condition.Keywords: heteropoly acid, graphene oxide, MOF, tetracycline
Procedia PDF Downloads 1333306 Anticataract Activity of Betulinic Acid in Chick Embryo Lens Model
Authors: Surendra Bodakhe
Abstract:
In this investigation, anticataract activity was determined using cataract formation in developing chick embryo by hydrocortisone. Lenses were evaluated firstly for the extent of opacity and secondly, for lens glutathione (GSH) levels. Betulinic acid was isolated from the chloroform fraction of the crude ethanolic extract of Bauhinia variegata bark (SBE). Fourteen days old Australorp fertilized eggs were divided into different groups of six eggs each. After 24 hrs incubation in a humidified incubator (37οC), at 15 days of age; hydrocortisone (0.25µM/0.2ml/egg) was administered to the chorioallantoic membrane of chick embryos through a small hole in the egg shell on the air sack. Ascorbic acid (standard) or Betulinic acid (test) were administered at 3, 10 and 20 hr after hydrocortisone administration at a specified dose. The puncture was sealed with a cellophane tape and eggs were incubated for 48 hrs in a humidified incubator at 37οC. After 48 hrs, the lenses were isolated for the determination of the extent of opacity and Glutathione level. The betulinic acid prevented the opacification of the chick embryo lenses induced by hydrocortisone. The betulinic acid also prevented the decline of GSH content caused by hydrocortisone. The results indicate that betulinic acid protect the cataract formation in chick embryo lenses induced by hydrocortisone.Keywords: betulinic acid, cataract, cloudiness, ovine
Procedia PDF Downloads 3433305 Evaluating Acid Buffering Capacity of Sewage Sludge Barrier for Inhibiting Remobilization of Heavy Metals in Tailing Impoundment
Authors: Huyuan Zhang, Yi Chen
Abstract:
Compacted sewage sludge has been proved to be feasible as a barrier material for tailing impoundment because of its low permeability and retardation of heavy metals. The long-term penetration of acid mine drainage, however, would acidify the barrier system and result in remobilization of previously immobilized heavy metal pollutants. In this study, the effect of decreasing pH on the mobility of three typical heavy metals (Zn, Pb, and Cu) is investigated by acid titration test on sewage sludge under various conditions. The remobilization of heavy metals is discussed based on the acid buffering capacity of sewage sludge-leachate system. Test results indicate that heavy metals are dramatically released out when pH is decreased below 6.2, and their amounts take the order of Zn > Cu > Pb. The acid buffering capacity of sewage sludge decreases with the solid-liquid ratio but increases with the anaerobic incubation time, and it is mainly governed by dissolution of contained carbonate and organics. These results reveal that the sewage sludge possesses enough acid buffering capacity to consume protons within the acid mine drainage. Thus, this study suggests that an explosive remobilization of heavy metals is not expected in a long-term perspective.Keywords: acid buffering capacity, barrier, heavy metals, remobilization, sewage sludge
Procedia PDF Downloads 3203304 Theoretical Study of the Mechanism of the Oxidation of Linoleic Acid by 1O2
Authors: Rayenne Djemil
Abstract:
The mechanism of oxidation reaction of linoleic acid C18: 2 (9 cis12) by singlet oxygen 1O2 were theoretically investigated via using quantum chemical methods. We explored the four reaction pathways at PM3, Hartree-Fock HF and, B3LYP functional associated with the base 6-31G (d) level. The results are in favor of the first and the last reaction ways. The transition states were found by QST3 method. Thus the pathways between the transition state structures and their corresponding minima have been identified by the IRC calculations. The thermodynamic study showed that the four ways of oxidation of linoleic acid are spontaneous, exothermic and, the enthalpy values confirm that conjugate hydroperoxydes are the most favorable products.Keywords: echanism, quantum mechanics, oxidation, linoleic acid H
Procedia PDF Downloads 4463303 Bioactive Compounds Characterization of Cereal-Based Porridge Enriched with Cirina forda
Authors: Kunle Oni
Abstract:
This study investigated the bioactivity potentials of porridge from yellow maize and malted sorghum enriched with Cirinaforda.All the samples were analyzed using standard methods.Results showed that the highest value 217.03μmolTEAC/100g, 43.3 mmol Fe2+ /100g, and 35.56% for DPPH, FRAP and TBARS respectively were reported in sample 50FYM+20MS+30CF, while the lowest value 146.10μmolTEAC/100, 20.18±0.11 mmol Fe2+/100g and 13.25% for DPPH, FRAP and TBARS were reported in the control sample.The oxalate and tannin contents were lowest in sample 50FYM+20MS+30CFbutOxalate was highest in the control sample while tannin was highest in sample 60FYM+20MS+20CF.The phytate content was highest in the 60FYM+20MS+20CF mixture (2.32 mg/100g) and lowest in the control (100% FYM) porridge (2.20 mg/100g).The result also showed that the total phenolic content was highest in the 60FYM+20MS+20CF mixture (318.28 mg GAE/100g) and lowest in the50FYM+30MS+20CF mixture (264.18mg GAE/100g).The total flavonoid content had the50FYM+20MS+30CFmixture having the highest content (189.31mg RE/100g) and the 60FYM+20MS+20CF mixture having the lowest (90.10mg RE/100g). The enrichment of the porridge with C. fordaincreased the concentration of various bioactive compounds compared to the control sample. The identified compounds cinnamic acid, methyl ester, 10-Methyl-E-11-tridecen-1-ol propionate, methaqualone,3-(2-Hydroxy-6-methylphenyl)-4(3H)-quinazolinone, and oleic acidKeywords: bioactive compounds, characterization, cereal-based porridge, Cirina forda
Procedia PDF Downloads 613302 The Thermochemical Conversion of Lactic Acid in Subcritical and Supercritical Water
Authors: Shyh-Ming Chern, Hung-Chi Tu
Abstract:
One way to utilize biomass is to thermochemically convert it into gases and chemicals. For conversion of biomass, glucose is a particularly popular model compound for cellulose, or more generally for biomass. The present study takes a different approach by employing lactic acid as the model compound for cellulose. Since lactic acid and glucose have identical elemental composition, they are expected to produce similar results as they go through the conversion process. In the current study, lactic acid was thermochemically converted to assess its reactivity and reaction mechanism in subcritical and supercritical water, by using a 16-ml autoclave reactor. The major operating parameters investigated include: The reaction temperature, from 673 to 873 K, the reaction pressure, 10 and 25 MPa, the dosage of oxidizing agent, 0 and 0.5 chemical oxygen demand, and the concentration of lactic acid in the feed, 0.5 and 1.0 M. Gaseous products from the conversion were generally found to be comparable to those derived from the conversion of glucose.Keywords: lactic acid, subcritical water, supercritical water, thermochemical conversion
Procedia PDF Downloads 3183301 Chloroform-Formic Acid Solvent Systems for Nanofibrous Polycaprolactone Webs
Authors: I. Yalcin Enis, J. Vojtech, T. Gok Sadikoglu
Abstract:
In this study, polycaprolactone (PCL) was dissolved in chloroform: ethanol solvent system at a concentration of 18 w/v %. 1, 2, 4, and 6 droplets of formic acid were added to the prepared 10ml PCL-chloroform:ethanol solutions separately. Fibrous webs were produced by electrospinning technique. Morphology of the webs was investigated by using scanning electron microscopy (SEM) whereas fiber diameters were measured by Image J Software System. The effect of formic acid addition to the mostly used chloroform solvent on fiber morphology was examined.Keywords: chloroform, electrospinning, formic acid polycaprolactone, fiber
Procedia PDF Downloads 2763300 Poly(Lactic Acid) Based Flexible Films
Authors: Fathilahbinti Ali, Jamarosliza Jamaluddin, Arun Kumar Upadhyay
Abstract:
Poly(lactic acid) (PLA) is a biodegradable polymer which has good mechanical properties, however, its brittleness limits its usage especially in packaging materials. Therefore, in this work, PLA based polyurethane films were prepared by synthesizing with different types of isocyanates; methylene diisocyanate (MDI) and hexamethylene diisocyanates (HDI). For this purpose, PLA based polyurethane must have good strength and flexibility. Therefore, polycaprolactone which has better flexibility were prepared with PLA. An effective way to endow polylactic acid with toughness is through chain-extension reaction of the polylactic acid pre-polymer with polycaprolactone used as chain extender. Polyurethane prepared from MDI showed brittle behaviour, while, polyurethane prepared from HDI showed flexibility at same concentrations.Keywords: biodegradable polymer, flexible, poly(lactic acid), polyurethane
