Search results for: nano fabrication
413 Fabrication of a Potential Point-of-Care Device for Hemoglobin A1c: A Lateral Flow Immunosensor
Authors: Shu Hwang Ang, Choo Yee Yu, Geik Yong Ang, Yean Yean Chan, Yatimah Binti Alias, And Sook Mei Khor
Abstract:
With the high prevalence of Type 2 diabetes mellitus across the world, the morbidities and mortalities associated with Type 2 diabetes have significant impact on the production line for a nation. With routine scheduled clinical visits to manage Type 2 diabetes, diabetic patients with hectic lifestyles can have low clinical compliance. Hence, it often decreases the effectiveness of diabetic management personalized for each diabetic patient. Here, we report a useful developed point-of-care (POC) device that detect glycated hemoglobin (HbA1c, biomarker for long-term Type 2 diabetic management). In fact, the established POC devices certified to be used in clinical setting are not only expensive ($ 8 to $10 per test), they also require skillful practitioners to perform sampling and interpretation. As a paper-based biosensor, the developed HbA1c biosensor utilized lateral flow principle to offer an alternative for cost-effective (approximately $2 per test) and end-user friendly device for household testing. Requiring as little as 2 L of finger-picked blood, the test can be performed at the household with just simple dilution and washings. With visual interpretation of numbers of test lines shown on the developed biosensor, it can be interpreted as easy as a urine pregnancy test, aided with scale of intensity provided. In summary, the developed HbA1c immunosensor has been tested to have high selectivity towards HbA1c, and is stable with reasonably good performance in clinical testing. Therefore, our developed HbA1c immunosensor has high potential to be an effective diabetic management tool to increase patient compliance and thus contain the progression of the diabetes.Keywords: blood, glycated hemoglobin (HbA1c), lateral flow, type 2 diabetes mellitus
Procedia PDF Downloads 528412 Modeling and Design of E-mode GaN High Electron Mobility Transistors
Authors: Samson Mil'shtein, Dhawal Asthana, Benjamin Sullivan
Abstract:
The wide energy gap of GaN is the major parameter justifying the design and fabrication of high-power electronic components made of this material. However, the existence of a piezo-electrics in nature sheet charge at the AlGaN/GaN interface complicates the control of carrier injection into the intrinsic channel of GaN HEMTs (High Electron Mobility Transistors). As a result, most of the transistors created as R&D prototypes and all of the designs used for mass production are D-mode devices which introduce challenges in the design of integrated circuits. This research presents the design and modeling of an E-mode GaN HEMT with a very low turn-on voltage. The proposed device includes two critical elements allowing the transistor to achieve zero conductance across the channel when Vg = 0V. This is accomplished through the inclusion of an extremely thin, 2.5nm intrinsic Ga₀.₇₄Al₀.₂₆N spacer layer. The added spacer layer does not create piezoelectric strain but rather elastically follows the variations of the crystal structure of the adjacent GaN channel. The second important factor is the design of a gate metal with a high work function. The use of a metal gate with a work function (Ni in this research) greater than 5.3eV positioned on top of n-type doped (Nd=10¹⁷cm⁻³) Ga₀.₇₄Al₀.₂₆N creates the necessary built-in potential, which controls the injection of electrons into the intrinsic channel as the gate voltage is increased. The 5µm long transistor with a 0.18µm long gate and a channel width of 30µm operate at Vd=10V. At Vg =1V, the device reaches the maximum drain current of 0.6mA, which indicates a high current density. The presented device is operational at frequencies greater than 10GHz and exhibits a stable transconductance over the full range of operational gate voltages.Keywords: compound semiconductors, device modeling, enhancement mode HEMT, gallium nitride
Procedia PDF Downloads 260411 Chitosan-Aluminum Monostearate Dispersion as Fabricating Liquid for Constructing Controlled Drug Release Matrix
Authors: Kotchamon Yodkhum, Thawatchai Phaechamud
Abstract:
Hydrophobic chitosan-based materials have been developed as controlled drug delivery system. This study was aimed to prepare and evaluate chitosan-aluminum monostearate composite dispersion (CLA) as fabricating liquid for construct a hydrophobic, controlled-release solid drug delivery matrix. This work was attempted to blend hydrophobic substance, aluminum monostearate (AMS), with chitosan in acidic aqueous medium without using any surfactants or grafting reaction, and high temperature during mixing that are normally performed when preparing hydrophobic chitosan system. Lactic acid solution (2%w/v) was employed as chitosan solvent. CLA dispersion was prepared by dispersing different amounts of AMS (1-20% w/w) in chitosan solution (4% w/w) with continuous agitation using magnetic stirrer for 24 h. Effect of AMS amount on physicochemical properties of the dispersion such as viscosity, rheology and particle size was evaluated. Morphology of chitosan-AMS complex (dispersant) was observed under inverted microscope and atomic force microscope. Stability of CLA dispersions was evaluated after preparation within 48 h. CLA dispersions containing AMS less than 5 % w/w exhibited rheological behavior as Newtonian while that containing higher AMS amount exhibited as pseudoplastic. Particle size of the dispersant was significantly smaller when AMS amount was increased up to 5% w/w and was not different between the higher AMS amount system. Morphology of the dispersant under inverted microscope displayed irregular shape and their size exhibited the same trend with particle size measurement. Observation of the dispersion stability revealed that phase separation occurred faster in the system containing higher AMS amount which indicated lower stability of the system. However, the dispersions were homogeneous and stable more than 12 hours after preparation that enough for fabrication process. The prepared dispersions had ability to be fabricated as a porous matrix via lyophilization technique.Keywords: chitosan, aluminum monostearate, dispersion, controlled-release
Procedia PDF Downloads 392410 Superamolecular Chemistry and Packing of FAMEs in the Liquid Phase for Optimization of Combustion and Emission
Authors: Zeev Wiesman, Paula Berman, Nitzan Meiri, Charles Linder
Abstract:
Supramolecular chemistry refers to the domain of chemistry beyond that of molecules and focuses on the chemical systems made up of a discrete number of assembled molecular sub units or components. Biodiesel components self arrangements is closely related/affect their physical properties in combustion systems and emission. Due to technological difficulties, knowledge regarding the molecular packing of FAMEs (biodiesel) in the liquid phase is limited. Spectral tools such as X-ray and NMR are known to provide evidences related to molecular structure organization. Recently, it was reported by our research group that using 1H Time Domain NMR methodology based on relaxation time and self diffusion coefficients, FAMEs clusters with different motilities can be accurately studied in the liquid phase. Head to head dimarization with quasi-smectic clusters organization, based on molecular motion analysis, was clearly demonstrated. These findings about the assembly/packing of the FAME components are directly associated with fluidity/viscosity of the biodiesel. Furthermore, these findings may provide information of micro/nano-particles that are formed in the delivery and injection system of various combustion systems (affected by thermodynamic conditions). Various relevant parameters to combustion such as: distillation/Liquid Gas phase transition, cetane number/ignition delay, shoot, oxidation/NOX emission maybe predicted. These data may open the window for further optimization of FAME/diesel mixture in terms of combustion and emission.Keywords: supermolecular chemistry, FAMEs, liquid phase, fluidity, LF-NMR
