Search results for: long range transport
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13574

Search results for: long range transport

12134 Precise Electrochemical Metal Recovery from Emerging Waste Streams

Authors: Wei Jin

Abstract:

Efficient and selective metal recovery from emerging solid waste, such as spent lithium batteries, electronic waste and SCR catalysts, is of great importance from both environmental and resource considerations. In order to overcome the bottlenecks of long flow-sheet and severe secondary pollution in conventional processes, the rational design of 2-electron oxygen reduction reaction (ORR) and capacitive deionization (CDI) nanomaterials were developed for the precise electrochemical metal recovery. It has been demonstrated that the modified carbon nanomaterials can be employed as 2e ORR to produce H2O2 in aqueous solution, in which the metal can be leached out from the solid waste as ions. Moreover, the multi-component metallic solution can be electrochemically extracted with good efficiency and selectivity with the nanoporous aerogel. Each system presents stable performance for long-term operation and can be used in industrial solid waste treatment. This study provides a materials-oriented, cleaner metal recovery approach for strategic metal resources sustainability.

Keywords: electrochemistry, metal recovery, waste steams, nanomaterials

Procedia PDF Downloads 6
12133 Comparative Analysis of Short and Long Term Salt Stress on the Photosynthetic Apparatus and Chloroplast Ultrastructure of Thellungiella salsuginea

Authors: Rahma Goussi, Walid Derbali, Arafet Manaa, Simone Cantamessa, Graziella Berta, Chedly Abdelly, Roberto Barbato

Abstract:

Salinity is one of the most important abiotic affecting plant growth and productivity worldwide. Photosynthesis, together with cell growth, is among the primary processes to be affected by salinity. Here, we report the effects of salinity stress on the primary processes of photosynthesis in a model halophyte Thellungiella Salsuginea. Plants were cultivated in hydroponic system with different NaCl concentrations (0, 100, 200 and 400 mM) during 2 weeks. The obtained results showed an obvious change in the photosynthetic efficiency of photosystem I (PSI) and phostosytem II (PSII), related to NaCl concentration supplemented to the medium and the stress duration considered. With moderate salinity (100 and 200 mM NaCl), no significant variation was observed in photosynthetic parameters of PSI and PSII and Chl fluorescence whatever the time of stress application. Also, the photosynthesis apparatus Fo, Fm and Fv fluorescence, as well as Fv/Fm were not affected by salt stress. While a significant decrease was observed on quantum yields Y(I), Y(II) and electron transport rate ETR(I), ETR(II) under high salt treatment (400 mM NaCl) with prolonged period (15 days). This reduction is quantitatively compensated by a corresponding increase of energy dissipation Y(NPQ) and a progressive decrease in Fv/Fm under salt treatment. The intensity of the OJIP fluorescence transient decreased with increase in NaCl concentration, with a major effect observed during prolonged period of salt stress. Ultrastructural analysis with Light Microscopy and Transmission Electron Microscopy of T. salsuginea chloroplasts showed some cellular changes, such as the shape of the mesophyll cells and number of chloroplast/cell only under higher NaCl concentration. Salt-stress caused the swelling of thylakoids in T. Salsuginea mesophyll with more accumulation of starch as compared to control plant.

Keywords: fluorescence, halophyte, photosynthesis, salt stress

Procedia PDF Downloads 374
12132 Monitor Vehicle Speed Using Internet of Things Based Wireless Sensor Network System

Authors: Akber Oumer Abdurezak

Abstract:

Road traffic accident is a major problem in Ethiopia, resulting in the deaths of many people and potential injuries and crash every year and loss of properties. According to the Federal Transport Authority, one of the main causes of traffic accident and crash in Ethiopia is over speeding. Implementation of different technologies is used to monitor the speed of vehicles in order to minimize accidents and crashes. This research aimed at designing a speed monitoring system to monitor the speed of travelling vehicles and movements, reporting illegal speeds or overspeeding vehicles to the concerned bodies. The implementation of the system is through a wireless sensor network. The proposed system can sense and detect the movement of vehicles, process, and analysis the data obtained from the sensor and the cloud system. The data is sent to the central controlling server. The system contains accelerometer and gyroscope sensors to sense and collect the data of the vehicle. Arduino to process the data and Global System for Mobile Communication (GSM) module for communication purposes to send the data to the concerned body. When the speed of the vehicle exceeds the allowable speed limit, the system sends a message to database as “over speeding”. Both accelerometer and gyroscope sensors are used to collect acceleration data. The acceleration data then convert to speed, and the corresponding speed is checked with the speed limit, and those above the speed limit are reported to the concerned authorities to avoid frequent accidents. The proposed system decreases the occurrence of accidents and crashes due to overspeeding and can be used as an eye opener for the implementation of other intelligent transport system technologies. This system can also integrate with other technologies like GPS and Google Maps to obtain better output.

