Search results for: polarization dependent loss
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6123

Search results for: polarization dependent loss

4683 Effect of Loop Diameter, Height and Insulation on a High Temperature CO2 Based Natural Circulation Loop

Authors: S. Sadhu, M. Ramgopal, S. Bhattacharyya

Abstract:

Natural circulation loops (NCLs) are buoyancy driven flow systems without any moving components. NCLs have vast applications in geothermal, solar and nuclear power industry where reliability and safety are of foremost concern. Due to certain favorable thermophysical properties, especially near supercritical regions, carbon dioxide can be considered as an ideal loop fluid in many applications. In the present work, a high temperature NCL that uses supercritical carbon dioxide as loop fluid is analysed. The effects of relevant design and operating variables on loop performance are studied. The system operating under steady state is modelled taking into account the axial conduction through loop fluid and loop wall, and heat transfer with surroundings. The heat source is considered to be a heater with controlled heat flux and heat sink is modelled as an end heat exchanger with water as the external cold fluid. The governing equations for mass, momentum and energy conservation are normalized and are solved numerically using finite volume method. Results are obtained for a loop pressure of 90 bar with the power input varying from 0.5 kW to 6.0 kW. The numerical results are validated against the experimental results reported in the literature in terms of the modified Grashof number (Grm) and Reynolds number (Re). Based on the results, buoyancy and friction dominated regions are identified for a given loop. Parametric analysis has been done to show the effect of loop diameter, loop height, ambient temperature and insulation. The results show that for the high temperature loop, heat loss to surroundings affects the loop performance significantly. Hence this conjugate heat transfer between the loop and surroundings has to be considered in the analysis of high temperature NCLs.

Keywords: conjugate heat transfer, heat loss, natural circulation loop, supercritical carbon dioxide

Procedia PDF Downloads 235
4682 Effects of Moisture on Fatigue Behavior of Asphalt Concrete Mixtures Using Four-Point Bending Test

Authors: Mohit Chauhan, Atul Narayan

Abstract:

Moisture damage is the continuous deterioration of asphalt concrete mixtures by the loss of adhesive bond between the asphalt binder and aggregates, or loss of cohesive bonds within the asphalt binder in the presence of moisture. Moisture has been known to either cause or exacerbates distresses in asphalt concrete pavements. Since moisture would often retain for a relatively long duration at the bottom of asphalt concrete layer, the movement of traffic loading in this saturated condition would cause excess stresses or strains within the mixture. This would accelerate the degradation of the adhesion and cohesion within the mixture and likely to contribute the development of fatigue cracking in asphalt concrete pavements. In view of this, it is important to investigate the effect of moisture on the fatigue behavior of asphalt concrete mixtures. In this study, changes in fatigue characteristics after moisture conditioning were evaluated by conducting four-point beam fatigue tests on dry and moisture conditioned specimens. For this purpose, mixtures with two different types of binders were prepared and saturated with moisture using 700 mm Hg vacuum. Beam specimens, in this way, were taken to a saturation level of 65-75 percent. After preconditioning specimens in this degree of saturation and 60°C for a period of 24 hours, they were subjected to four point beam fatigue tests in strain-controlled mode with a strain amplitude of 400 microstrain. The results were then compared with the fatigue test results obtained with beam specimens that were not subjected to moisture conditioning. Test results show that the conditioning reduces both fatigue life and initial flexural stiffness of specimen significantly. The moisture conditioning was also found to increase the rate of reduction of flexural stiffness. Moreover, it was observed that the fatigue life ratio (FLR), the ratio of the fatigue life of the moisture conditioned sample to that of the dry sample, is significantly lower than the flexural stiffness ratio (FSR). The study indicates that four-point bending test is an appropriate tool with FLR and FSR as the potential parameters for moisture-sensitivity evaluation.

Keywords: asphalt concrete, fatigue cracking, moisture damage, preconditioning

Procedia PDF Downloads 134
4681 Scaling Analysis for the Liquefaction Phenomena Generated by Water Waves

Authors: E. Arcos, E. Bautista, F. Méndez

Abstract:

In this work, a scaling analysis of the liquefaction phenomena is presented. The characteristic scales are obtained by balancing term by term of the well-known partial dynamics governing equations, (U − P). From the above, the order of magnitude of the horizontal displacement is very smaller compared with the vertical displacement and therefore the governing equation is only a function of the dependent vertical variables. The U − P approximation is reduced and presented in its dimensionless version. This scaling analysis can be used to obtain analytical solutions of the liquefaction phenomena under the action of the water waves.

Keywords: approximation U-P, porous seabed, scaling analysis, water waves

Procedia PDF Downloads 346
4680 Impact of Knowledge Management on Learning Organizations

Authors: Gunmala Suri

Abstract:

The purpose of this study was to investigate the relationship between various dimensions of Knowledge Management and Learning Organizations. On the basis of the dimensions of Learning Organization, Hypothesis were formulated. Knowledge Management (KM) is taken as the independent variable and Learning Organization (LO) as a dependent variable. KM had 5 dimensions and LO had 7. For this study, a total of 92 participants took part and answered the questionnaire. The respondents were selected using Judgemental and Snowball sampling. The respondents were from SMEs in and around Chandigarh. SPSS was used to for the data analysis purposes. The results showed that the dimensions of KM had a positive influence on the dimensions of LO. The hypothesis were accepted.

Keywords: knowledge management leadership, knowledge management, learning organization, knowledge management culture

Procedia PDF Downloads 411
4679 Nutritional Supplement Usage among Disabled Athletes

Authors: Aylin Hasbay Büyükkaragöz, Zehra Büyüktuncer, Tuğçe Nur Balcı, Nevin Ergun

Abstract:

Purpose: Nutritional supplement usage is widespread among athletes all over the world. However, the usage among disabled athletes is not well-known. This study aimed to evaluate dietary supplement use in disabled athletes, their motivation for consuming supplements, sources of information, and their side effect. Methods: A total of 75 Turkish National Team's disabled athletes (38 female, 37 male) from 5 sport branches (soccer, weight lifting, shooting, table tennis and basketball), aged 13- 55 years, were participated in the study. Nutritional supplement usage was inquired using a questionnaire by a dietitian at their preparation camps. Results: A total of 22.7% of the athletes (18.4% and 27% of, respectively females and males) used some type of dietary supplements. Protein (35.3%), amino acid (29.4%), carnitine (29.4%), creatine (23.5%) and glucosamine (23.5%) were mostly preferred nutritional supplements by all athletes. The most common supplements use was obtained among weightlifters (71.4%), followed by the athletes of soccer (23.5%), table tennis (15.4%), and basketball (6.7%). No nutritional supplement usage was observed among shooters. Total of 41.2% consumers declared more than one reason for taking nutritional supplements. The main motivation for supplement usage was improving athletic performance (63.5%). Other reasons were weight loss, weight gain, muscle development, health protection and nutritional support. Athletes were more likely to get recommendation about nutritional supplement usage from team coaches (48.9%). Of 35.6% athletes reported that they made their own decision about using supplements. Other information sources were health professional, family member, friend and sale manager of sport retail store. Only 3 of 17 athletes reported side effects which were increased urine output, weight gain, loss of appetite and intestinal gas. Conclusions: Nutritional supplement usage was not common among disabled athletes. However, getting information from incompetent sources is disquieting. Considering their health problems, accurate information from competent sources should be provided to disabled athletes. Moreover, long term effects of nutritional supplements among disabled athletes should be examined in further studies.