Procedia PDF Downloads 3523299 Application of Chemical Tests for the Inhibition of Scaling From Hamma Hard Waters
Authors: Samira Ghizellaoui, Manel Boumagoura
Abstract:
Calcium carbonate precipitation is a widespread problem, especially in hard water systems. The main water supply that supplies the city of Constantine with drinking water is underground water called Hamma water. This water has a very high hardness of around 590 mg/L CaCO₃. This leads to the formation of scale, consisting mainly of calcium carbonate, which can be responsible for the clogging of valves and the deterioration of equipment (water heaters, washing machines and encrustations in the pipes). Plant extracts used as scale inhibitors have attracted the attention of several researchers. In recent years, green inhibitors have attracted great interest because they are biodegradable, non-toxic and do not affect the environment. The aim of our work is to evaluate the effectiveness of a chemical antiscale treatment in the presence of three green inhibitors: gallicacid; quercetin; alginate, and three mixtures: (gallic acid-quercetin); (quercetin-alginate); (gallic acid-alginate). The results show that the inhibitory effect is manifested from an addition of 1mg/L of gallic acid, 10 mg/L of quercetin, 0.2 mg/L of alginate, 0.4mg/L of (gallic acid-quercetin), 2mg/L of (quercetin-alginate) and 0.4 mg/L of (gallic acid-alginate). On the other hand, 100 mg/L (Drinking water standard) of Ca2+is reached for partial softening at 4 mg/L of gallic acid, 40 mg/L of quercetin, 0.6mg/L of alginate, 4mg/L of (gallic acid-quercetin), 10mg/L of (quercetin-alginate) and 1.6 mg/L of (gallic acid-alginate).Keywords: water, scaling, calcium carbonate, green inhibitor
Procedia PDF Downloads 683298 Experimental Assessment of Artificial Flavors Production
Authors: M. Unis, S. Turky, A. Elalem, A. Meshrghi
Abstract:
The Esterification kinetics of acetic acid with isopropnol in the presence of sulfuric acid as a homogenous catalyst was studied with isothermal batch experiments at 60,70 and 80°C and at a different molar ratio of isopropnol to acetic acid. Investigation of kinetics of the reaction indicated that the low of molar ratio is favored for esterification reaction, this is due to the reaction is catalyzed by acid. The maximum conversion, approximately 60.6% was obtained at 80°C for molar ratio of 1:3 acid : alcohol. It was found that increasing temperature of the reaction, increases the rate constant and conversion at a certain mole ratio, that is due to the esterification is exothermic. The homogenous reaction has been described with simple power-law model. The chemical equilibrium combustion calculated from the kinetic model in agreement with the measured chemical equilibrium.Keywords: artificial flavors, esterification, chemical equilibria, isothermal
Procedia PDF Downloads 3343297 Inhibitory Impacts of Fulvic Acid-Coated Iron Oxide Nano Particles on the Amyloid Fibril Aggregations
Authors: Dalia Jomehpour, Sara Sheikhlary, Esmaeil Heydari, Mohammad Hossien Majles Ara
Abstract:
In this study, we report fulvic acid-coated iron oxide nanoparticles of 10.7 ± 2.7 nm size, which serve to inhibit amyloid fibrillation formation. Although the effect of fulvic acid on tau fibrils was investigated, to our best knowledge, its inhibitory impacts on amyloid aggregation formation have been assessed neither in-vitro nor in-vivo. On the other hand, iron oxide nanoparticles exhibit anti-amyloid activity on their own. This study investigates the inhibitory effect of fulvic acid coated iron oxide nanoparticles on amyloid aggregations formed from the commonly used in-vitro model, lysozyme from chicken egg white. FESEM, XRD, and FTIR characterization confirmed that fulvic acid was coated onto the surface of the nanoparticles. The inhibitory effects of the fulvic acid coated iron oxide nanoparticles were verified by Thioflavin T assay, circular dichroism (CD), and FESEM analysis. Furthermore, the toxicity of the nanoparticles on the neuroblastoma SH-SY5Y human cell line was assessed through an MTT assay. Our results indicate that fulvic acid coated iron oxide nanoparticles can efficiently inhibit the formation of amyloid aggregations while exhibiting negligible in-vitro toxicity; thus, they can be used as anti-amyloid agents in the development of the potential drug for neurodegenerative diseases.Keywords: Alzheimer’s disease, fulvic acid coated iron oxide nanoparticles, fulvic acid, amyloid inhibitor, polyphenols