Keywords: accelerometer, IOT, GSM, gyroscope

Procedia PDF Downloads 74
12131 The Use of Social Media in a UK School of Pharmacy to Increase Student Engagement and Sense of Belonging

Authors: Samantha J. Hall, Luke Taylor, Kenneth I. Cumming, Jakki Bardsley, Scott S. P. Wildman

Abstract:

Medway School of Pharmacy – a joint collaboration between the University of Kent and the University of Greenwich – is a large school of pharmacy in the United Kingdom. The school primarily delivers the accredited Master or Pharmacy (MPharm) degree programme. Reportedly, some students may feel isolated from the larger student body that extends across four separate campuses, where a diverse range of academic subjects is delivered. In addition, student engagement has been noted as being limited in some areas, as evidenced in some cases by poor attendance at some lectures. In January 2015, the University of Kent launched a new initiative dedicated to Equality, Diversity and Inclusivity (EDI). As part of this project, Medway School of Pharmacy employed ‘Student Success Project Officers’ in order to analyse past and present school data. As a result, initiatives have been implemented to i) negate disparities in attainment and ii) increase engagement, particularly for Black, Asian and Minority Ethnic (BAME) students which make up for more than 80% of the pharmacy student cohort. Social media platforms are prevalent, with global statistics suggesting that they are most commonly used by females between the ages of 16-34. Student focus groups held throughout the academic year brought to light the school’s need to use social media much more actively. Prior to the EDI initiative, social media usage for Medway School of Pharmacy was scarce. Platforms including: Facebook, Twitter, Instagram, YouTube, The Student Room and University Blogs were either introduced or rejuvenated. This action was taken with the primary aim of increasing student engagement. By using a number of varied social media platforms, the university is able to capture a large range of students by appealing to different interests. Social media is being used to disseminate important information, promote equality and diversity, recognise and celebrate student success and also to allow students to explore the student life outside of Medway School of Pharmacy. Early data suggests an increase in lecture attendance, as well as greater evidence of student engagement highlighted by recent focus group discussions. In addition, students have communicated that active social media accounts were imperative when choosing universities for 2015/16. It allows students to understand more about the University and community prior to beginning their studies. By having a lively presence on social media, the university can use a multi-faceted approach to succeed in early engagement, as well as fostering the long term engagement of continuing students.

Keywords: engagement, social media, pharmacy, community

Procedia PDF Downloads 323
12130 A Bicycle Based Model of Prehospital Care Implanted in Northeast of the Brazil: Initial Experience

Authors: Odaleia de O. Farias, Suzelene C. Marinho, Ecleidson B. Fragoso, Daniel S. Lima, Francisco R. S. Lira, Lara S. Araújo, Gabriel dos S. D. Soares

Abstract:

In populous cities, prehospital care services that use vehicles alternative to ambulances are needed in order to reduce costs and improve response time to occurrences in areas with large concentration of people, such as leisure and tourism spaces. In this context, it was implanted a program called BIKE VIDA, that is innovative quick access and assistance program. The aim of this study is to describe the implantation and initial profile of occurrences performed by an urgency/emergency pre-hospital care service through paramedics on bicycles. It is a cross-sectional, descriptive study carried out in the city of Fortaleza, Ceara, Brazil. The data included service records from July to August 2017. Ethical aspects were respected. The service covers a perimeter of 4.5 km, divided into three areas with perimeter of 1.5 km for each paramedic, attending from 5 am to 9 pm. Materials transported by bicycles include External Automated Defibrillator - DEA, portable oxygen, oximeter, cervical collar, stethoscope, sphygmomanometer, dressing and immobilization materials and personal protective equipment. Occurrences are requested directly by calling the emergency number 192 or through direct approach to the professional. In the first month of the program, there were 93 emergencies/urgencies, mainly in the daytime period (71,0%), in males (59,7%), in the age range of 26 to 45 years (46,2%). The main nature was traumatic incidents (53.3%). Most of the cases (88,2%) did not require ambulance transport to the hospital, and there were two deaths. Pre-hospital service through bicycles is an innovative strategy in Brazil and has shown to be promising in terms of reducing costs and improving the quality of the services offered.

Keywords: emergency, response time, prehospital care, urgency

Procedia PDF Downloads 197
12129 Identification of Vessel Class with Long Short-Term Memory Using Kinematic Features in Maritime Traffic Control

Authors: Davide Fuscà, Kanan Rahimli, Roberto Leuzzi

Abstract:

Preventing abuse and illegal activities in a given area of the sea is a very difficult and expensive task. Artificial intelligence offers the possibility to implement new methods to identify the vessel class type from the kinematic features of the vessel itself. The task strictly depends on the quality of the data. This paper explores the application of a deep, long short-term memory model by using AIS flow only with a relatively low quality. The proposed model reaches high accuracy on detecting nine vessel classes representing the most common vessel types in the Ionian-Adriatic Sea. The model has been applied during the Adriatic-Ionian trial period of the international EU ANDROMEDA H2020 project to identify vessels performing behaviors far from the expected one depending on the declared type.