Keywords: disabled athletes, ergogenic aid, nutritional supplement, vitamin supplementation

Procedia PDF Downloads 320
4678 Ergonomics Management and Sustainability: An Exploratory Study Applied to Automaker Industry in South of Brazil

Authors: Giles Balbinotti, Lucas Balbinotti, Paula Hembecker

Abstract:

The management of the productive process project activities, for the conception of future work and for the financial health of the companies, is an important condition in an organizational model that corroborates the management of the human aspects and their variabilities existing in the work. It is important to seek, at all levels of the organization, understanding and consequent cultural change, and so that factors associated with human aspects are considered and prioritized in the projects. In this scenario, the central question of research for this study is placed from the context of the work, in which the managers and project coordinators are inserted, as follows: How is the top management convinced, in the design stages, to take The ‘Ergonomics’ as strategy for the performance and sustainability of the business? In this perspective, this research has as general objective to analyze how the application of the management of the human aspects in a real project of productive process in the automotive industry, including the activity of the manager and coordinator of the project beyond the strategies of convincing to act in the ergonomics of design. For this, the socio-technical and ergonomic approach is adopted, given its anthropocentric premise in the sense of acting on the social system simultaneously to the technical system, besides the support of the Modapts system that measures the non-value-added times and the correlation with the Critical positions. The methodological approach adopted in this study is based on a review of the literature and the analysis of the activity of the project coordinators of an industry, including the management of human aspects in the context of work variability and the strategies applied in project activities. It was observed in the study that the loss of performance of the serial production lines reaches the important number of the order of 30%, which can make the operation with not value-added, and this loss has as one of the causes, the ergonomic problems present in the professional activity.

Keywords: human aspects in production process project, ergonomics in design, sociotechnical project management, sociotechnical, ergonomic principles, sustainability

Procedia PDF Downloads 249
4677 An Unexpected Hand Injury with Pluridigital Fractures Due to Premature Explosion of a Ramadan Cannon

Authors: Hakan Akgul

Abstract:

Purpose: The use of firecrackers (i.e., Ramadan Cannon) during the month of Ramadan is a traditional way of indicating that the fasting period is over in Muslim countries. Here, we report the rehabilitation of a case of hand injury with pluridigital fractures due to premature explosion of a Ramadan cannon. Materials and Methods: A 48-year old man admitted to the Emergency Department due to left hand injury as a result of a premature explosion of a Ramadan cannon. The patient was immediately taken to operation room because of the multiple fractures, tendon loss, and soft tissue loss in the left hand. Range of motion (ROM) of joints was measured with goniometer, pain and oedema were measured and splinting was performed. Results: Rehabilitation team took over the patient at postoperative 9th week. During the 3 month rehabilitation, range of motion increased, oedema was taken under control, pain was reduced, the colour of the skin turned to the normal tone. According to the visual analog scale (VAS), pain decreased from 9 to 4. Oedema, around the metacarpofalangeal (MCP) joints, decreased from 27,5 cm to 23,5 cm. Total active range of motion of the wrist increased from 5 degrees to 50 degrees.Total active range of motion of supination and pronation increased from 55 degrees to 70 degrees. Discussion: The rehabilitation of multiple hand injury is quite difficult. Different aspects of trauma should be taken into consideration when rehabilitation is planned. Factors such as waiting for the bone union, wound healing, and use of external fixators may delay rehabilitation process. Joint mobilization, massage for reducing oedema and preventing scar tissue, exercise within the range of motion are efficient measures. Poor patient compliance to treatment may lead to poor outcome. First of all, oedema and scar formation must be taken under control. Removing fixators should not be delayed depending on the bone union, and exercise within the range of motion should be started.

Keywords: explosion, fracture, hand, injury

Procedia PDF Downloads 237
4676 Effect of Auraptene on the Enzymatic Glutathione Redox-System in Nrf2 Knockout Mice

Authors: Ludmila A. Gavriliuc, Jerry McLarty, Heather E. Kleiner, J. Michael Mathis

Abstract:

Abstract -- Background: The citrus coumarine Auraptene (Aur) is an effective chemopreventive agent, as manifested in many models of diseases and cancer. Nuclear factor erythroid 2-related factor (Nrf2) is an important regulator of genes induced by oxidative stress, such as glutathione S-transferases, heme oxygenase-1, and peroxiredoxin 1, by activating the antioxidant response element (ARE). Genetic and biochemical evidence has demonstrated that glutathione (GSH) and glutathione-dependent enzymes, glutathione reductase (GR), glutathione peroxidases (GPs), glutathione S-transferases (GSTs) are responsible for the control of intracellular reduction-oxidation status and participate in cellular adaptation to oxidative stress. The effect of Aur on the activity of GR, GPs (Se-GP and Se-iGP), and content of GSH in the liver, kidney, and spleen is insufficiently explored. Aim: Our goal was the examination of the Aur influence on the redox-system of GSH in Nrf2 wild type and Nrf2 knockout mice via activation of Nrf2 and ARE. Methods: Twenty female mice, 10 Nrf2 wild-type (WT) and 10 Nrf2 (-/-) knockout (KO), were bred and genotyped for our study. The activity of GR, Se-GP, Se-iGP, GST, G6PD, CytP450 reductase, catalase (Cat), and content of GSH were analyzed in the liver, kidney, and spleen using Spectrophotometry methods. The results of the specific activity of enzymes and the amount of GSH were analyzed with ANOVA and Spearman statistical methods. Results: Aur (200 mg/kg) treatment induced hepatic GST, GR, Se-GP activity and inhibited their activity in the spleen of mice, most likely via activation of the ARE through Nrf2. Activation in kidney Se-GP and G6PD by Aur is also controlled, apparently through Nrf2. Results of the non-parametric Spearman correlation analysis indicated the strong positive correlation between GR and G6PD only in the liver in WT control mice (r=+0.972; p < 0.005) and in the kidney KO control mice (r=+0.958; p < 0.005). The observed low content of GSH in the liver of KO mice indicated an increase in its participation in the neutralization of toxic substances with the absence of induction of GSH-dependent enzymes, such as GST, GR, Se-GP, and Se-iGP. Activation of CytP450 in kidney and spleen and Cat in the liver in KO mice probably revealed another regulatory mechanism for these enzymes. Conclusion: Thereby, obtained results testify that Aur can modulate the activity of genes and antioxidant enzymatic redox-system of GSH, responsible for the control of intracellular reduction-oxidation status.