Procedia PDF Downloads 1123296 Experimental Measurements for the Effect of Dilution Procedure in Blood Esterases as Animals Biomarker for Exposure to Organophosphate Compounds
Authors: Kasim Sakran Abass
Abstract:
This main aim of this study was to confirm and extend our current knowledge about the effects of dilutions on esterases activities in the blood for birds with respect to protecting the enzyme from organophosphate inhibition. There were significantly higher esterases activities in dilution 1:10 in all blood samples from quail, duck, and chick compared to other dilutions (1:5, 1:15, 1:20, and 1:25). Furthermore, our results also pointed to the importance of estimating different dilutions effects prior to using in birds as biomarker tools of environmental exposure. Concentration–inhibition curves were determined for the inhibitor in the presence of dilutions 1:5, 1:10 plus 1:15 (to stimulate carboxylesterase). Point estimates (concentrations calculated to produce 20, 50, and 80% inhibition) were compared across conditions and served as a measure of esterase-mediated detoxification. Among the thiol esters (dilution 1:5) was observed to have the highest specificity constant (kcat/Km), and the Km and kcat values were 176 μM and 16,765 s−1, respectively for S-phenyl thioacetate ester, while detected in (dilution 1:15) the lowest specificity constant (kcat/Km), and the Km and kcat values were 943 μM and 1154 s−1, respectively for acetylthiocholine iodide ester.Keywords: esterase, animal, dilution, pesticides
Procedia PDF Downloads 5283295 A FR Fire-Off with Polysilicic Acid for Pes/Co Blends
Authors: Raziye Atakan, Ebru Celebi, Gulay Ozcan, Neda Soydan, A. Sezai Sarac
Abstract:
In this study, a novel polymeric flame retardant chemical with phosphorous-nitrogen synergism was synthesized by polyvinyl alcohol (PVA), hydrophilic polyester resin (PR), phosphoric acid and dicyandiamide (DCDA). Polyester/Cotton (Pes/Co) blend fabrics were treated via pad-dry-cure process with this synthesized chemical. PVA (PR)-P-DCDA has shown that it is an effective flame retardant on the fabrics. In order to improve durable flame retardancy for cotton part of the blend, polysilicic acid and citric acid monohydrate auxiliaries were added in FR finishing bath at different concentrations. Flammability and characteristic properties of the sample were tested according to relevant ISO standard and procedures. To do so, ISO 6940 vertical flammability test, TGA, DTA, LOI and FTIR analysis have been performed. The obtained results showed that this new finishing formulation is a good char-forming agent for the PES/CO blends and polysilicic acid could be used for cellulosic blends with PVA (PR)-P-DCDA.Keywords: flame retardancy, flammability, Pes/Co blends, polysilicic acid
Procedia PDF Downloads 4153294 Engineering Escherichia coli for Production of Short Chain Fatty Acid by Exploiting Fatty Acid Metabolic Pathway
Authors: Kamran Jawed, Anu Jose Mattam, Zia Fatma, Saima Wajid, Malik Z. Abdin, Syed Shams Yazdani
Abstract:
Worldwide demand of natural and sustainable fuels and chemicals have encouraged researchers to develop microbial platform for synthesis of short chain fatty acids as they are useful precursors to replace petroleum-based fuels and chemicals. In this study, we evaluated the role of fatty acid synthesis and β-oxidation cycle of Escherichia coli to produce butyric acid, a 4-carbon short chain fatty acid, with the help of three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron. We found that E. coli strain transformed with gene for TesBT and grown in presence of 8 g/L glucose produced maximum butyric acid titer at 1.46 g/L, followed by that of TesBF at 0.85 g/L and TesAT at 0.12 g/L, indicating that these thioesterases were efficiently converting short chain fatty acyl-ACP intermediate of fatty acid synthesis pathway into the corresponding acid. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. Deletion of genes for fatty acyl-CoA synthetase and acyl-CoA dehydrogenase, which are involved in initiating the fatty acid degradation cycle, and overexpression of FadR, which is a dual transcriptional regulator and exerts negative control over fatty acid degradation pathway, reduced up to 30% of butyric acid titer. This observation suggested that β-oxidation pathway is working synergistically with fatty acid synthesis pathway in production of butyric acid. Moreover, accelerating the fatty acid elongation cycle by overexpressing acetyl-CoA carboxyltransferase (Acc) and 3-hydroxy-acyl-ACP dehydratase (FabZ) or by deleting FabR, the transcription suppressor of elongation, did not improve the butyric acid titer, rather favored the long chain fatty acid production. Finally, a balance between cell growth and butyric acid production was achieved with the use of phosphorous limited growth medium and 14.3 g/L butyric acid, and 17.5 g/L total free fatty acids (FFAs) titer was achieved during fed-batch cultivation. We have engineered an E. coli strain which utilizes the intermediate of both fatty acid synthesis and degradation pathway, i.e. butyryl-ACP and -CoA, to produce butyric acid from glucose. The strategy used in this study resulted in highest reported titers of butyric acid and FFAs in engineered E. coli.Keywords: butenoic acid, butyric acid, Escherichia coli, fed-batch fermentation, short chain fatty acids, thioesterase
Procedia PDF Downloads 3713293 Prediction of the Solubility of Benzoic Acid in Supercritical CO2 Using the PC-SAFT EoS
Authors: Hamidreza Bagheri, Alireza Shariati
Abstract:
There are many difficulties in the purification of raw components and products. However, researchers are seeking better ways for purification. One of the recent methods is extraction using supercritical fluids. In this study, the phase equilibria of benzoic acid-supercritical carbon dioxide system were investigated. Regarding the phase equilibria of this system, the modeling of solid-supercritical fluid behavior was performed using the Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) and Peng-Robinson equations of state (PR EoS). For this purpose, five PC-SAFT EoS parameters for pure benzoic acid were obtained using its experimental vapor pressure. Benzoic acid has association sites and the behavior of the benzoic acid-supercritical fluid system was well-predicted using both equations of state, while the binary interaction parameter values for PR EoS were negative. Genetic algorithm, which is one of the most accurate global optimization algorithms, was also used to optimize the pure benzoic acid parameters and the binary interaction parameters. The AAD% value for the PC-SAFT EoS, were 0.22 for the carbon dioxide-benzoic acid system.Keywords: supercritical fluids, solubility, solid, PC-SAFT EoS, genetic algorithm
Procedia PDF Downloads 5213292 Lipoic Acid Accelerates Wound Healing by Diminishing Pro-Inflammatory Markers and Chemokine Expression in Rheumatoid Arthritis Mouse Model
Authors: Khairy M. A. Zoheir
Abstract:
One of the most severe complications of Rheumatoid arthritis is delayed recovery. lipoic acid possesses antioxidant, hypoglycemic, and anti-inflammatory activity. In the present study, the effects of lipoic acid was investigated on the key mediators of Rheumatoid arthritis, namely, CD4+CD25+ T cell subsets, GITR expressing cells, CD4+CD25+Foxp3+ regulatory T (Treg) cells, T-helper-17 (Th17) cells, and pro-inflammatory cytokines Interleukin-1β (IL-1β), Interleukin-6 (IL-6) and Tumor Necrosis Factor- α (TNF-α)] through flow-cytometry and qPCR analyses. Lipoic acid treated mice showed a significant decrease in the Rheumatoid arthritis, the frequency of GITR-expressing cells, and Th1 cytokines (IL-17A, TNF-αand Interferon- γ (IFN-γ) compared with positive and negative controlled mice. Lipoic acid treatment also down regulated the mRNA expression of the inflammatory mediators compared with the Rheumatoid arthritis mouse model and untreated mice. The number of Tregs also found to be significantly upregulated in lipoic acid treated mice. Our results were confirmed by the histopathological examination. This study showed the beneficial role of lipoic acid in promoting a well-balanced tool for therapy Rheumatoid arthritis.Keywords: lipoic acid, chemokines, inflammatory, rheumatoid arthritis