Keywords: maritime surveillance, artificial intelligence, behavior analysis, LSTM

Procedia PDF Downloads 229
12128 Government Final Consumption Expenditure and Household Consumption Expenditure NPISHS in Nigeria

Authors: Usman A. Usman

Abstract:

Undeniably, unlike the Classical side, the Keynesian perspective of the aggregate demand side indeed has a significant position in the policy, growth, and welfare of Nigeria due to government involvement and ineffective demand of the population living with poor per capita income. This study seeks to investigate the effect of Government Final Consumption Expenditure, Financial Deepening on Households, and NPISHs Final consumption expenditure using data on Nigeria from 1981 to 2019. This study employed the ADF stationarity test, Johansen Cointegration test, and Vector Error Correction Model. The results of the study revealed that the coefficient of Government final consumption expenditure has a positive effect on household consumption expenditure in the long run. There is a long-run and short-run relationship between gross fixed capital formation and household consumption expenditure. The coefficients cpsgdp (financial deepening and gross fixed capital formation posit a negative impact on household final consumption expenditure. The coefficients money supply lm2gdp, which is another proxy for financial deepening, and the coefficient FDI have a positive effect on household final consumption expenditure in the long run. Therefore, this study recommends that Gross fixed capital formation stimulates household consumption expenditure; a legal framework to support investment is a panacea to increasing hoodmold income and consumption and reducing poverty in Nigeria. Therefore, this should be a key central component of policy.

Keywords: government final consumption expenditure, household consumption expenditure, vector error correction model, cointegration

Procedia PDF Downloads 50
12127 Magnetic Fluctuations in the Terrestrial Magnetosheath

Authors: Alexandre Gurchumelia, Luca Sorriso-Valvo, David Burgess, Khatuna Elbakidze, Oleg Kharshiladze, Diana Kvaratskhelia

Abstract:

The terrestrial magnetosheath is a highly turbulent medium, with a high level of magnetic1field fluctuations throughout a broad range of scales. These often include an inertial range where a2magnetohydrodynamic turbulent cascade is observed. The multifractal properties of the turbulent3cascade, strictly related to intermittency, are observed here during the transition from quasi-parallel to4quasi-perpendicular magnetic field with respect to the bow-shock normal. The different multifractal5behavior in the two regions is analyzed. A standard coarse-graining technique has been used6to evaluate the generalized dimensions and the corresponding multifractal spectrumf(α). A7p-model fit provided a quantitative measure of multifractality and intermittency, to be compared with8standard indicators: the width of the multifractal spectrum, the peak of the kurtosis, and its scaling9exponent. Results show a clear transition and sharp differences in the intermittency properties for the two regions.

Keywords: magnetos heath, turbulence, multifractal, instabilities

Procedia PDF Downloads 180
12126 Effect of Supply Frequency on Pre-Breakdown and Breakdown Phenomena in Unbridged Vacuum Gaps

Authors: T.C. Balachandra, Habibuddin Shaik

Abstract:

This paper presents experimental results leading towards a better understanding of pre-breakdown and breakdown behavior of vacuum gaps under variable frequency alternating excitations. The frequency variation is in the range of 30 to 300 Hz in steps of 10 Hz for a fixed gap spacing of 0.5 mm. The results indicate that the pre-breakdown currents show an inverse relation with the breakdown voltage in general though erratic behavior was observed over a certain range of frequencies. A breakdown voltage peak was observed at 130 Hz. This was pronounced when the electrode pair was of stainless steel and less pronounced when copper and aluminum electrodes were used. The experimental results are explained based on F-N emission, I-F emission, and also thermal interaction due to quasi-continuous shower of anode micro-particles. Further, it is speculated that the ostensible cause for time delay between voltage and current peaks is due to the presence of neutral molecules in the gap.

Keywords: anode hot-spots, F-N emission, I-F emission, microparticle, neutral molecules, pre-breakdown conduction, vacuum breakdown

Procedia PDF Downloads 161
12125 Effects of Alpha Lipoic Acid on Limb Lengths in Neonatal Rats Exposed to Maternal Tobacco Smoke

Authors: Ramazan F. Akkoc, Elif Erdem, Nalan Kaya, Gonca Ozan, D. Özlem Dabak, Enver Ozan

Abstract:

Maternal tobacco smoke exposure is known to cause growth retardation in the neonatal skeletal system. Alpha lipoic acid, a natural antioxidant found in some foods, limits the activities of osteoclasts and supports the osteoblast's bone formation mechanism. In this study, it was aimed to investigate the effects of alpha lipoic acid (ALA) on the height, long bones and tail lengths of pups exposed to maternal tobacco smoke. The rats were divided into four groups: 1) control group, 2) tobacco smoke group, 3) tobacco smoke + ALA group, and 4) ALA group. Rats in the group 2 (tobacco smoke), group 3 (tobacco smoke + ALA) were exposed to tobacco smoke twice a day for one hour starting from eight weeks before mating and during pregnancy. In addition to tobacco smoke, 20 mg/kg of alpha lipoic acid was administered via oral gavage to the rats in the group 3 (tobacco smoke + ALA). Only alpha lipoic acid was administered to the rats in the group 4. On day 21 postpartum, the height and tail lengths of the pups in all groups were measured, and the length of the extremity long bones was measured after decapitation. All morphometric measurements performed in group 2 (tobacco smoke) showed a significant decrease compared to group 1 (control), while all measurements in group 3 (tobacco smoke + ALA) showed a significant increase compared to group 2 (tobacco smoke). It has been shown that ALA has a protective effect against the regression of height, long bones and tail lengths of pups exposed to maternal tobacco smoke.

Keywords: alpha lipoic acid, bone, morphometry, rat, tobacco smoke

Procedia PDF Downloads 364
12124 Screening of Strategic Management Criterions in Hospitals Using Delphi-Fuzzy Method

Authors: Helia Moayedi, Mahdi Moaidi

Abstract:

Nowadays, the managing and planning of hospitals is facing many problems. Failure to recognize the main criteria for strategic management to ensure long-term hospital performance can lead to many health problems. To achieve this goal, a qualitative-quantitate method titled Delphi-Fuzzy has been applied. This strategy makes it possible for experts to screen among the most important criteria in strategic management. To conduct this operation, a statistical society consisting of 20 experts in Ahwaz hospitals has been questioned. The final model confirms the key criterions after three stages of Delphi. This model provides the possibility to focus on the basic criteria and can determine the organization’s main orientation.

Keywords: Delphi-fuzzy method, hospital management, long-term planning, qualitative-quantitate method, screening of strategic criteria, strategic planning

Procedia PDF Downloads 130
12123 Ergonomic Design of Speed Control Humps/Dips

Authors: Emad Khorshid, Habib Awada

Abstract:

Newly developed Ergonomic speed control hump/Dip designs are conducted. The numerical simulation for the driver-vehicle-hump dynamic system will be performed using computer software. The design problem for which the speed hump or dip should provide: (1) discomfort feeling to the driver if speed is over the specified limit, and (2) normal/good comfort level to the driver (and or other passengers) if the speed is within the limit. For comparison reasons, different vehicles suspension systems (active, semi-active and non-active suspension) are used in the simulation. The measuring of the acceptable range of vibration will be referenced to the British standard BS6841, ISO 2631/1 and the new ISO 2631/5. All these standards are related to human health and comfort level in terms of acceptable range of whole body vibration exposure.

Keywords: speed hump, speed dip, ergonomic design, human health, vehicle modeling

Procedia PDF Downloads 370
12122 A Review of Tribological Excellence of Bronze Alloys

Authors: Ram Dhani chauhan

Abstract:

Tribology is a term that was developed from the Greek words ‘tribos’ (rubbing) and ‘logy’ (knowledge). In other words, a study of wear, friction and lubrication of material is known as Tribology. In groundwater irrigation, the life of submersible pump components like impeller, bush and wear ring will depend upon the wear and corrosion resistance of casted material. Leaded tin bronze (LTB) is an easily castable material with good mechanical properties and tribological behaviour and is utilised in submersible pumps at large. It has been investigated that, as Sn content increases from 4-8 wt. % in LTB alloys, the hardness of the alloys increases and the wear rate decreases. Similarly, a composite of copper with 3% wt. Graphite (threshold limit of mix) has a lower COF (coefficient of friction) and the lowest wear rate. In LTB alloys, in the initial low-speed range, wear increases and in the higher range, it was found that wear rate decreases.

Keywords: coefficent of friction, coefficient of wear, tribology, leaded tin bronze

Procedia PDF Downloads 19
12121 Effect of Manganese Doping on Ferrroelectric Properties of (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 Lead-Free Piezoceramic

Authors: Chongtham Jiten, Radhapiyari Laishram, K. Chandramani Singh

Abstract:

Alkaline niobate (Na0.5K0.5)NbO3 ceramic system has attracted major attention in view of its potential for replacing the highly toxic but superior lead zirconate titanate (PZT) system for piezoelectric applications. Recently, a more detailed study of this system reveals that the ferroelectric and piezoelectric properties are optimized in the Li- and V-modified system having the composition (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3. In the present work, we further study the pyroelectric behaviour of this composition along with another doped with Mn4+. So, (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 + x MnO2 (x = 0, and 0.01 wt. %) ceramic compositions were synthesized by conventional ceramic processing route. X-ray diffraction study reveals that both the undoped and Mn4+-doped ceramic samples prepared crystallize into a perovskite structure having orthorhombic symmetry. Dielectric study indicates that Mn4+ doping has little effect on both the Curie temperature (Tc) and tetragonal-orthorhombic phase transition temperature (Tot). The bulk density, room-temperature dielectric constant (εRT), and room-c The room-temperature coercive field (Ec) is observed to be lower in Mn4+ doped sample. The detailed analysis of the P-E hysteresis loops over the range of temperature from about room temperature to Tot points out that enhanced ferroelectric properties exist in this temperature range with better thermal stability for the Mn4+ doped ceramic. The study reveals that small traces of Mn4+ can modify (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 system so as to improve its ferroelectric properties with good thermal stability over a wide range of temperature.

Keywords: ceramics, dielectric properties, ferroelectric properties, lead-free, sintering, thermal stability

Procedia PDF Downloads 237
12120 Optimal Design of Multi-Machine Power System Stabilizers Using Interactive Honey Bee Mating Optimization

Authors: Hossein Ghadimi, Alireza Alizadeh, Oveis Abedinia, Noradin Ghadimi

Abstract:

This paper presents an enhanced Honey Bee Mating Optimization (HBMO) to solve the optimal design of multi machine power system stabilizer (PSSs) parameters, which is called the Interactive Honey Bee Mating Optimization (IHBMO). Power System Stabilizers (PSSs) are now routinely used in the industry to damp out power system oscillations. The design problem of the proposed controller is formulated as an optimization problem and IHBMO algorithm is employed to search for optimal controller parameters. The proposed method is applied to multi-machine power system (MPS). The method suggested in this paper can be used for designing robust power system stabilizers for guaranteeing the required closed loop performance over a prespecified range of operating and system conditions. The simplicity in design and implementation of the proposed stabilizers makes them better suited for practical applications in real plants. The non-linear simulation results are presented under wide range of operating conditions in comparison with the PSO and CPSS base tuned stabilizer one through FD and ITAE performance indices. The results evaluation shows that the proposed control strategy achieves good robust performance for a wide range of system parameters and load changes in the presence of system nonlinearities and is superior to the other controllers.

Keywords: power system stabilizer, IHBMO, multimachine, nonlinearities

Procedia PDF Downloads 505
12119 Language Switching Errors of Bilinguals: Role of Top down and Bottom up Process

Authors: Numra Qayyum, Samina Sarwat, Noor ul Ain

Abstract:

Bilingual speakers generally can speak both languages with the same competency without mixing them intentionally and making mistakes, but sometimes errors occur in language selection. This quantitative study particularly deals with the language errors made by Urdu-English bilinguals. In this research, researchers have given special attention to the part played by bottom-up priming and top-down cognitive control in these errors. Unstable Urdu-English bilingual participants termed pictures and were prompted to shift from one language to another under the pressure of time. Different situations were given to manipulate the participants. The long and short runs trials of the same language were also given before switching to another language. The study is concluded with the findings that bilinguals made more errors when switching to the first language from their second language, and these errors are large in number, especially when a speaker is switching from L2 (second language) to L1 (first language) after a long run. When the switching is reversed, i.e., from L2 to LI, it had no effect at all. These results gave the clear responsibility of all these errors to top-down cognitive control.

Keywords: bottom up priming, language error, language switching, top down cognitive control

Procedia PDF Downloads 135
12118 Effect of Longitudinal Fins on Air-Flow Characteristics for Wing-Shaped Tubes in Cross Flow

Authors: Sayed Ahmed El Sayed, Osama M. Mesalhy, Mohamed A. Abdelatief

Abstract:

A numerical study has been conducted to clarify fluid flow characteristics, pressure distributions, and skin friction coefficient over a wing-shaped tubes bundle in staggered arrangement with the placement of longitudinal fins (LF) at downstream position of the tube. The air-side Rea were at 1.8 x 103 to 9.7 x 103. The tubes bundle were employed with various fin height [hf] and fin thickness (δ) from (2 mm ≤ hf ≤ 12 mm) and (1.5 mm ≤ δ ≤ 3.5 mm) respectively at the considered Rea range. The flow pattern around the staggered wing-shaped tubes bundle was predicted using the commercial CFD FLUENT 6.3.26 software package. The distribution of average skin friction coefficient around wing-shaped tubes bundle is studied. Correlation of pressure drop coefficient Pdc and skin friction coefficient (Cf) in terms of Rea, design parameters for the studied cases were presented. Results indicated that the values of Pdc for hf = 6 mm are lower than these of NOF and hf = 2 mm by about 11 % and 13 % respectively for considered Rea range. Cf decreases as Rea increases. LFTH with hf = 6 mm offers lower form drag than that with hf = 12 mm and that of NOF. The lowest values of the pumping power are achieved for arrangements of hf = 6 mm for the considered Rea range. δ has negligible effect on skin friction coefficient, while has a slightly variation in ∆Pa. The wing-shaped tubes bundle heat exchanger with hf = 6 mm has the lowest values of ∆Pa, Pdc, Cf, and pumping power and hence the best performance comparing with the other bundles. Comparisons between the experimental and numerical results of the present study and those obtained by similar previous studies showed good agreements.