Keywords: auraptene, glutathione, GST, Nrf2

Procedia PDF Downloads 144
4675 New Method for the Synthesis of Different Pyrroloquinazolinoquinolin Alkaloids

Authors: Abdulkareem M. Hamid, Yaseen Elhebshi, Adam Daïch

Abstract:

Luotonins and its derivatives (Isoluotonins) are alkaloids from the aerial parts of Peganum nigellastrum Bunge that display three major skeleton types. Luotonins A, B, and E are pyrroloquinazolinoquinoline alkaloids. A few methods were known for the sysnthesis of Isoluotonin. All luotonins have shown promising cytotoxicities towards selected human cancer cell lines, especially against leukemia P-388 cells. Luotonin A is the most active one, with its activity stemming from topoisomerase I-dependent DNA-cleavage. Such intriguing biological activities and unique structures have led not only to the development of synthetic methods for the efficient synthesis of these compounds, but also to interest in structural modifications for improving the biological properties. Recent progress in the study of luotonins is covered.

Keywords: luotonin A, isoluotonin, pyrroloquiolines, alkaloids

Procedia PDF Downloads 413
4674 Coherent All-Fiber and Polarization Maintaining Source for CO2 Range-Resolved Differential Absorption Lidar

Authors: Erwan Negre, Ewan J. O'Connor, Juha Toivonen

Abstract:

The need for CO2 monitoring technologies grows simultaneously with the worldwide concerns regarding environmental challenges. To that purpose, we developed a compact coherent all-fiber ranged-resolved Differential Absorption Lidar (RR-DIAL). It has been designed along a tunable 2x1fiber optic switch set to a frequency of 1 Hz between two Distributed FeedBack (DFB) lasers emitting in the continuous-wave mode at 1571.41 nm (absorption line of CO2) and 1571.25 nm (CO2 absorption-free line), with linewidth and tuning range of respectively 1 MHz and 3 nm over operating wavelength. A three stages amplification through Erbium and Erbium-Ytterbium doped fibers coupled to a Radio Frequency (RF) driven Acousto-Optic Modulator (AOM) generates 100 ns pulses at a repetition rate from 10 to 30 kHz with a peak power up to 2.5 kW and a spatial resolution of 15 m, allowing fast and highly resolved CO2 profiles. The same afocal collection system is used for the output of the laser source and the backscattered light which is then directed to a circulator before being mixed with the local oscillator for heterodyne detection. Packaged in an easily transportable box which also includes a server and a Field Programmable Gate Array (FPGA) card for on-line data processing and storing, our setup allows an effective and quick deployment for versatile in-situ analysis, whether it be vertical atmospheric monitoring, large field mapping or sequestration site continuous oversight. Setup operation and results from initial field measurements will be discussed.

Keywords: CO2 profiles, coherent DIAL, in-situ atmospheric sensing, near infrared fiber source

Procedia PDF Downloads 126
4673 Hazardous Effects of Metal Ions on the Thermal Stability of Hydroxylammonium Nitrate

Authors: Shweta Hoyani, Charlie Oommen

Abstract:

HAN-based liquid propellants are perceived as potential substitute for hydrazine in space propulsion. Storage stability for long service life in orbit is one of the key concerns for HAN-based monopropellants because of its reactivity with metallic and non-metallic impurities which could entrain from the surface of fuel tanks and the tubes. The end result of this reactivity directly affects the handling, performance and storability of the liquid propellant. Gaseous products resulting from the decomposition of the propellant can lead to deleterious pressure build up in storage vessels. The partial loss of an energetic component can change the ignition and the combustion behavior and alter the performance of the thruster. The effect of largely plausible metals- iron, copper, chromium, nickel, manganese, molybdenum, zinc, titanium and cadmium on the thermal decomposition mechanism of HAN has been investigated in this context. Studies involving different concentrations of metal ions and HAN at different preheat temperatures have been carried out. Effect of metal ions on the decomposition behavior of HAN has been studied earlier in the context of use of HAN as gun propellant. However the current investigation pertains to the decomposition mechanism of HAN in the context of use of HAN as monopropellant for space propulsion. Decomposition onset temperature, rate of weight loss, heat of reaction were studied using DTA- TGA and total pressure rise and rate of pressure rise during decomposition were evaluated using an in-house built constant volume batch reactor. Besides, reaction mechanism and product profile were studied using TGA-FTIR setup. Iron and copper displayed the maximum reaction. Initial results indicate that iron and copper shows sensitizing effect at concentrations as low as 50 ppm with 60% HAN solution at 80°C. On the other hand 50 ppm zinc does not display any effect on the thermal decomposition of even 90% HAN solution at 80°C.

Keywords: hydroxylammonium nitrate, monopropellant, reaction mechanism, thermal stability

Procedia PDF Downloads 417
4672 The Use of Correlation Difference for the Prediction of Leakage in Pipeline Networks

Authors: Mabel Usunobun Olanipekun, Henry Ogbemudia Omoregbee

Abstract:

Anomalies such as water pipeline and hydraulic or petrochemical pipeline network leakages and bursts have significant implications for economic conditions and the environment. In order to ensure pipeline systems are reliable, they must be efficiently controlled. Wireless Sensor Networks (WSNs) have become a powerful network with critical infrastructure monitoring systems for water, oil and gas pipelines. The loss of water, oil and gas is inevitable and is strongly linked to financial costs and environmental problems, and its avoidance often leads to saving of economic resources. Substantial repair costs and the loss of precious natural resources are part of the financial impact of leaking pipes. Pipeline systems experts have implemented various methodologies in recent decades to identify and locate leakages in water, oil and gas supply networks. These methodologies include, among others, the use of acoustic sensors, measurements, abrupt statistical analysis etc. The issue of leak quantification is to estimate, given some observations about that network, the size and location of one or more leaks in a water pipeline network. In detecting background leakage, however, there is a greater uncertainty in using these methodologies since their output is not so reliable. In this work, we are presenting a scalable concept and simulation where a pressure-driven model (PDM) was used to determine water pipeline leakage in a system network. These pressure data were collected with the use of acoustic sensors located at various node points after a predetermined distance apart. We were able to determine with the use of correlation difference to determine the leakage point locally introduced at a predetermined point between two consecutive nodes, causing a substantial pressure difference between in a pipeline network. After de-noising the signal from the sensors at the nodes, we successfully obtained the exact point where we introduced the local leakage using the correlation difference model we developed.