Procedia PDF Downloads 340409 Additive Manufacturing of Titanium Metamaterials for Tissue Engineering
Authors: Tuba Kizilirmak
Abstract:
Distinct properties of porous metamaterials have been largely processed for biomedicine requiring a three-dimensional (3D) porous structure engaged with fine mechanical features, biodegradation ability, and biocompatibility. Applications of metamaterials are (i) porous orthopedic and dental implants; (ii) in vitro cell culture of metamaterials and bone regeneration of metamaterials in vivo; (iii) macro-, micro, and nano-level porous metamaterials for sensors, diagnosis, and drug delivery. There are some specific properties to design metamaterials for tissue engineering. These are surface to volume ratio, pore size, and interconnection degrees are selected to control cell behavior and bone ingrowth. In this study, additive manufacturing technique selective laser melting will be used to print the scaffolds. Selective Laser Melting prints the 3D components according to designed 3D CAD models and manufactured materials, adding layers progressively by layer. This study aims to design metamaterials with Ti6Al4V material, which gives benefit in respect of mechanical and biological properties. Ti6Al4V scaffolds will support cell attachment by conferring a suitable area for cell adhesion. This study will control the osteoblast cell attachment on Ti6Al4V scaffolds after the determination of optimum stiffness and other mechanical properties which are close to mechanical properties of bone. Before we produce the samples, we will use a modeling technique to simulate the mechanical behavior of samples. These samples include different lattice models with varying amounts of porosity and density.Keywords: additive manufacturing, titanium lattices, metamaterials, porous metals
Procedia PDF Downloads 193408 Stem Cell Fate Decision Depending on TiO2 Nanotubular Geometry
Authors: Jung Park, Anca Mazare, Klaus Von Der Mark, Patrik Schmuki
Abstract:
In clinical application of TiO2 implants on tooth and hip replacement, migration, adhesion and differentiation of neighboring mesenchymal stem cells onto implant surfaces are critical steps for successful bone regeneration. In a recent decade, accumulated attention has been paid on nanoscale electrochemical surface modifications on TiO2 layer for improving bone-TiO2 surface integration. We generated, on titanium surfaces, self-assembled layers of vertically oriented TiO2 nanotubes with defined diameters between 15 and 100 nm and here we show that mesenchymal stem cells finely sense TiO2 nanotubular geometry and quickly decide their cell fate either to differentiation into osteoblasts or to programmed cell death (apoptosis) on TiO2 nanotube layers. These cell fate decisions are critically dependent on nanotube size differences (15-100nm in diameters) of TiO2 nanotubes sensing by integrin clustering. We further demonstrate that nanoscale topography-sensing is feasible not only in mesenchymal stem cells but rather seems as generalized nanoscale microenvironment-cell interaction mechanism in several cell types composing bone tissue network including osteoblasts, osteoclast, endothelial cells and hematopoietic stem cells. Additionally we discuss the synergistic effect of simultaneous stimulation by nanotube-bound growth factor and nanoscale topographic cues on enhanced bone regeneration.Keywords: TiO2 nanotube, stem cell fate decision, nano-scale microenvironment, bone regeneration
Procedia PDF Downloads 431407 Recent Progress in the Uncooled Mid-Infrared Lead Selenide Polycrystalline Photodetector
Authors: Hao Yang, Lei Chen, Ting Mei, Jianbang Zheng
Abstract:
Currently, the uncooled PbSe photodetectors in the mid-infrared range (2-5μm) with sensitization technology extract more photoelectric response than traditional ones, and enable the room temperature (300K) photo-detection with high detectivity, which have attracted wide attentions in many fields. This technology generally contains the film fabrication with vapor phase deposition (VPD) and a sensitizing process with doping of oxygen and iodine. Many works presented in the recent years almost provide and high temperature activation method with oxygen/iodine vapor diffusion, which reveals that oxygen or iodine plays an important role in the sensitization of PbSe material. In this paper, we provide our latest experimental results and discussions in the stoichiometry of oxygen and iodine and its influence on the polycrystalline structure and photo-response. The experimental results revealed that crystal orientation was transformed from (200) to (420) by sensitization, and the responsivity of 5.42 A/W was gained by the optimal stoichiometry of oxygen and iodine with molecular density of I2 of ~1.51×1012 mm-3 and oxygen pressure of ~1Mpa. We verified that I2 plays a role in transporting oxygen into the lattice of crystal, which is actually not its major role. It is revealed that samples sensitized with iodine transform atomic proportion of Pb from 34.5% to 25.0% compared with samples without iodine from XPS data, which result in the proportion of about 1:1 between Pb and Se atoms by sublimation of PbI2 during sensitization process, and Pb/Se atomic proportion is controlled by I/O atomic proportion in the polycrystalline grains, which is very an important factor for improving responsivity of uncooled PbSe photodetector. Moreover, a novel sensitization and dopant activation method is proposed using oxygen ion implantation with low ion energy of < 500eV and beam current of ~120μA/cm2. These results may be helpful to understanding the sensitization mechanism of polycrystalline lead salt materials.Keywords: polycrystalline PbSe, sensitization, transport, stoichiometry
Procedia PDF Downloads 348406 Metamaterial Lenses for Microwave Cancer Hyperthermia Treatment
Authors: Akram Boubakri, Fethi Choubani, Tan Hoa Vuong, Jacques David
Abstract:
Nowadays, microwave hyperthermia is considered as an effective treatment for the malignant tumors. This microwave treatment which comes to substitute the chemotherapy and the surgical intervention enables an in-depth tumor heating without causing any diseases to the sane tissue. This technique requires a high precision system, in order to effectively concentrate the heating just in the tumor, without heating any surrounding healthy tissue. In the hyperthermia treatment, the temperature in cancerous area is typically raised up to over 42◦C and maintained for one hour in order to destroy the tumor sufficiently, whilst in the surrounding healthy tissues, the temperature is maintained below 42◦C to avoid any damage. Metamaterial lenses are widely used in medical applications like microwave hyperthermia treatment. They enabled a subdiffraction resolution thanks to the amplification of the evanescent waves and they can focus electromagnetic waves from a point source to a point image. Metasurfaces have been used to built metamaterial lenses. The main mechanical advantages of those structures over three dimensional material structures are ease of fabrication and a smaller required volume. Here in this work, we proposed a metasurface based lens operating at the frequency of 6 GHz and designed for microwave hyperthermia. This lens was applied and showed good results in focusing and heating the tumor inside a breast tissue with an increased and maintained temperature above 42°C. The tumor was placed in the focal distance of the lens so that only the tumor tissue will be heated. Finally, in this work, it has been shown that the hyperthermia area within the tissue can be carefully adjusted by moving the antennas or by changing the thickness of the metamaterial lenses based on the tumor position. Even though the simulations performed in this work have taken into account an ideal case, some real characteristics can be considered to improve the obtained results in a realistic model.Keywords: focusing, hyperthermia, metamaterial lenses, metasurface, microwave treatment
Procedia PDF Downloads 227405 Microstructure and Mechanical Properties of Low Alloy Steel with Double Austenitizing Tempering Heat Treatment
Authors: Jae-Ho Jang, Jung-Soo Kim, Byung-Jun Kim, Dae-Geun Nam, Uoo-Chang Jung, Yoon-Suk Choi
Abstract:
Low alloy steels are widely used for pressure vessels, spent fuel storage, and steam generators required to withstand the internal pressure and prevent unexpected failure in nuclear power plants, which these may suffer embrittlement by high levels of radiation and heat for a long period. Therefore, it is important to improve mechanical properties of low alloy steels for the integrity of structure materials at an early stage of fabrication. Recently, it showed that a double austenitizing and tempering (DTA) process resulted in a significant improvement of strength and toughness by refinement of prior austenite grains. In this study, it was investigated that the mechanism of improving mechanical properties according to the change of microstructure by the second fully austenitizing temperature of the DAT process for low alloy steel required the structural integrity. Compared to conventional single austenitizing and tempering (SAT) process, the tensile elongation properties have improved about 5%, DBTTs have obtained result in reduction of about -65℃, and grain size has decreased by about 50% in the DAT process conditions. Grain refinement has crack propagation interference effect due to an increase of the grain boundaries and amount of energy absorption at low temperatures. The higher first austenitizing temperature in the DAT process, the more increase the spheroidized carbides and strengthening the effect of fine precipitates in the ferrite grain. The area ratio of the dimple in the transition area has increased by proportion to the effect of spheroidized carbides. This may the primary mechanisms that can improve low-temperature toughness and elongation while maintaining a similar hardness and strength.Keywords: double austenitizing, Ductile Brittle transition temperature, grain refinement, heat treatment, low alloy steel, low-temperature toughness
Procedia PDF Downloads 510404 Investigating the Minimum RVE Size to Simulate Poly (Propylene carbonate) Composites Reinforced with Cellulose Nanocrystals as a Bio-Nanocomposite
Authors: Hamed Nazeri, Pierre Mertiny, Yongsheng Ma, Kajsa Duke
Abstract:
The background of the present study is the use of environment-friendly biopolymer and biocomposite materials. Among the recently introduced biopolymers, poly (propylene carbonate) (PPC) has been gaining attention. This study focuses on the size of representative volume elements (RVE) in order to simulate PPC composites reinforced by cellulose nanocrystals (CNCs) as a bio-nanocomposite. Before manufacturing nanocomposites, numerical modeling should be implemented to explore and predict mechanical properties, which may be accomplished by creating and studying a suitable RVE. In other studies, modeling of composites with rod shaped fillers has been reported assuming that fillers are unidirectionally aligned. But, modeling of non-aligned filler dispersions is considerably more difficult. This study investigates the minimum RVE size to enable subsequent FEA modeling. The matrix and nano-fillers were modeled using the finite element software ABAQUS, assuming randomly dispersed fillers with a filler mass fraction of 1.5%. To simulate filler dispersion, a Monte Carlo technique was employed. The numerical simulation was implemented to find composite elastic moduli. After commencing the simulation with a single filler particle, the number of particles was increased to assess the minimum number of filler particles that satisfies the requirements for an RVE, providing the composite elastic modulus in a reliable fashion.Keywords: biocomposite, Monte Carlo method, nanocomposite, representative volume element
Procedia PDF Downloads 442403 Investigation of Shear Thickening Fluid Isolator with Vibration Isolation Performance
Authors: M. C. Yu, Z. L. Niu, L. G. Zhang, W. W. Cui, Y. L. Zhang
Abstract:
According to the theory of the vibration isolation for linear systems, linear damping can reduce the transmissibility at the resonant frequency, but inescapably increase the transmissibility of the isolation frequency region. To resolve this problem, nonlinear vibration isolation technology has recently received increasing attentions. Shear thickening fluid (STF) is a special colloidal material. When STF is subject to high shear rate, it rheological property changes from a flowable behavior into a rigid behavior, i.e., it presents shear thickening effect. STF isolator is a vibration isolator using STF as working material. Because of shear thickening effect, STF isolator is a variable-damped isolator. It exhibits small damping under high vibration frequency and strong damping at resonance frequency due to shearing rate increasing. So its special inherent character is very favorable for vibration isolation, especially for restraining resonance. In this paper, firstly, STF was prepared by dispersing nano-particles of silica into polyethylene glycol 200 fluid, followed by rheological properties test. After that, an STF isolator was designed. The vibration isolation system supported by STF isolator was modeled, and the numerical simulation was conducted to study the vibration isolation properties of STF. And finally, the effect factors on vibrations isolation performance was also researched quantitatively. The research suggests that owing to its variable damping, STF vibration isolator can effetely restrain resonance without bringing unfavorable effect at high frequency, which meets the need of ideal damping properties and resolves the problem of traditional isolators.Keywords: shear thickening fluid, variable-damped isolator, vibration isolation, restrain resonance
Procedia PDF Downloads 178402 A Single Stage Rocket Using Solid Fuels in Conventional Propulsion Systems
Authors: John R Evans, Sook-Ying Ho, Rey Chin
Abstract:
This paper describes the research investigations orientated to the starting and propelling of a solid fuel rocket engine which operates as combined cycle propulsion system using three thrust pulses. The vehicle has been designed to minimise the cost of launching small number of Nano/Cube satellites into low earth orbits (LEO). A technology described in this paper is a ground-based launch propulsion system which starts the rocket vertical motion immediately causing air flow to enter the ramjet’s intake. Current technology has a ramjet operation predicted to be able to start high subsonic speed of 280 m/s using a liquid fuel ramjet (LFRJ). The combined cycle engine configuration is in many ways fundamentally different from the LFRJ. A much lower subsonic start speed is highly desirable since the use of a mortar to obtain the latter speed for rocket means a shorter launcher length can be utilized. This paper examines the means and has some performance calculations, including Computational Fluid Dynamics analysis of air-intake at suitable operational conditions, 3-DOF point mass trajectory analysis of multi-pulse propulsion system (where pulse ignition time and thrust magnitude can be controlled), etc. of getting a combined cycle rocket engine use in a single stage vehicle.Keywords: combine cycle propulsion system, low earth orbit launch vehicle, computational fluid dynamics analysis, 3dof trajectory analysis
Procedia PDF Downloads 191401 An Evaluation on the Effectiveness of a 3D Printed Composite Compression Mold
Authors: Peng Hao Wang, Garam Kim, Ronald Sterkenburg
Abstract:
The applications of composite materials within the aviation industry has been increasing at a rapid pace. However, the growing applications of composite materials have also led to growing demand for more tooling to support its manufacturing processes. Tooling and tooling maintenance represents a large portion of the composite manufacturing process and cost. Therefore, the industry’s adaptability to new techniques for fabricating high quality tools quickly and inexpensively will play a crucial role in composite material’s growing popularity in the aviation industry. One popular tool fabrication technique currently being developed involves additive manufacturing such as 3D printing. Although additive manufacturing and 3D printing are not entirely new concepts, the technique has been gaining popularity due to its ability to quickly fabricate components, maintain low material waste, and low cost. In this study, a team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students investigated the effectiveness of a 3D printed composite compression mold. A 3D printed composite compression mold was fabricated by 3D scanning a steel valve cover of an aircraft reciprocating engine. The 3D printed composite compression mold was used to fabricate carbon fiber versions of the aircraft reciprocating engine valve cover. The 3D printed composite compression mold was evaluated for its performance, durability, and dimensional stability while the fabricated carbon fiber valve covers were evaluated for its accuracy and quality. The results and data gathered from this study will determine the effectiveness of the 3D printed composite compression mold in a mass production environment and provide valuable information for future understanding, improvements, and design considerations of 3D printed composite molds.Keywords: additive manufacturing, carbon fiber, composite tooling, molds
Procedia PDF Downloads 199400 Fabrication of Coatable Polarizer by Guest-Host System for Flexible Display Applications
Authors: Rui He, Seung-Eun Baik, Min-Jae Lee, Myong-Hoon Lee
Abstract:
The polarizer is one of the most essential optical elements in LCDs. Currently, the most widely used polarizers for LCD is the derivatives of the H-sheet polarizer. There is a need for coatable polarizers which are much thinner and more stable than H-sheet polarizers. One possible approach to obtain thin, stable, and coatable polarizers is based on the use of highly ordered guest-host system. In our research, we aimed to fabricate coatable polarizer based on highly ordered liquid crystalline monomer and dichroic dye ‘guest-host’ system, in which the anisotropic absorption of light could be achieved by aligning a dichroic dye (guest) in the cooperative motion of the ordered liquid crystal (host) molecules. Firstly, we designed and synthesized a new reactive liquid crystalline monomer containing polymerizable acrylate groups as the ‘host’ material. The structure was confirmed by 1H-NMR and IR spectroscopy. The liquid crystalline behavior was studied by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). It was confirmed that the monomers possess highly ordered smectic phase at relatively low temperature. Then, the photocurable ‘guest-host’ system was prepared by mixing the liquid crystalline monomer, dichroic dye and photoinitiator. Coatable polarizers were fabricated by spin-coating above mixture on a substrate with alignment layer. The in-situ photopolymerization was carried out at room temperature by irradiating UV light, resulting in the formation of crosslinked structure that stabilized the aligned dichroic dye molecules. Finally, the dichroic ratio (DR), order parameter (S) and polarization efficiency (PE) were determined by polarized UV/Vis spectroscopy. We prepared the coatable polarizers by using different type of dichroic dyes to meet the requirement of display application. The results reveal that the coatable polarizers at a thickness of 8μm exhibited DR=12~17 and relatively high PE (>96%) with the highest PE=99.3%, which possess potential for the LCD or flexible display applications.Keywords: coatable polarizer, display, guest-host, liquid crystal
Procedia PDF Downloads 251399 Structural Design for Effective Load Balancing of the Iron Frame in Manhole Lid
Authors: Byung Il You, Ryun Oh, Gyo Woo Lee
Abstract:
Manhole refers to facilities that are accessible to the people cleaning and inspection of sewer, and its covering is called manhole lid. Manhole lid is typically made of a cast iron material. Due to the heavy weight of the cast iron manhole lids their installation and maintenance are not easy, and an electrical shock and corrosion aging of them can cause critical problems. The manhole body and the lid manufacturing using the fiber-reinforced composite material can reduce the weight considerably compared to the cast iron manhole. But only the fiber reinforcing is hard to maintain the heavy load, and the method of the iron frame with double injection molding of the composite material has been proposed widely. In this study reflecting the situation of this market, the structural design of the iron frame for the composite manhole lid was carried out. Structural analysis with the computer simulation for the effectively distributed load on the iron frame was conducted. In addition, we want to assess manufacturing costs through the comparing of weights and number of welding spots of the frames. Despite the cross-sectional area is up to 38% compared with the basic solid form the maximum von Mises stress is increased at least about 7 times locally near the rim and the maximum strain in the central part of the lid is about 5.5 times. The number of welding points related to the manufacturing cost was increased gradually with the more complicated shape. Also, the higher the height of the arch in the center of the lid the better result might be obtained. But considering the economic aspect of the composite fabrication we determined the same thickness as the frame for the height of the arch at the center of the lid. Additionally in consideration of the number of the welding points we selected the hexagonal as the optimal shape. Acknowledgment: These are results of a study on the 'Leaders Industry-university Cooperation' Project, supported by the Ministry of Education (MOE).Keywords: manhole lid, iron frame, structural design, computer simulation