Keywords: longitudinal fins, skin friction, flow characteristics, FLUENT, wing-shaped tubes

Procedia PDF Downloads 537
12117 The Impact of β Nucleating Agents and Carbon-Based Nanomaterials on Water Vapor Permeability of Polypropylene Composite Films

Authors: Glykeria A. Visvini, George Ν. Mathioudakis, Amaia Soto Beobide, George A. Voyiatzis

Abstract:

Polymer nanocomposites are materials in which a polymer matrix is reinforced with nanoscale inclusions, such as nanoparticles, nanoplates, or nanofibers. These nanoscale inclusions can significantly enhance the mechanical, thermal, electrical, and other properties of the polymer matrix, making them attractive for a wide range of industrial applications. These properties can be tailored by adjusting the type and the concentration of the nanoinclusions, which provides a high degree of flexibility in their design and development. An important property that polymeric membranes can exhibit is water vapor permeability (WVP). This can be accomplished by various methods, including the incorporation of micro/nano-fillers into the polymer matrix. In this way, a micro/nano-pore network can be formed, allowing water vapor to permeate through the membrane. At the same time, the membrane can be stretched uni- or bi-axially, creating aligned or cross-linked micropores in the composite, respectively, which can also increase the WVP. Nowadays, in industry, stretched films reinforced with CaCO3 develop micro-porosity sufficient to give them breathability characteristics. Carbon-based nanomaterials, such as graphene oxide (GO), are tentatively expected to be able to effectively improve the WVP of corresponding composite polymer films. The presence in the GO structure of various functional oxidizing groups enhances its ability to attract and channel water molecules, exploiting the unique large surface area of graphene that allows the rapid transport of water molecules. Polypropylene (PP) is widely used in various industrial applications due to its desirable properties, including good chemical resistance, excellent thermal stability, low cost, and easy processability. The specific properties of PP are highly influenced by its crystalline behavior, which is determined by its processing conditions. The development of the β-crystalline phase in PP, in combination with stretching, is anticipating improving the microporosity of the polymer matrix, thereby enhancing its WVP. The aim of present study is to create breathable PP composite membranes using carbon-based nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO), and graphene nanoplatelets (GNPs). Unlike traditional methods that rely on the drawing process to enhance the WVP of PP, this study intents to develop a low-cost approach using melt mixing with β-nucleating agents and carbon fillers to create highly breathable PP composite membranes. The study aims to investigate how the concentration of these additives affects the water vapor transport properties of the resulting PP films/membranes. The presence of β-nucleating agents and carbon fillers is expected to enhance β-phase growth in PP, while an alternation between β- and α-phase is expected to lead to improved microporosity and WVP. Our ambition is to develop highly breathable PP composite films with superior performance and at a lower cost compared to the benchmark. Acknowledgment: This research has been co‐financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call «Special Actions "AQUACULTURE"-"INDUSTRIAL MATERIALS"-"OPEN INNOVATION IN CULTURE"» (project code: Τ6YBP-00337)

Keywords: carbon based nanomaterials, nanocomposites, nucleating agent, polypropylene, water vapor permeability

Procedia PDF Downloads 85
12116 Electrochemical Detection of Hydroquinone by Square Wave Voltammetry Using a Zn Layered Hydroxide-Ferulate Modified Multiwall Carbon Nanotubes Paste Electrode

Authors: Mohamad Syahrizal Ahmad, Illyas M. Isa

Abstract:

In this paper, a multiwall carbon nanotubes (MWCNT) paste electrode modified by a Zn layered hydroxide-ferulate (ZLH-F) was used for detection of hydroquinone (HQ). The morphology and characteristic of the ZLH-F/MWCNT were investigated by scanning electron microscope (SEM), transmission electron microscope (TEM) and square wave voltammetry (SWV). Under optimal conditions, the SWV response showed linear plot for HQ concentration in the range of 1.0×10⁻⁵ M – 1.0×10⁻³ M. The detection limit was found to be 5.7×10⁻⁶ M and correlation coefficient of 0.9957. The glucose, fructose, sucrose, bisphenol A, acetaminophen, lysine, NO₃⁻, Cl⁻ and SO₄²⁻ did not interfere the HQ response. This modified electrode can be used to determine HQ content in wastewater and cosmetic cream with range of recovery 97.8% - 103.0%.