Keywords: leakage detection, acoustic signals, pipeline network, correlation, wireless sensor networks (WSNs)

Procedia PDF Downloads 95
4671 Brain Atrophy in Alzheimer's Patients

Authors: Tansa Nisan Gunerhan

Abstract:

Dementia comes in different forms, including Alzheimer's disease. The most common dementia diagnosis among elderly individuals is Alzheimer's disease. On average, for patients with Alzheimer’s, life expectancy is around 4-8 years after the diagnosis; however, expectancy can go as high as twenty years or more, depending on the shrinkage of the brain. Normally, along with aging, the brain shrinks at some level but doesn’t lose a vast amount of neurons. However, Alzheimer's patients' neurons are destroyed rapidly; hence problems with loss of memory, communication, and other metabolic activities begin. The toxic changes in the brain affect the stability of the neurons. Beta-amyloid and tau are two proteins that are believed to play a role in the development of Alzheimer's disease through their toxic changes. Beta-amyloid is a protein that is produced in the brain and is normally broken down and removed from the body. However, in people with Alzheimer's disease, the production of beta-amyloid increases, and it begins to accumulate in the brain. These plaques are thought to disrupt communication between nerve cells and may contribute to the death of brain cells. Tau is a protein that helps to stabilize microtubules, which are essential for the transportation of nutrients and other substances within brain cells. In people with Alzheimer's disease, tau becomes abnormal and begins to accumulate inside brain cells, forming neurofibrillary tangles. These tangles disrupt the normal functioning of brain cells and may contribute to their death, forming amyloid plaques which are deposits of a protein called amyloid-beta that build up between nerve cells in the brain. The accumulation of amyloid plaques and neurofibrillary tangles in the brain is thought to contribute to the shrinkage of brain tissue. As the brain shrinks, the size of the brain may decrease, leading to a reduction in brain volume. Brain atrophy in Alzheimer's disease is often accompanied by changes in the structure and function of brain cells and the connections between them, leading to a decline in brain function. These toxic changes that accumulate can cause symptoms such as memory loss, difficulty with thinking and problem-solving, and changes in behavior and personality.

Keywords: Alzheimer, amyloid-beta, brain atrophy, neuron, shrinkage

Procedia PDF Downloads 91
4670 Public Space, Environmental Violence and Female Vulnerability in Radwa Ashour’s Specters and Betool Khadiri’s Absent

Authors: Jihan Zakarriya

Abstract:

This paper aims at examining the concepts of gender vulnerability, militarized spaces and environmental degradation in Egyptian novelist Radwa Ashour’s Specters (1999) and Iraqi novelist Betool Khadiri’s Absent (2005). Although the socio-economic, environmental and political conditions in the 1990s- Egypt and Iraq are different, this paper argues that Ashour’s Specters and Khadiri’s Absent show the two societies as sharing a concern with the politics of public participation, individual freedom and political violence. For example, while Specters exposes the planned processes of economic-political and cultural violence towards Egyptian environment and people that undermine concepts of justice, equality and democracy, Absent shows the destructive effects of the systematic, successive waves of (international) militarized interferences and socio-economic sanctions imposed on Iraq following the Gulf War that hinder efforts of social development and kindle ethnic-religious violence and polarization in the country. This paper investigates and relates issues of gender, environmental and political violence and repression in Ashour’s Specters and Khadiri’s Absent in relation to the concepts of public space and security in the two countries. The paper argues that the selected novels articulate a particular awareness of the political-international conflicts and difficulties in the 1990s-Egypt and Iraq, with the aim both to emphasize the issue of gender as a tool of oppression and power hierarchy worldwide and to figure out new notions of public participation and change.

Keywords: gender violence, public space, environment, change

Procedia PDF Downloads 135
4669 Time Dependent Biodistribution Modeling of 177Lu-DOTATOC Using Compartmental Analysis

Authors: M. Mousavi-Daramoroudi, H. Yousefnia, F. Abbasi-Davani, S. Zolghadri

Abstract:

In this study, 177Lu-DOTATOC was prepared under optimized conditions (radiochemical purity: > 99%, radionuclidic purity: > 99%). The percentage of injected dose per gram (%ID/g) was calculated for organs up to 168 h post injection. Compartmental model was applied to mathematical description of the drug behaviour in tissue at different times. The biodistribution data showed the significant excretion of the radioactivity from the kidneys. The adrenal and pancreas, as major expression sites for somatostatin receptor (SSTR), had significant uptake. A pharmacokinetic model of 177Lu-DOTATOC was presented by compartmental analysis which demonstrates the behavior of the complex.

Keywords: biodistribution, compartmental modeling, ¹⁷⁷Lu, Octreotide

Procedia PDF Downloads 215
4668 Estimation of Relative Subsidence of Collapsible Soils Using Electromagnetic Measurements

Authors: Henok Hailemariam, Frank Wuttke

Abstract:

Collapsible soils are weak soils that appear to be stable in their natural state, normally dry condition, but rapidly deform under saturation (wetting), thus generating large and unexpected settlements which often yield disastrous consequences for structures unwittingly built on such deposits. In this study, a prediction model for the relative subsidence of stressed collapsible soils based on dielectric permittivity measurement is presented. Unlike most existing methods for soil subsidence prediction, this model does not require moisture content as an input parameter, thus providing the opportunity to obtain accurate estimation of the relative subsidence of collapsible soils using dielectric measurement only. The prediction model is developed based on an existing relative subsidence prediction model (which is dependent on soil moisture condition) and an advanced theoretical frequency and temperature-dependent electromagnetic mixing equation (which effectively removes the moisture content dependence of the original relative subsidence prediction model). For large scale sub-surface soil exploration purposes, the spatial sub-surface soil dielectric data over wide areas and high depths of weak (collapsible) soil deposits can be obtained using non-destructive high frequency electromagnetic (HF-EM) measurement techniques such as ground penetrating radar (GPR). For laboratory or small scale in-situ measurements, techniques such as an open-ended coaxial line with widely applicable time domain reflectometry (TDR) or vector network analysers (VNAs) are usually employed to obtain the soil dielectric data. By using soil dielectric data obtained from small or large scale non-destructive HF-EM investigations, the new model can effectively predict the relative subsidence of weak soils without the need to extract samples for moisture content measurement. Some of the resulting benefits are the preservation of the undisturbed nature of the soil as well as a reduction in the investigation costs and analysis time in the identification of weak (problematic) soils. The accuracy of prediction of the presented model is assessed by conducting relative subsidence tests on a collapsible soil at various initial soil conditions and a good match between the model prediction and experimental results is obtained.