Procedia PDF Downloads 275398 The Effect of Zeolite on Sandy-Silt Soil Mechanical Properties
Authors: Shahryar Aftabi, Saeed Fathi, Mohammad H. Aminfar
Abstract:
It is well known that cemented sand is one of the best approaches for soil stabilization. In some cases, a blend of sand, cement and other pozzolan materials such as zeolite, nano-particles and fiber can be widely (commercially) available and be effectively used in soil stabilization, especially in road construction. In this research, we investigate the effects of CaO which is based on the geotechnical characteristics of zeolite composition with sandy silt soil. Zeolites have low amount of CaO in their structures, that is, varying from 3% to 10%, and by removing the cement paste, we want to investigate the effect of zeolite pozzolan without any activator on soil samples strength. In this research, experiments are concentrated on various weight percentages of zeolite in the soil to examine the effect of the zeolite on drainage shear strength and California Bearing Ratio (CBR) both with and without curing. The study also investigates their liquid limit and plastic limit behavior and makes a comparative result by using Feng's and Wroth-Wood's methods in fall cone (cone penetrometer) device; in the final the SEM images have been presented. The results show that by increasing the percentage of zeolite in without-curing samples, the fine zeolite particles increase some soil's strength, but in the curing-state we can see a relatively higher strength toward without-curing state, since the zeolites have no plastic behavior, the pozzolanic property of zeolites plays a much higher role than cementing properties. Indeed, it is better to combine zeolite particle with activator material such as cement or lime to gain better results.Keywords: California bearing ratio, CBR, direct shear, fall-cone, sandy silt, SEM, zeolite
Procedia PDF Downloads 135397 Self-Organized TiO₂–Nb₂O₅–ZrO₂ Nanotubes on β-Ti Alloy by Anodization
Authors: Muhammad Qadir, Yuncang Li, Cuie Wen
Abstract:
Surface properties such as topography and physicochemistry of metallic implants determine the cell behavior. The surface of titanium (Ti)-based implant can be modified to enhance the bioactivity and biocompatibility. In this study, a self-organized titania–niobium pentoxide–zirconia (TiO₂–Nb₂O₅–ZrO₂) nanotubular layer on β phase Ti35Zr28Nb alloy was fabricated via electrochemical anodization. Energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurement techniques were used to investigate the nanotubes dimensions (i.e., the inner and outer diameters, and wall thicknesses), microstructural features and evolution of the hydrophilic properties. The in vitro biocompatibility of the TiO₂–Nb₂O₅–ZrO₂ nanotubes (NTs) was assessed by using osteoblast cells (SaOS2). Influence of anodization parameters on the morphology of TiO₂–Nb₂O₅–ZrO₂ NTs has been studied. The results indicated that the average inner diameter, outer diameter and the wall thickness of the TiO₂–Nb₂O₅–ZrO₂ NTs were ranged from 25–70 nm, 45–90 nm and 5–13 nm, respectively, and were directly influenced by the applied voltage during anodization. The average inner and outer diameters of NTs increased with increasing applied voltage, and the length of NTs increased with increasing anodization time and water content of the electrolyte. In addition, the size distribution of the NTs noticeably affected the hydrophilic properties and enhanced the biocompatibility as compared with the uncoated substrate. The results of this study could be considered for developing nano-scale coatings for a wide range of biomedical applications.Keywords: Titanium alloy, TiO₂–Nb₂O₅–ZrO₂ nanotubes, anodization, surface wettability, biocompatibility
Procedia PDF Downloads 155396 Theoretical Study of Substitutional Phosphorus and Nitrogen Pairs in Diamond
Authors: Tahani Amutairi, Paul May, Neil Allan
Abstract:
Many properties of semiconductor materials (mechanical, electronic, magnetic, and optical) can be significantly modified by introducing a point defect. Diamond offers extraordinary properties as a semiconductor, and doping seems to be a viable method of solving the problem associated with the fabrication of diamond-based electronic devices in order to exploit those properties. The dopants are believed to play a significant role in reducing the energy barrier to conduction and controlling the mobility of the carriers and the resistivity of the film. Although it has been proven that the n-type diamond semiconductor can be obtained with phosphorus doping, the resulting ionisation energy and mobility are still inadequate for practical application. Theoretical studies have revealed that this is partly because the effects of the many phosphorus atoms incorporated in the diamond lattice are compensated by acceptor states. Using spin-polarised hybrid density functional theory and a supercell approach, we explored the effects of bonding one N atom to a P in adjacent substitutional sites in diamond. A range of hybrid functional, including HSE06, B3LYP, PBE0, PBEsol0, and PBE0-13, were used to calculate the formation, binding, and ionisation energies, in order to explore the solubility and stability of the point defect. The equilibrium geometry and the magnetic and electronic structures were analysed and presented in detail. The defect introduces a unique reconstruction in a diamond where one of the C atoms coordinated with the N atom involved in the elongated C-N bond and creates a new bond with the P atom. The simulated infrared spectra of phosphorus-nitrogen defects were investigated with different supercell sizes and found to contain two sharp peaks at the edges of the spectrum, one at a high frequency 1,379 cm⁻¹ and the second appearing at the end range, 234 cm⁻¹, as obtained with the largest supercell (216).Keywords: DFT, HSE06, B3LYP, PBE0, PBEsol0, PBE0-13
Procedia PDF Downloads 83395 Investigation of Resistive Switching in CsPbCl₃ / Cs₄PbCl₆ Core-Shell Nanocrystals Using Scanning Tunneling Spectroscopy: A Step Towards High Density Memory-based Applications
Authors: Arpan Bera, Rini Ganguly, Raja Chakraborty, Amlan J. Pal
Abstract:
To deal with the increasing demands for the high-density non-volatile memory devices, we need nano-sites with efficient and stable charge storage capabilities. We prepared nanocrystals (NCs) of inorganic perovskite, CsPbCl₃ coated with Cs₄PbCl₆, by colloidal synthesis. Due to the type-I band alignment at the junction, this core-shell composite is expected to behave as a charge trapping site. Using Scanning Tunneling Spectroscopy (STS), we investigated voltage-controlled resistive switching in this heterostructure by tracking the change in its current-voltage (I-V) characteristics. By applying voltage pulse of appropriate magnitude on the NCs through this non-invasive method, different resistive states of this system were systematically accessed. For suitable pulse-magnitude, the response jumped to a branch with enhanced current indicating a high-resistance state (HRS) to low-resistance state (LRS) switching in the core-shell NCs. We could reverse this process by using a pulse of opposite polarity. These two distinct resistive states can be considered as two logic states, 0 and 1, which are accessible by varying voltage magnitude and polarity. STS being a local probe in space enabled us to capture this switching at individual NC site. Hence, we claim a bright prospect of these core-shell NCs made of inorganic halide perovskites in future high density memory application.Keywords: Core-shell perovskite, CsPbCl₃-Cs₄PbCl₆, resistive switching, Scanning Tunneling Spectroscopy