Keywords: 1, 4-dihydroxybenzene, hydroquinone, multiwall carbon nanotubes, square wave voltammetry

Procedia PDF Downloads 228
12115 Adaptability in Older People: A Mixed Methods Approach

Authors: V. Moser-Siegmeth, M. C. Gambal, M. Jelovcak, B. Prytek, I. Swietalsky, D. Würzl, C. Fida, V. Mühlegger

Abstract:

Adaptability is the capacity to adjust without great difficulty to changing circumstances. Within our project, we aimed to detect whether older people living within a long-term care hospital lose the ability to adapt. Theoretical concepts are contradictory in their statements. There is also lack of evidence in the literature how the adaptability of older people changes over the time. Following research questions were generated: Are older residents of a long-term care facility able to adapt to changes within their daily routine? How long does it take for older people to adapt? The study was designed as a convergent parallel mixed method intervention study, carried out within a four-month period and took place within seven wards of a long-term care hospital. As a planned intervention, a change of meal-times was established. The inhabitants were surveyed with qualitative interviews and quantitative questionnaires and diaries before, during and after the intervention. In addition, a survey of the nursing staff was carried out in order to detect changes of the people they care for and how long it took them to adapt. Quantitative data was analysed with SPSS, qualitative data with a summarizing content analysis. The average age of the involved residents was 82 years, the average length of stay 45 months. The adaptation to new situations does not cause problems for older residents. 47% of the residents state that their everyday life has not changed by changing the meal times. 24% indicate ‘neither nor’ and only 18% respond that their daily life has changed considerably due to the changeover. The diaries of the residents, which were conducted over the entire period of investigation showed no changes with regard to increased or reduced activity. With regard to sleep quality, assessed with the Pittsburgh sleep quality index, there is little change in sleep behaviour compared to the two survey periods (pre-phase to follow-up phase) in the cross-table. The subjective sleep quality of the residents is not affected. The nursing staff points out that, with good information in advance, changes are not a problem. The ability to adapt to changes does not deteriorate with age or by moving into a long-term care facility. It only takes a few days to get used to new situations. This can be confirmed by the nursing staff. Although there are different determinants like the health status that might make an adjustment to new situations more difficult. In connection with the limitations, the small sample size of the quantitative data collection must be emphasized. Furthermore, the extent to which the quantitative and qualitative sample represents the total population, since only residents without cognitive impairments of selected units participated. The majority of the residents has cognitive impairments. It is important to discuss whether and how well the diary method is suitable for older people to examine their daily structure.

Keywords: adaptability, intervention study, mixed methods, nursing home residents

Procedia PDF Downloads 147
12114 Health State Utility Values Related to COVID-19 Pandemic Using EQ-5D: A Systematic Review and Meta-Analysis

Authors: Xu Feifei

Abstract:

The prevalence of COVID-19 currently is the biggest challenge to improving people's quality of life. Its impact on the health-related quality of life (HRQoL) is highly uncertain and has not been summarized so far. The aim of the present systematic review was to assess and provide an up-to-date analysis of the impact of the COVID-19 pandemic on the HRQoL of participants who have been infected, have not been infected but isolated, frontline, with different diseases, and the general population. Therefore, an electronic search of the literature in PubMed databases was performed from 2019 to July 2022 (without date restriction). PRISMA guideline methodology was employed, and data regarding the HRQoL were extracted from eligible studies. Articles were included if they met the following inclusion criteria: (a) reports on the data collection of the health state utility values (HSUVs) related to COVID-19 from 2019 to 2021; (b) English language and peer-reviewed journals; and (c) original HSUV data; (d) using EQ-5D tool to quantify the HRQoL. To identify studies that reported the effects on COVID-19, data on the proportion of overall HSUVs of participants who had the outcome were collected and analyzed using a one-group meta-analysis. As a result, thirty-two studies fulfilled the inclusion criteria and, therefore, were included in the systematic review. A total of 45295 participants and provided 219 means of HSUVs during COVID-19 were included in this systematic review. The range of utility is from 0.224 to 1. The study included participants from Europe (n=16), North America (n=4), Asia (n=10), South America (n=1), and Africa (n=1). Twelve articles showed that the HRQoL of the participants who have been infected with COVID-19 (range of overall HSUVs from 0.6125 to 0.863). Two studies reported the population of frontline workers (the range of overall HSUVs from 0.82 to 0.93). Seven of the articles researched the participants who had not been infected with COVID-19 but suffered from morbidities during the pandemic (range of overall HSUVs from 0.5 to 0.96). Thirteen studies showed that the HRQoL of the respondents who have not been infected with COVID-19 and without any morbidities (range of overall HSUVs from 0.64 to 0.964). Moreover, eighteen articles reported the outcomes of overall HSUVs during the COVID-19 pandemic in different population groups. The estimate of overall HSUVs of direct COVID-19 experience population (n=1333) was 0.751 (95% CI 0.670 - 0.832, I2 = 98.64%); the estimate of frontline population (n=610) was 0.906 ((95% CI 0.854 – 0.957, I2 = 98.61%); participants with different disease (n=132) were 0.768 (95% CI 0.515 - 1.021, I2= 99.26%); general population without infection history (n=29,892) was 0.825 (95% CI 0.766 - 0.885, I2 =99.69%). Conclusively, taking into account these results, this systematic review might confirm that COVID-19 has a negative impact on the HRQoL of the infected population and illness population. It provides practical value for cost-effectiveness model analysis of health states related to COVID-19.