Keywords: collapsible soil, dielectric permittivity, moisture content, relative subsidence

Procedia PDF Downloads 357
4667 Accurate Binding Energy of Ytterbium Dimer from Ab Initio Calculations and Ultracold Photoassociation Spectroscopy

Authors: Giorgio Visentin, Alexei A. Buchachenko

Abstract:

Recent proposals to use Yb dimer as an optical clock and as a sensor for non-Newtonian gravity imply the knowledge of its interaction potential. Here, the ground-state Born-Oppenheimer Yb₂ potential energy curve is represented by a semi-analytical function, consisting of short- and long-range contributions. For the former, the systematic ab initio all-electron exact 2-component scalar-relativistic CCSD(T) calculations are carried out. Special care is taken to saturate diffuse basis set component with the atom- and bond-centered primitives and reach the complete basis set limit through n = D, T, Q sequence of the correlation-consistent polarized n-zeta basis sets. Similar approaches are used to the long-range dipole and quadrupole dispersion terms by implementing the CCSD(3) polarization propagator method for dynamic polarizabilities. Dispersion coefficients are then computed through Casimir-Polder integration. The semiclassical constraint on the number of the bound vibrational levels known for the ¹⁷⁴Yb isotope is used to scale the potential function. The scaling, based on the most accurate ab initio results, bounds the interaction energy of two Yb atoms within the narrow 734 ± 4 cm⁻¹ range, in reasonable agreement with the previous ab initio-based estimations. The resulting potentials can be used as the reference for more sophisticated models that go beyond the Born-Oppenheimer approximation and provide the means of their uncertainty estimations. The work is supported by Russian Science Foundation grant # 17-13-01466.

Keywords: ab initio coupled cluster methods, interaction potential, semi-analytical function, ytterbium dimer

Procedia PDF Downloads 148
4666 Bianchi Type- I Viscous Fluid Cosmological Models with Stiff Matter and Time Dependent Λ- Term

Authors: Rajendra Kumar Dubey

Abstract:

Einstein’s field equations with variable cosmological term Λ are considered in the presence of viscous fluid for Bianchi type I space time. Exact solutions of Einstein’s field equations are obtained by assuming cosmological term Λ Proportional to (R is a scale factor and m is constant). We observed that the shear viscosity is found to be responsible for faster removal of initial anisotropy in the universe. The physical significance of the cosmological models has also been discussed.

Keywords: bianchi type, I cosmological model, viscous fluid, cosmological constant Λ

Procedia PDF Downloads 523
4665 Caffeic Acid Methyl and Ethyl Esters Exhibit Beneficial Effect on Glucose and Lipid Metabolism in Cultured Murine Insulin-Sensitive Cells

Authors: Hoda M. Eid, Abir Nachar, Farah Thong, Gary Sweeney, Pierre S. Haddad

Abstract:

Caffeic acid methyl ester (CAME) and caffeic ethyl esters (CAEE) were previously reported to potently stimulate glucose uptake in cultured C2C12 skeletal muscle cells via insulin-independent mechanisms involving the activation of adenosine monophosphate-activated protein kinase (AMPK). In the present study, we investigated the effect of the two compounds on the translocation of glucose transporter GLUT4 in L6 skeletal muscle cells. The cells were treated with the optimum non-toxic concentration (50 µM) of either CAME or CAEE for 18 h. Levels of GLUT4myc at the cell surface were measured by O-phenylenediamine dihydrochloride (OPD) assay. The effects of CAME and CAEE on GLUT1 and GLUT4 protein content were also measured by western immunoblot. Our results show that CAME and CAEE significantly increased glucose uptake, GLUT4 translocation and GLUT4 protein content. Furthermore, the effect of the two CA esters on two insulin-sensitive cell lines: H4IIE rat hepatoma and 3T3-L1 adipocytes were investigated. CAME and CAEE reduced the enzymatic activity of the key hepatic gluconeogenic enzyme glucose-6-phosphatase in a concentration-dependent manner. In addition, they exerted a concentration-dependent antiadipogenic effect on 3T3-L1 cells. Mitotic clonal expansion (MCE), a prerequisite for adipocytes differentiation was also concentration-dependently inhibited. The two compounds abrogated lipid droplet accumulation, blocked MCE and maintained cells in fibroblast-like state when applied at the maximum non-toxic concentration (100 µM). In addition, the expression of the early key adipogenic transcription factors CCAAT enhancer-binding protein beta (C/EBP-β) and the master regulator of adipogenesis peroxisome-proliferator-activated receptor gamma (PPAR-γ) were inhibited. We, therefore, conclude that CAME and CAEE exert pleiotropic benefits in several insulin-sensitive cell lines through insulin-independent mechanisms involving AMPK, hence they may treat obesity, diabetes and other metabolic diseases.

Keywords: type 2 diabetes mellitus, insulin resistance, GLUT4, Akt, AMPK.

Procedia PDF Downloads 307
4664 Cockpit Integration and Piloted Assessment of an Upset Detection and Recovery System

Authors: Hafid Smaili, Wilfred Rouwhorst, Paul Frost

Abstract:

The trend of recent accident and incident cases worldwide show that the state-of-the-art automation and operations, for current and future demanding operational environments, does not provide the desired level of operational safety under crew peak workload conditions, specifically in complex situations such as loss-of-control in-flight (LOC-I). Today, the short term focus is on preparing crews to recognise and handle LOC-I situations through upset recovery training. This paper describes the cockpit integration aspects and piloted assessment of both a manually assisted and automatic upset detection and recovery system that has been developed and demonstrated within the European Advanced Cockpit for Reduction Of StreSs and workload (ACROSS) programme. The proposed system is a function that continuously monitors and intervenes when the aircraft enters an upset and provides either manually pilot-assisted guidance or takes over full control of the aircraft to recover from an upset. In order to mitigate the highly physical and psychological impact during aircraft upset events, the system provides new cockpit functionalities to support the pilot in recovering from any upset both manually assisted and automatically. A piloted simulator assessment was made in Oct-Nov 2015 using ten pilots in a representative civil large transport fly-by-wire aircraft in terms of the preference of the tested upset detection and recovery system configurations to reduce pilot workload, increase situational awareness and safe interaction with the manually assisted or automated modes. The piloted simulator evaluation of the upset detection and recovery system showed that the functionalities of the system are able to support pilots during an upset. The experiment showed that pilots are willing to rely on the guidance provided by the system during an upset. Thereby, it is important for pilots to see and understand what the aircraft is doing and trying to do especially in automatic modes. Comparing the manually assisted and the automatic recovery modes, the pilot’s opinion was that an automatic recovery reduces the workload so that they could perform a proper screening of the primary flight display. The results further show that the manually assisted recoveries, with recovery guidance cues on the cockpit primary flight display, reduced workload for severe upsets compared to today’s situation. The level of situation awareness was improved for automatic upset recoveries where the pilot could monitor what the system was trying to accomplish compared to automatic recovery modes without any guidance. An improvement in situation awareness was also noticeable with the manually assisted upset recovery functionalities as compared to the current non-assisted recovery procedures. This study shows that automatic upset detection and recovery functionalities are likely to positively impact the operational safety by means of reduced workload, improved situation awareness and crew stress reduction. It is thus believed that future developments for upset recovery guidance and loss-of-control prevention should focus on automatic recovery solutions.