Procedia PDF Downloads 89394 Investigation of Doping of CdSe QDs in Organic Semiconductor for Solar Cell Applications
Authors: Ganesh R. Bhand, N. B. Chaure
Abstract:
Cadmium selenide (CdSe) quantum dots (QDs) were prepared by solvothermal route. Subsequently a inorganic QDs-organic semiconductor (copper phthalocyanine) nanocomposite (i.e CuPc:CdSe nanocomposites) were produced by different concentration of QDs varied in CuPc. The nanocomposite thin films have been prepared by means of spin coating technique. The optical, structural and morphological properties of nanocomposite films have been investigated. The transmission electron microscopy (TEM) confirmed the formation of QDs having average size of 4 nm. The X-ray diffraction pattern exhibits cubic crystal structure of CdSe with reflection to (111), (220) and (311) at 25.4ᵒ, 42.2ᵒ and 49.6ᵒ respectively. The additional peak observed at lower angle at 6.9ᵒ in nanocomposite thin films are associated to CuPc. The field emission scanning electron microscopy (FESEM) observed that surface morphology varied in increasing concentration of CdSe QDs. The obtained nanocomposite show significant improvement in the thermal stability as compared to the pure CuPc indicated by thermo-gravimetric analysis (TGA) in thermograph. The effect in the Raman spectra of composites samples gives a confirm evidence of homogenous dispersion of CdSe in the CuPc matrix and their strong interaction between them to promotes charge transfer property. The success of reaction between composite was confirmed by Fourier transform infrared spectroscopy (FTIR). The photo physical properties were studied using UV - visible spectroscopy. The enhancement of the optical absorption in visible region for nanocomposite layer was observed with increasing the concentration of CdSe in CuPc. This composite may obtain the maximized interface between QDs and polymer for efficient charge separation and enhance the charge transport. Such nanocomposite films for potential application in fabrication of hybrid solar cell with improved power conversion efficiency.Keywords: CdSe QDs, cupper phthalocyanine, FTIR, optical absorption
Procedia PDF Downloads 199393 Al-Ti-W Metallic Glass Thin Films Deposited by Magnetron Sputtering Technology to Protect Steel Against Hydrogen Embrittlement
Authors: Issam Lakdhar, Akram Alhussein, Juan Creus
Abstract:
With the huge increase in world energy consumption, researchers are working to find other alternative sources of energy instead of fossil fuel one causing many environmental problems as the production of greenhouse effect gases. Hydrogen is considered a green energy source, which its combustion does not cause environmental pollution. The transport and the storage of the gas molecules or the other products containing this smallest chemical element in metallic structures (pipelines, tanks) are crucial issues. The dissolve and the permeation of hydrogen into the metal lattice lead to the formation of hydride phases and the embrittlement of structures. To protect the metallic structures, a surface treatment could be a good solution. Among the different techniques, magnetron sputtering is used to elaborate micrometric coatings capable of slowing down or stop hydrogen permeation. In the plasma environment, the deposition parameters of new thin-film metallic glasses Al-Ti-W were optimized and controlled in order to obtain, hydrogen barrier. Many characterizations were carried out (SEM, XRD and Nano-indentation…) to control the composition and understand the influence of film microstructure and chemical composition on the hydrogen permeation through the coatings. The coating performance was evaluated under two hydrogen production methods: chemical and electrochemical (cathodic protection) techniques. The hydrogen quantity absorbed was experimentally determined using the Thermal-Desorption Spectroscopy method (TDS)). An ideal ATW thin film was developed and showed excellent behavior against the diffusion of hydrogen.Keywords: thin films, hydrogen, PVD, plasma technology, electrochemical properties
Procedia PDF Downloads 184392 Fabrication of Ligand Coated Lipid-Based Nanoparticles for Synergistic Treatment of Autoimmune Disease
Authors: Asiya Mahtab, Sushama Talegaonkar
Abstract:
The research is aimed at developing targeted lipid-based nanocarrier systems of chondroitin sulfate (CS) to deliver an antirheumatic drug to the inflammatory site in arthritic paw. Lipid-based nanoparticle (TEF-lipo) was prepared by using a thin-film hydration method. The coating of prepared drug-loaded nanoparticles was done by the ionic interaction mechanism. TEF-lipo and CS-coated lipid nanoparticle (CS-lipo) were characterized for mean droplet size, zeta potential, and surface morphology. TEF-lipo and CS-lipo were further subjected to in vitro cell line studies on RAW 264.7 murine macrophage, U937, and MG 63 cell lines. The pharmacodynamic study was performed to establish the effectiveness of the prepared lipid-based conventional and targeted nanoparticles in comparison to pure drugs. Droplet size and zeta potential of TEF-lipo were found to be 128. 92 ± 5.42 nm and +12.6 ± 1.2 mV. It was observed that after the coating of TEF-lipo with CS, particle size increased to 155.6± 2.12 nm and zeta potential changed to -10.2± 1.4mV. Transmission electron microscopic analysis revealed that the nanovesicles were uniformly dispersed and detached from each other. Formulations followed sustained release pattern up to 24 h. Results of cell line studies ind icated that CS-lipo formulation showed the highest cytotoxic potential, thereby proving its enhanced ability to kill the RAW 264.7 murine macrophage and U937 cells when compared with other formulations. It is clear from our in vivo pharmacodynamic results that targeted nanocarriers had a higher inhibitory effect on arthritis progression than nontargeted nanocarriers or free drugs. Results demonstrate that this approach will provide effective treatment for rheumatoid arthritis, and CS served as a potential prophylactic against the advancement of cartilage degeneration.Keywords: adjuvant induced arthritis, chondroitin sulfate, rheumatoid arthritis, teriflunomide
Procedia PDF Downloads 136391 Fast Prototyping of Precise, Flexible, Multiplexed, Printed Electrochemical Enzyme-Linked Immunosorbent Assay System for Point-of-Care Biomarker Quantification
Authors: Zahrasadat Hosseini, Jie Yuan
Abstract:
Point-of-care (POC) diagnostic devices based on lab-on-a-chip (LOC) technology have the potential to revolutionize medical diagnostics. However, the development of an ideal microfluidic system based on LOC technology for diagnostics purposes requires overcoming several obstacles, such as improving sensitivity, selectivity, portability, cost-effectiveness, and prototyping methods. While numerous studies have introduced technologies and systems that advance these criteria, existing systems still have limitations. Electrochemical enzyme-linked immunosorbent assay (e-ELISA) in a LOC device offers numerous advantages, including enhanced sensitivity, decreased turnaround time, minimized sample and analyte consumption, reduced cost, disposability, and suitability for miniaturization, integration, and multiplexing. In this study, we present a novel design and fabrication method for a microfluidic diagnostic platform that integrates screen-printed electrochemical carbon/silver chloride electrodes on flexible printed circuit boards with flexible, multilayer, polydimethylsiloxane (PDMS) microfluidic networks to accurately manipulate and pre-immobilize analytes for performing electrochemical enzyme-linked immunosorbent assay (e-ELISA) for multiplexed quantification of blood serum biomarkers. We further demonstrate fast, cost-effective prototyping, as well as accurate and reliable detection performance of this device for quantification of interleukin-6-spiked samples through electrochemical analytics methods. We anticipate that our invention represents a significant step towards the development of user-friendly, portable, medical-grade, POC diagnostic devices.Keywords: lab-on-a-chip, point-of-care diagnostics, electrochemical ELISA, biomarker quantification, fast prototyping
Procedia PDF Downloads 83390 Fast Prototyping of Precise, Flexible, Multiplexed, Printed Electrochemical Enzyme-Linked Immunosorbent Assay Platform for Point-of-Care Biomarker Quantification
Authors: Zahrasadat Hosseini, Jie Yuan
Abstract:
Point-of-care (POC) diagnostic devices based on lab-on-a-chip (LOC) technology have the potential to revolutionize medical diagnostics. However, the development of an ideal microfluidic system based on LOC technology for diagnostics purposes requires overcoming several obstacles, such as improving sensitivity, selectivity, portability, cost-effectiveness, and prototyping methods. While numerous studies have introduced technologies and systems that advance these criteria, existing systems still have limitations. Electrochemical enzyme-linked immunosorbent assay (e-ELISA) in a LOC device offers numerous advantages, including enhanced sensitivity, decreased turnaround time, minimized sample and analyte consumption, reduced cost, disposability, and suitability for miniaturization, integration, and multiplexing. In this study, we present a novel design and fabrication method for a microfluidic diagnostic platform that integrates screen-printed electrochemical carbon/silver chloride electrodes on flexible printed circuit boards with flexible, multilayer, polydimethylsiloxane (PDMS) microfluidic networks to accurately manipulate and pre-immobilize analytes for performing electrochemical enzyme-linked immunosorbent assay (e-ELISA) for multiplexed quantification of blood serum biomarkers. We further demonstrate fast, cost-effective prototyping, as well as accurate and reliable detection performance of this device for quantification of interleukin-6-spiked samples through electrochemical analytics methods. We anticipate that our invention represents a significant step towards the development of user-friendly, portable, medical-grade POC diagnostic devices.Keywords: lab-on-a-chip, point-of-care diagnostics, electrochemical ELISA, biomarker quantification, fast prototyping
Procedia PDF Downloads 85389 Chitosan Coated Liposome Incorporated Cyanobacterial Pigment for Nasal Administration in the Brain Stroke
Authors: Kyou Hee Shim, Hwa Sung Shin
Abstract:
When a thrombolysis agent is administered to treat ischemic stroke, excessive reactive oxygen species are generated due to a sudden provision of oxygen and occurs secondary damage cell necrosis. Thus, it is necessary to administrate adjuvant as well as thrombolysis agent to protect and reduce damaged tissue. As cerebral blood vessels have specific structure called blood-brain barrier (BBB), it is not easy to transfer substances from blood to tissue. Therefore, development of a drug carrier is required to increase drug delivery efficiency to brain tissue. In this study, cyanobacterial pigment from the blue-green algae known for having neuroprotective effect as well as antioxidant effect was nasally administrated for bypassing BBB. In order to deliver cyanobacterial pigment efficiently, the nano-sized liposome was used as a carrier. Liposomes were coated with a positive charge of chitosan since negative residues are present at the nasal mucosa the first gateway of nasal administration. Characteristics of liposome including morphology, size and zeta potential were analyzed by transmission electron microscope (TEM) and zeta analyzer. As a result of cytotoxic test, the liposomes were not harmful. Also, being administered a drug to the ischemic stroke animal model, we could confirm that the pharmacological effect of the pigment delivered by chitosan coated liposome was enhanced compared to that of non-coated liposome. Consequently, chitosan coated liposome could be considered as an optimized drug delivery system for the treatment of acute ischemic stroke.Keywords: ischemic stroke, cyanobacterial pigment, liposome, chitosan, nasal administration
Procedia PDF Downloads 227388 Remote Controlled of In-Situ Forming Thermo-sensitive Hydrogel Nanocomposite for Hyperthermia Therapy Application: Synthesis and Characterizations
Authors: Elbadawy A. Kamoun
Abstract:
Magnetically responsive hydrogel nanocomposite (NCH) based on composites of superparamagnetic of Fe3O4 nano-particles and temperature responsive hydrogel matrices were developed. The nanocomposite hydrogel system based on the temperature sensitive N-isopropylacrylamide hydrogels crosslinked by poly(ethylene glycol)-400 dimethacrylate (PEG400DMA) incorporating with chitosan derivative, was synthesized and characterized. Likewise, the NCH system was synthesized by visible-light free radical photopolymerization, using carboxylated camphorquinone-amine system to avoid the common risks of the use of UV-light especially in hyperthermia treatment. Superparamagnetic of iron oxide nanoparticles were introduced into the hydrogel system by polymerizing mixture technique and monomer solution. FT-IR with Raman spectroscopy and Wide angle-XRD analysis were utilized to verify the chemical structure of NCH and exfoliation reaction for nanoparticles, respectively. Additionally, morphological structure of NCH was investigated using SEM and TEM photographs. The swelling responsive of the current nanocomposite hydrogel system with different crosslinking conditions, temperature, magnetic field efficiency, and the presence effect of magnetic nanoparticles were evaluated. Notably, hydrolytic degradation of this system was proved in vitro application. While, in-vivo release profile behavior is under investigation nowadays. Moreover, the compatibility and cytotoxicity tests were previously investigated in our studies for photoinitiating system. These systems show promised polymeric material candidate devices and are expected to have a wide applicability in various biomedical applications as mildly.Keywords: hydrogel nanocomposites, tempretaure-responsive hydrogel, superparamagnetic nanoparticles, hyperthermia therapy
Procedia PDF Downloads 279387 Toehold Mediated Shape Transition of Nucleic Acid Nanoparticles
Authors: Emil F. Khisamutdinov
Abstract:
Development of functional materials undergoing structural transformations in response to an external stimulus such as environmental changes (pH, temperature, etc.), the presence of particular proteins, or short oligonucleotides are of great interest for a variety of applications ranging from medicine to electronics. The dynamic operations of most nucleic acid (NA) devices, including circuits, nano-machines, and biosensors, rely on networks of NA strand displacement processes in which an external or stimulus strand displaces a target strand from a DNA or RNA duplex. The rate of strand displacement can be greatly increased by the use of “toeholds,” single-stranded regions of the target complex to which the invading strand can bind to initiate the reaction, forming additional base pairs that provide a thermodynamic driving force for transformation. Herein, we developed a highly robust nanoparticle shape transition, sequentially transforming DNA polygons from one shape to another using the toehold-mediated DNA strand displacement technique. The shape transformation was confirmed by agarose gel electrophoresis and atomic force microscopy. Furthermore, we demonstrate that our approach is applicable for RNA shape transformation from triangle to square, which can be detected by fluorescence emission from malachite green binding RNA aptamer. Using gel-shift and fluorescence assays, we demonstrated efficient transformation occurs at isothermal conditions (37°C) that can be implemented within living cells as reporter molecules. This work is intended to provide a simple, cost-effective, and straightforward model for the development of biosensors and regulatory devices in nucleic acid nanotechnology.Keywords: RNA nanotechnology, bionanotechnology, toehold mediated DNA switch, RNA split fluorogenic aptamers
Procedia PDF Downloads 79386 SEM Detection of Folate Receptor in a Murine Breast Cancer Model Using Secondary Antibody-Conjugated, Gold-Coated Magnetite Nanoparticles
Authors: Yasser A. Ahmed, Juleen M Dickson, Evan S. Krystofiak, Julie A. Oliver
Abstract:
Cancer cells urgently need folate to support their rapid division. Folate receptors (FR) are over-expressed on a wide range of tumor cells, including breast cancer cells. FR are distributed over the entire surface of cancer cells, but are polarized to the apical surface of normal cells. Targeting of cancer cells using specific surface molecules such as folate receptors may be one of the strategies used to kill cancer cells without hurting the neighing normal cells. The aim of the current study was to try a method of SEM detecting FR in a murine breast cancer cell model (4T1 cells) using secondary antibody conjugated to gold or gold-coated magnetite nanoparticles. 4T1 cells were suspended in RPMI medium witth FR antibody and incubated with secondary antibody for fluorescence microscopy. The cells were cultured on 30mm Thermanox coverslips for 18 hours, labeled with FR antibody then incubated with secondary antibody conjugated to gold or gold-coated magnetite nanoparticles and processed to scanning electron microscopy (SEM) analysis. The fluorescence microscopy study showed strong punctate FR expression on 4T1 cell membrane. With SEM, the labeling with gold or gold-coated magnetite conjugates showed a similar pattern. Specific labeling occurred in nanoparticle clusters, which are clearly visualized in backscattered electron images. The 4T1 tumor cell model may be useful for the development of FR-targeted tumor therapy using gold-coated magnetite nano-particles.Keywords: cancer cell, nanoparticles, cell culture, SEM
Procedia PDF Downloads 734385 Speciation, Preconcentration, and Determination of Iron(II) and (III) Using 1,10-Phenanthroline Immobilized on Alumina-Coated Magnetite Nanoparticles as a Solid Phase Extraction Sorbent in Pharmaceutical Products
Authors: Hossein Tavallali, Mohammad Ali Karimi, Gohar Deilamy-Rad
Abstract:
The proposed method for speciation, preconcentration and determination of Fe(II) and Fe(III) in pharmaceutical products was developed using of alumina-coated magnetite nanoparticles (Fe3O4/Al2O3 NPs) as solid phase extraction (SPE) sorbent in magnetic mixed hemimicell solid phase extraction (MMHSPE) technique followed by flame atomic absorption spectrometry analysis. The procedure is based on complexation of Fe(II) with 1, 10-phenanthroline (OP) as complexing reagent for Fe(II) that immobilized on the modified Fe3O4/Al2O3 NPs. The extraction and concentration process for pharmaceutical sample was carried out in a single step by mixing the extraction solvent, magnetic adsorbents under ultrasonic action. Then, the adsorbents were isolated from the complicated matrix easily with an external magnetic field. Fe(III) ions determined after facility reduced to Fe(II) by added a proper reduction agent to sample solutions. Compared with traditional methods, the MMHSPE method simplified the operation procedure and reduced the analysis time. Various influencing parameters on the speciation and preconcentration of trace iron, such as pH, sample volume, amount of sorbent, type and concentration of eluent, were studied. Under the optimized operating conditions, the preconcentration factor of the modified nano magnetite for Fe(II) 167 sample was obtained. The detection limits and linear range of this method for iron were 1.0 and 9.0 - 175 ng.mL−1, respectively. Also the relative standard deviation for five replicate determinations of 30.00 ng.mL-1 Fe2+ was 2.3%.Keywords: Alumina-Coated magnetite nanoparticles, Magnetic Mixed Hemimicell Solid-Phase Extraction, Fe(ΙΙ) and Fe(ΙΙΙ), pharmaceutical sample
Procedia PDF Downloads 292384 Linearly Polarized Single Photon Emission from Nonpolar, Semipolar and Polar Quantum Dots in GaN/InGaN Nanowires
Authors: Snezana Lazic, Zarko Gacevic, Mark Holmes, Ekaterina Chernysheva, Marcus Müller, Peter Veit, Frank Bertram, Juergen Christen, Yasuhiko Arakawa, Enrique Calleja
Abstract:
The study reports how the pencil-like morphology of a homoepitaxially grown GaN nanowire can be exploited for the fabrication of a thin conformal InGaN nanoshell, hosting nonpolar, semipolar and polar single photon sources (SPSs). All three SPS types exhibit narrow emission lines (FWHM~0.35 - 2 meV) and high degrees of linear optical polarization (P > 70%) in the low-temperature micro-photoluminescence (µ-PL) experiments and are characterized by a pronounced antibunching in the photon correlation measurements (gcorrected(2)(0) < 0.3). The quantum-dot-like exciton localization centers induced by compositional fluctuations within the InGaN nanoshell are identified as the driving mechanism for the single photon emission. As confirmed by the low-temperature transmission electron microscopy combined with cathodoluminescence (TEM-CL) study, the crystal region (i.e. non-polar m-, semi-polar r- and polar c-facets) hosting the single photon emitters strongly affects their emission wavelength, which ranges from ultra-violet for the non-polar to visible for the polar SPSs. The photon emission lifetime is also found to be facet-dependent and varies from sub-nanosecond time scales for the non- and semi-polar SPSs to a few nanoseconds for the polar ones. These differences are mainly attributed to facet-dependent indium content and electric field distribution across the hosting InGaN nanoshell. The hereby reported pencil-like InGaN nanoshell is the first single nanostructure able to host all three types of single photon emitters and is thus a promising building block for tunable quantum light devices integrated into future photonic and optoelectronic circuits.Keywords: GaN nanowire, InGaN nanoshell, linear polarization, nonpolar, semipolar, polar quantum dots, single-photon sources
Procedia PDF Downloads 392