Procedia PDF Downloads 1743291 Statistical Optimization of Distribution Coefficient for Reactive Extraction of Lactic Acid Using Tri-n-octyl Amine in Oleyl Alcohol and n-Hexane
Authors: Avinash Thakur, Parmjit S. Panesar, Manohar Singh
Abstract:
The distribution coefficient, KD for the reactive extraction of lactic acid from aqueous solutions of lactic acid using 10-30% (v/v) tri-n-octyl amine (extractant) dissolved in n-hexane (inert diluent) and 20% (v/v) oleyl alcohol (modifier) was optimized by using response surface methodology (RSM). A three level Box-Behnken design was employed for experimental design, analysis of the results and to depict the combined interactive effect of seven independent variables, viz lactic acid concentration (cl), pH, TOA concentration in organic phase (ψ), treat ratio (φ), temperature (T), agitation speed (ω) and batch agitation time (τ) on distribution coefficient of lactic acid. The regression analysis recommended that the quadratic model is significant (R2 and adjusted R2 are 98.72 % and 98.69 % respectively) for analysis. A numerical optimization had resulted in maximum lactic acid distribution coefficient (KD) of 3.16 at the optimized values for test variables, cl, pH, ψ, φ, T, ω and τ as 0.15 [M], 3.0, 22.75% (v/v), 1.0 (v/v), 26°C, 145 rpm and 23 min respectively. A good agreement between the predicted and experimentally obtained values for distribution coefficient using the optimized conditions was exhibited.Keywords: Distribution coefficient, tri-n-octylamine, lactic acid, response surface methodology
Procedia PDF Downloads 4563290 Study the Effect of Lipoid Acid as a Protective Against Rheumatoid Arthritis Through Diminishing Pro-inflammatory Markers and Chemokine Expression
Authors: Khairy Mohamed Abdalla Zoheir
Abstract:
One of the most severe complications of Rheumatoid arthritis is delayed recovery. lipoic acid possesses antioxidant, hypoglycemic, and anti-inflammatory activity. In the present study, the effects of lipoic acid were investigated on the key mediators of Rheumatoid arthritis, namely, CD4+CD25+ T cell subsets, GITR expressing cells, CD4+CD25+Foxp3+ regulatory T (Treg) cells, T-helper-17 (Th17) cells and pro-inflammatory cytokines Interleukin-1β (IL-1β), Interleukin-6 (IL-6) and Tumor Necrosis Factor- α (TNF-α)] through flow-cytometry and qPCR analyses. Lipoic acid-treated mice showed a significant decrease in Rheumatoid arthritis, the frequency of GITR-expressing cells, and Th1 cytokines (IL-17A, TNF-αand Interferon- γ (IFN-γ) compared with positive and negative controlled mice. Lipoic acid treatment also downregulated the mRNA expression of the inflammatory mediators compared with the Rheumatoid arthritis mouse model and untreated mice. The number of Tregs was also found to be significantly upregulated in lipoic acid-treated mice. Our results were confirmed by the histopathological examination. This study showed the beneficial role of lipoic acid in promoting a well-balanced tool for the therapy of Rheumatoid arthritis.Keywords: lipoic acid, inflammatory markers, rheumatoid arthritis, qPCR
Procedia PDF Downloads 1003289 Biocompatible Ionic Liquids in Liquid-Liquid Extraction of Lactic Acid: A Comparative Study
Authors: Konstantza Tonova, Ivan Svinyarov, Milen G. Bogdanov
Abstract:
Ionic liquids consisting of pairs of imidazolium or phosphonium cation and chloride or saccharinate anion were synthesized and compared with respect to their extraction efficiency towards the fermentative L-lactic acid. The acid partitioning in the equilibrated biphasic systems of ionic liquid and water was quantified through the extraction degree and the partition coefficient. The water transfer from the aqueous into the ionic liquid-rich phase was also always followed. The effect of pH, which determines the state of lactic acid in the aqueous source was studied. The effect of other salting-out substances that modify the ionic liquid/water equilibrium was also investigated in view to reveal the best liquid-liquid system with respect to low toxicity, high extraction and back extraction efficiencies and performance simplicity.Keywords: ionic liquids, biphasic system, extraction, lactic acid