Keywords: aircraft accidents, automatic flight control, loss-of-control, upset recovery

Procedia PDF Downloads 206
4663 Towards the Design of Gripper Independent of Substrate Surface Structures

Authors: Annika Schmidt, Ausama Hadi Ahmed, Carlo Menon

Abstract:

End effectors for robotic systems are becoming more and more advanced, resulting in a growing variety of gripping tasks. However, most grippers are application specific. This paper presents a gripper that interacts with an object’s surface rather than being dependent on a defined shape or size. For this purpose, ingressive and astrictive features are combined to achieve the desired gripping capabilities. The developed prototype is tested on a variety of surfaces with different hardness and roughness properties. The results show that the gripping mechanism works on all of the tested surfaces. The influence of the material properties on the amount of the supported load is also studied and the efficiency is discussed.

Keywords: claw, dry adhesion, insects, material properties

Procedia PDF Downloads 351
4662 The Use of Polar Substituent Groups for Promoting Azo Disperse Dye Solubility and Reactivity for More Economic and Environmental Benign Applications: A Computational Study

Authors: Olaide O. Wahab, Lukman O. Olasunkanmi, Krishna K. Govender, Penny P. Govender

Abstract:

The economic and environmental challenges associated with azo disperse dyes applications are due to poor aqueous solubility and low degradation tendency which stems from low chemical reactivity. Poor aqueous solubility property of this group of dyes necessitates the use of dispersing agents which increase operational costs and also release toxic chemical components into the environment, while their low degradation tendency is due to the high stability of the azo functional group (-N=N-) in their chemical structures. To address these problems, this study investigated theoretically the effects of some polar substituents on the aqueous solubility and reactivity properties of disperse yellow (DY) 119 dye with a view to theoretically develop new azo disperse dyes with improved solubility in water and higher degradation tendency in the environment using DMol³ computational code. All calculations were carried out using the Becke and Perdew version of Volsko-Wilk-Nusair (VWN-BP) level of density functional theory in conjunction with double numerical basis set containing polarization function (DNP). The aqueous solubility determination was achieved with conductor-like screening model for realistic solvation (COSMO-RS) in conjunction with known empirical solubility model, while the reactivity was predicted using frontier molecular orbital calculations. Most of the new derivatives studied showed evidence of higher aqueous solubility and degradation tendency compared to the parent dye. We conclude that these derivatives are promising alternative dyes for more economic and environmental benign dyeing practice and therefore recommend them for synthesis.

Keywords: aqueous solubility, azo disperse dye, degradation, disperse yellow 119, DMol³, reactivity

Procedia PDF Downloads 200
4661 Relationship between Gully Development and Characteristics of Drainage Area in Semi-Arid Region, NW Iran

Authors: Ali Reza Vaezi, Ouldouz Bakhshi Rad

Abstract:

Gully erosion is a widespread and often dramatic form of soil erosion caused by water during and immediately after heavy rainfall. It occurs when flowing surface water is channelled across unprotected land and washes away the soil along the drainage lines. The formation of gully is influenced by various factors, including climate, drainage surface area, slope gradient, vegetation cover, land use, and soil properties. It is a very important problem in semi-arid regions, where soils have lower organic matter and are weakly aggregated. Intensive agriculture and tillage along the slope can accelerate soil erosion by water in the region. There is little information on the development of gully erosion in agricultural rainfed areas. Therefore, this study was carried out to investigate the relationship between gully erosion and morphometric characteristics of the drainage area and the effects of soil properties and soil management factors (land use and tillage method) on gully development. A field study was done in a 900 km2 agricultural area in Hshtroud township located in the south of East Azarbijan province, NW Iran. Toward this, two hundred twenty-two gullies created in rainfed lands were found in the area. Some properties of gullies, consisting of length, width, depth, height difference, cross section area, and volume, were determined. Drainage areas for each or some gullies were determined, and their boundaries were drawn. Additionally, the surface area of each drainage, land use, tillage direction, and soil properties that may affect gully formation were determined. The soil erodibility factor (K) defined in the Universal Soil Loss Equation (USLE) was estimated based on five soil properties (silt and very fine sand, coarse sand, organic matter, soil structure code, and soil permeability). Gully development in each drainage area was quantified using its volume and soil loss. The dependency of gully development on drainage area characteristics (surface area, land use, tillage direction, and soil properties) was determined using correlation matrix analysis. Based on the results, gully length was the most important morphometric characteristic indicating the development of gully erosion in the lands. Gully development in the area was related to slope gradient (r= -0.26), surface area (r= 0.71), the area of rainfed lands (r= 0.23), and the area of rainfed tilled along the slope (r= 0.24). Nevertheless, its correlation with the area of pasture and soil erodibility factor (K) was not significant. Among the characteristics of drainage area, surface area is the major factor controlling gully volume in the agricultural land. No significant correlation was found between gully erosion and soil erodibility factor (K) estimated by the Universal Soil Loss Equation (USLE). It seems the estimated soil erodibility can’t describe the susceptibility of the study soils to the gully erosion process. In these soils, aggregate stability and soil permeability are the two soil physical properties that affect the actual soil erodibility and in consequence, these soil properties can control gully erosion in the rainfed lands.

Keywords: agricultural area, gully properties, soil structure, USLE

Procedia PDF Downloads 71
4660 Influence of BaTiO₃ on the Biological Behaviour of Hydroxyapatite: Collagen Composites

Authors: Cristina Busuioc, Georgeta Voicu, Sorin-Ion Jinga

Abstract:

The human bone presents in its dry form piezoelectric properties, which means that a mechanical stress results in electric polarization and an applied electric field causes strain. The immediate consequence was the revealing of piezoelectricity role in bone remodelling, as well as the integration of ceramic materials with piezoelectric behaviour in the composition of unitary or composite biomaterials. Thus, we prepared hydroxyapatite - collagen hybrid materials with barium titanate addition in order to achieve a better osseointegration. Barium titanate powder synthesized by a combined sol-gel-hydrothermal method, commercial hydroxyapatite and laboratory extracted collagen gel were employed as starting materials. Before the composites, fabrication, the powder with piezoelectric features was characterized in detail from the compositional, structural, morphological and electrical point of view. The next step was to elucidate the influence of barium titanate presence especially on the biological properties of the final materials. The biocompatibility of the hybrid supports without or with piezoelectric addition was investigated on mouse osteoblast cells through LDH cytotoxicity assay, LIVE/DEAD cell viability assay, and MTT cell proliferation assay. All results indicated that the analysed materials do not exert cytotoxic effects and present the ability to sustain cell survival and to promote their proliferation. In conclusion, barium titanate nanoparticles exhibit a good biocompatibility and osteoinductive properties, while the derived composite materials based on hydroxyapatite as oxide phase and collagen as polymeric phase can be successfully used for tissue engineering applications.

Keywords: barium titanate, hybrid composites, piezoelectricity, tissue engineering

Procedia PDF Downloads 317
4659 AI Predictive Modeling of Excited State Dynamics in OPV Materials

Authors: Pranav Gunhal., Krish Jhurani

Abstract:

This study tackles the significant computational challenge of predicting excited state dynamics in organic photovoltaic (OPV) materials—a pivotal factor in the performance of solar energy solutions. Time-dependent density functional theory (TDDFT), though effective, is computationally prohibitive for larger and more complex molecules. As a solution, the research explores the application of transformer neural networks, a type of artificial intelligence (AI) model known for its superior performance in natural language processing, to predict excited state dynamics in OPV materials. The methodology involves a two-fold process. First, the transformer model is trained on an extensive dataset comprising over 10,000 TDDFT calculations of excited state dynamics from a diverse set of OPV materials. Each training example includes a molecular structure and the corresponding TDDFT-calculated excited state lifetimes and key electronic transitions. Second, the trained model is tested on a separate set of molecules, and its predictions are rigorously compared to independent TDDFT calculations. The results indicate a remarkable degree of predictive accuracy. Specifically, for a test set of 1,000 OPV materials, the transformer model predicted excited state lifetimes with a mean absolute error of 0.15 picoseconds, a negligible deviation from TDDFT-calculated values. The model also correctly identified key electronic transitions contributing to the excited state dynamics in 92% of the test cases, signifying a substantial concordance with the results obtained via conventional quantum chemistry calculations. The practical integration of the transformer model with existing quantum chemistry software was also realized, demonstrating its potential as a powerful tool in the arsenal of materials scientists and chemists. The implementation of this AI model is estimated to reduce the computational cost of predicting excited state dynamics by two orders of magnitude compared to conventional TDDFT calculations. The successful utilization of transformer neural networks to accurately predict excited state dynamics provides an efficient computational pathway for the accelerated discovery and design of new OPV materials, potentially catalyzing advancements in the realm of sustainable energy solutions.

Keywords: transformer neural networks, organic photovoltaic materials, excited state dynamics, time-dependent density functional theory, predictive modeling

Procedia PDF Downloads 110
4658 Sun-Driven Evaporation Enhanced Forward Osmosis Process for Application in Wastewater Treatment and Pure Water Regeneration

Authors: Dina Magdy Abdo, Ayat N. El-Shazly, E. A. Abdel-Aal

Abstract:

Forward osmosis (FO) is one of the important processes during the wastewater treatment system for environmental remediation and fresh water regeneration. Both Egypt and China are troubled by over millions of tons of wastewater every year, including domestic and industrial wastewater. However, the traditional FO process in wastewater treatment usually suffers low efficiency and high energy consumption because of the continuously diluted draw solution. An additional concentration process is necessary to keep running of FO separation, causing energy waste. Based on the previous study on photothermal membrane, a sun-driven evaporation process is integrated into the draw solution side of FO system. During the sun-driven evaporation, not only the draw solution can be concentrated to maintain a stable and sustainable FO system, but fresh water can be directly separated for regeneration. Solar energy is the ultimate energy source of everything we have on Earth and is, without any doubt, the most renewable and sustainable energy source available to us. Additionally, the FO membrane process is rationally designed to limit the concentration polarization and fouling. The FO membrane’s structure and surface property will be further optimized by the adjustment of doping ratio of controllable nano-materials, membrane formation conditions, and selection of functional groups. A novel kind of nano-composite functional separation membrane with bi-interception layers and high hydrophilicity will be developed for the application in wastewater treatment. So, herein we aim to design a new wastewater treatment system include forward osmosis with high-efficiency energy recovery via the integration of photothermal membrane.

Keywords: forward osmosis, membrane, solar, water treatement

Procedia PDF Downloads 90
4657 Saco Sweet Cherry from Fundão Region, Portugal: Chemical Profile and Health-Promoting Properties

Authors: Luís R. Silva, Ana C. Gonçalves, Catarina Bento, Fábio Jesus, Branca M. Silva

Abstract:

Prunus avium Linnaeus, more known as sweet cherry, is one of the most appreciated fruit worldwide. Most of these quantities are produced in Fundão region, being Saco the cultivar most produced. Saco is very rich in bioactive compounds, especially phenolics, and presents great antioxidant capacity. The purpose of the present study was to investigate the chemical profile and biological potential, concerning antioxidant, anti-diabetic activity and protective effects towards erythrocytes by Saco sweet cherry collected from Fundão region (Portugal). The hydroethanolic extracts were prepared and passed through a C18 solid-phase extraction column. The phenolic profile analyzed by LC-DAD method allowed to the identification of 22 phenolic compounds, being 16 non-phenolics and 6 anthocyanins. In respect to non-coloured phenolics, 3-O-caffeoylquinic and ρ-coumaroylquinic acids were the main ones. Concerning to anthocyanins, cyanidin-3-O-rutinoside was found in higher amounts. Relatively to biological potential, Saco showed great antioxidant potential, through DPPH and NO radical assays, with IC50 =16.24 ± 0.46 µg/mL and IC50 = 176.69 ± 3.35 µg/mL for DPPH and NO, respectively. These results were similar to those obtained for ascorbic acid control (IC50 = 16.92 ± 0.69 and IC50 = 162.66 ± 1.31 μg/mL for DPPH and NO, respectively). In respect to antidiabetic potential, Saco revealed capacity to inhibit α-glucosidase in a dose-dependent manner (IC50 = 10.79 ± 0.40 µg/mL), being much active than positive control acarbose (IC50 = 306.66 ± 0.84 μg/mL). Additionally, Saco extracts revealed protective effects against ROO•-mediated toxicity generated by AAPH in human blood erythrocytes, inhibiting hemoglobin oxidation (IC50 = 38.57 ± 0.96 μg/mL) and hemolysis (IC50 = 73.03 ± 1.48 μg/mL), in a concentration-dependent manner. However, Saco extracts were less effective than quercetin control (IC50 = 3.10 μg/mL and IC50 = 0.7 μg/mL for inhibition of hemoglobin oxidation and hemolysis, respectively). The results obtained showed that Saco is an excellent source of phenolic compounds. These ones are natural antioxidant substances, which easily capture reactive species. This work presents new insights regarding sweet cherry antioxidant properties which may be useful for the future development of new therapeutic strategies for preventing or attenuating oxidative-related disorders.