Procedia PDF Downloads 4813288 Production of Biodiesel Using Tannery Fleshing as a Feedstock via Solid-State Fermentation
Authors: C. Santhana Krishnan, A. M. Mimi Sakinah, Lakhveer Singh, Zularisam A. Wahid
Abstract:
This study was initiated to evaluate and optimize the conversion of animal fat from tannery wastes into methyl ester. In the pre-treatment stage, animal fats feedstock was hydrolysed and esterified through solid state fermentation (SSF) using Microbacterium species immobilized onto sand silica matrix. After 72 hours of fermentation, predominant esters in the animal fats were found to be with 83.9% conversion rate. Later, esterified animal fats were transesterified at 3 hour reaction time with 1% NaOH (w/v %), 6% methanol to oil ratio (w/v %) to produce 89% conversion rate. C13 NMR revealed long carbon chain in fatty acid methyl esters at 22.2817-31.9727 ppm. Methyl esters of palmitic, stearic, oleic represented the major components in biodiesel.Keywords: tannery wastes, fatty animal fleshing, trans-esterification, immobilization, solid state fermentation
Procedia PDF Downloads 2673287 Catalytic Deoxygenation of Propionic Acid in the Vapour Phase
Authors: Hossein Bayahia, Mohammed Saad Motlaq Al-Gahmdi
Abstract:
The gas-phase deoxygenation of propionic acid was investigated in the presence of Co-Mo catalysts in N2 or H2 flow at 200-400 °C. In the presence of N2 the main product was 3-pentanone with other deoxygenates and some light gases: ethane and ethene. Using H2 flow, the catalyst was active for decarboxylation and decarbonylation of acid and the yields of ethane and ethene. The decarboxylation and decarbonylation reactions increased with increasing temperature. Cobalt-molybdenum supported on alumina showed better performance than bulk catalyst, especially at 400 °C in the presence of N2 for the ketonisation of propionic acid to form 3-pentanone as the main product. Bulk and supported catalysts were characterized by surface area porosity (BET), thermogravimetric analysis (TGA) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) of pyridine adsorption.Keywords: deoxygenation, propionic acid, gas-phase, catalyst
Procedia PDF Downloads 2873286 Effects of Folic Acid, Alone or in Combination with Other Nutrients on Homocysteine Level and Cognitive Function in Older People: A Systematic Review
Authors: Jiayan Gou, Kexin He, Xin Zhang, Fei Wang, Liuni Zou
Abstract:
Background: Homocysteine is a high-risk factor for cognitive decline, and folic acid supplementation can lower homocysteine levels. However, current clinical research results are inconsistent, and the effects of folic acid on homocysteine levels and cognitive function in older people are inconsistent. Objective: The objective of this study is to systematically evaluate the effects of folic acid alone or in combination with other nutrients on homocysteine levels and cognitive function in older adults. Methods: Systematic searches were conducted in five databases, including PubMed, Embase, the Cochrane Library, Web of Science, and CINAHL, from inception to June 1, 2023. Randomized controlled trials were included investigating the effects of folic acid alone or in combination with other nutrients on cognitive function in older people. Results: 17 articles were included, with six focusing on the effects of folic acid alone and 11 examining folic acid in combination with other nutrients. The study included 3,100 individuals aged 60 to 83.2 years, with a relatively equal gender distribution (approximately 51.82% male). Conclusion: Folic acid alone or combined with other nutrients can effectively lower homocysteine level and improve cognitive function in patients with mild cognitive impairment. But for patients with Alzheimer's disease and dementia, the intervention only can reduce the homocysteine level, but the improvement in cognitive function is not significant. In healthy older people, high baseline homocysteine levels (>11.3 μmol/L) and good ω-3 fatty acid status (>590 μmol/L) can enhance the improvement effect of folic acid on cognitive function. This trial has been registered on PROSPERO as CRD42023433096.Keywords: B-complex vitamins, cognitive function, folic acid, homocysteine
Procedia PDF Downloads 71