Keywords: antioxidant capacity, health benefits, phenolic compounds, saco

Procedia PDF Downloads 313
4656 Phytoremediation of Heavy Metals by the Perennial Tussock Chrysopogon Zizanioides Grown on Zn and Cd Contaminated Soil Amended with Biochar

Authors: Dhritilekha Deka, Deepak Patwa, Ravi K., Archana M. Nair

Abstract:

Bioaccumulation of heavy metal contaminants due to intense anthropogenic interference degrades the environment and ecosystem functions. Conventional physicochemical methods involve energy-intensive and costly methodologies. Phytoremediation, on the other hand, provides an efficient nature-based strategy for the reclamation of heavy metal-contaminated sites. However, the slow process and adaptation to high-concentration contaminant sequestration often limit the efficiency of the method. This necessitates natural amendments such as biochar to improve phytoextraction and stabilize the green cover. Biochar is a highly porous structure with high carbon sequestration potential and containing negatively charged functional groups that provide binding sites for the positively charged metals. This study aims to develop and determine the synergy between sugarcane bagasse biochar content and phytoremediation. A 60-day pot experiment using perennial tussock vetiver grass (Chrysopogon zizanioides) was conducted for different biochar contents of 1%, 2%, and 4% for the removal of cadmium and zinc. A concentration of 500 ppm is maintained for the amended and unamended control (CK) samples. The survival rates of the plants, biomass production, and leaf area index were measured for the plant growth characteristics. Results indicate a visible change in the plant growth and the heavy metal concentration with the biochar content. The bioconcentration factor (BCF) in the plant improved significantly for the 4% biochar content by 57% in comparison to the control CK treatment in Cd-treated soils. The Zn soils indicated the highest reduction in the metal concentration by 50% in the 2% amended samples and an increase in the BCF in all the amended samples. The translocation from the rhizosphere to the shoots was low but not dependent on the amendment content and varied for each contaminant type. The root-to-shoot ratio indicates higher values compared to the control samples. The enhanced tolerance capacities can be attributed to the nutrients released by the biochar in the soil. The study reveals the high potential of biochar as a phytoremediation amendment, but its effect is dependent on the soil and heavy metal and accumulator species.

Keywords: phytoextraction, biochar, heavy metals, chrysopogon zizanioides, bioaccumulation factor

Procedia PDF Downloads 60
4655 Stomach Specific Delivery of Andrographolide from Floating in Situ Gelling System

Authors: Pravina Gurjar, Bothiraja Pour, Vijay Kumbhar, Ganesh Dama

Abstract:

Andrographolide (AG), a bioactive phytoconstituent, has a wider range of pharmacological action. However, due to the intestinal degradation, shows low oral bioavailability. The aim of the present work was to develop Floating In-situ gelling Gastro retentive System (FISGS) for AG in order to enhance its site specific absorption and minimize pH dependent hydrolysis in alkaline environment. Further to increase its therapeutic efficacy for peptic ulcer disease caused by H. pyroli. Gellan based floating in situ gelling system of AG were prepared by using sodium citrate and calcium carbonate. The 32 factorial designs was used to study the effect of gellan and calcium carbonate concentration (independent variables) on dependent variable such as viscosity, floating lag time and drug release. Developed system was evaluated for drug content, floating lag time, viscosity, and drug release studies. Drug content, viscosity, and floating lag time was found to be 81-99%, 67-117 Cps, and 3-5 sec, respectively. The obtained system showed good in vitro floating ability for more than 12 h using 0.1 N HCl as dissolution medium with initial burst release followed by the controlled zero order drug release up to 24 hrs. In vivo testing of FISGS of AG to rats demonstrated significant antiulcer activity that were evaluated by various parameters like pH, volume, total acidity, millimole equivalent of H+ ions/30 min, and protein content of gastric content. The densities of all the formulation batches were found to be near about 0.9 and floating duration above 12 hr. It was observed that with the increase in conc. of gellan there was increase in the viscosity of formulation but all formulations were in optimum range. The drug content of optimized batch was found to be 99.23. In histopathology study of stomach, the villi at the mucosal surface, the intercellular junction, the intestinal lumen were intact; no destruction of the epithelium, and submucosal gland in formulation treated and control group animals as compared to pure drug AG and standard ranitidine. Gellan-based in situ gastro retentive floating system could be advantageous in terms of increased bioavailability of AG to maintain an effective drug conc. in gastric fluid as well as in serum for longer period of time.

Keywords: andrographolide, floating drug delivery, in situ gelling system, gastroretentive system

Procedia PDF Downloads 356
4654 Tip60 Histone Acetyltransferase Activators as Neuroepigenetic Therapeutic Modulators for Alzheimer’s Disease

Authors: Akanksha Bhatnagar, Sandhya Kortegare, Felice Elefant

Abstract:

Context: Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by progressive cognitive decline and memory loss. The cause of AD is not fully understood, but it is thought to be caused by a combination of genetic, environmental, and lifestyle factors. One of the hallmarks of AD is the loss of neurons in the hippocampus, a brain region that is important for memory and learning. This loss of neurons is thought to be caused by a decrease in histone acetylation, which is a process that regulates gene expression. Research Aim: The research aim of the study was to develop mall molecule compounds that can enhance the activity of Tip60, a histone acetyltransferase that is important for memory and learning. Methodology/Analysis: The researchers used in silico structural modeling and a pharmacophore-based virtual screening approach to design and synthesize small molecule compounds strongly predicted to target and enhance Tip60’s HAT activity. The compounds were then tested in vitro and in vivo to assess their ability to enhance Tip60 activity and rescue cognitive deficits in AD models. Findings: The researchers found that several of the compounds were able to enhance Tip60 activity and rescue cognitive deficits in AD models. The compounds were also developed to cross the blood-brain barrier, which is an important factor for the development of potential AD therapeutics. Theoretical Importance: The findings of this study suggest that Tip60 HAT activators have the potential to be developed as therapeutic agents for AD. The compounds are specific to Tip60, which suggests that they may have fewer side effects than other HDAC inhibitors. Additionally, the compounds are able to cross the blood-brain barrier, which is a major hurdle for the development of AD therapeutics. Data Collection: The study collected data from a variety of sources, including in vitro assays and animal models. The in vitro assays assessed the ability of compounds to enhance Tip60 activity using histone acetyltransferase (HAT) enzyme assays and chromatin immunoprecipitation assays. Animal models were used to assess the ability of the compounds to rescue cognitive deficits in AD models using a variety of behavioral tests, including locomotor ability, sensory learning, and recognition tasks. The human clinical trials will be used to assess the safety and efficacy of the compounds in humans. Questions: The question addressed by this study was whether Tip60 HAT activators could be developed as therapeutic agents for AD. Conclusions: The findings of this study suggest that Tip60 HAT activators have the potential to be developed as therapeutic agents for AD. The compounds are specific to Tip60, which suggests that they may have fewer side effects than other HDAC inhibitors. Additionally, the compounds are able to cross the blood-brain barrier, which is a major hurdle for the development of AD therapeutics. Further research is needed to confirm the safety and efficacy of these compounds in humans.

Keywords: Alzheimer's disease, cognition, neuroepigenetics, drug discovery

Procedia PDF Downloads 71