Keywords: COVID-19, health-related quality of life, meta-analysis, systematic review, utility value

Procedia PDF Downloads 81
12113 Development of Solar Poly House Tunnel Dryer (STD) for Medicinal Plants

Authors: N. C. Shahi, Anupama Singh, E. Kate

Abstract:

Drying is practiced to enhance the storage life, to minimize losses during storage, and to reduce transportation costs of agricultural products. Drying processes range from open sun drying to industrial drying. In most of the developing countries, use of fossil fuels for drying of agricultural products has not been practically feasible due to unaffordable costs to majority of the farmers. On the other hand, traditional open sun drying practiced on a large scale in the rural areas of the developing countries suffers from high product losses due to inadequate drying, fungal growth, encroachment of insects, birds and rodents, etc. To overcome these problems a middle technology dryer having low cost need to be developed for farmers. In case of mechanical dryers, the heated air is the main driving force for removal of moisture. The air is heated either electrically or by burning wood, coal, natural gas etc. using heaters. But, all these common sources have finite supplies. The lifetime is estimated to range from 15 years for a natural gas to nearly 250 years for coal. So, mankind must turn towards its safe and reliable utilization and may have undesirable side effects. The mechanical drying involves higher cost of drying and open sun drying deteriorates the quality. The solar tunnel dryer is one of promising option for drying various agricultural and agro-industrial products on large scale. The advantage of Solar tunnel dryer is its relatively cheaper cost of construction and operation. Although many solar dryers have been developed, still there is a scope of modification in them. Therefore, an attempt was made to develop Solar tunnel dryer and test its performance using highly perishable commodity i.e. leafy vegetables (spinach). The effect of air velocity, loading density and shade net on performance parameters namely, collector efficiency, drying efficiency, overall efficiency of dryer and specific heat energy consumption were also studied. Thus, the need for an intermediate level technology was realized and an effort was made to develop a small scale Solar Tunnel Dryer . A dryer consisted of base frame, semi cylindrical drying chamber, solar collector and absorber, air distribution system with chimney and auxiliary heating system, and wheels for its mobility were the main functional components. Drying of fenugreek was carried out to analyze the performance of the dryer. The Solar Tunnel Dryer temperature was maintained using the auxiliary heating system. The ambient temperature was in the range of 12-33oC. The relative humidity was found inside and outside the Solar Tunnel Dryer in the range of 21-75% and 35-79%, respectively. The solar radiation was recorded in the range of 350-780W/m2 during the experimental period. Studies revealed that total drying time was in range of 230 to 420 min. The drying time in Solar Tunnel Dryer was considerably reduced by 67% as compared to sun drying. The collector efficiency, drying efficiency, overall efficiency and specific heat consumption were determined and were found to be in the range of 50.06- 38.71%, 15.53-24.72%, 4.25 to 13.34% and 1897.54-3241.36 kJ/kg, respectively.

Keywords: overall efficiency, solar tunnel dryer, specific heat consumption, sun drying

Procedia PDF Downloads 309
12112 Current Starved Ring Oscillator Image Sensor

Authors: Devin Atkin, Orly Yadid-Pecht

Abstract:

The continual demands for increasing resolution and dynamic range in CMOS image sensors have resulted in exponential increases in the amount of data that needs to be read out of an image sensor, and existing readouts cannot keep up with this demand. Interesting approaches such as sparse and burst readouts have been proposed and show promise, but at considerable trade-offs in other specifications. To this end, we have begun designing and evaluating various new readout topologies centered around an attempt to parallelize the sensor readout. In this paper, we have designed, simulated, and started testing a new light-controlled oscillator topology with dual column and row readouts. We expect the parallel readout structure to offer greater speed and alleviate the trade-off typical in this topology, where slow pixels present a major framerate bottleneck.

Keywords: CMOS image sensors, high-speed capture, wide dynamic range, light controlled oscillator

Procedia PDF Downloads 84
12111 Measurements of Physical Properties of Directionally Solidified Al-Si-Cu Ternary Alloy

Authors: Aynur Aker, Hasan Kaya

Abstract:

Al-12.6wt.%Si-2wt.%Cu ternary alloy of near eutectic composition was directionally solidified upward at a constant temperature gradient in a wide range of growth rates (V=8.25-165.41 µm/s). The microstructures (λ), microhardness (HV), tensile stress (σ) and electrical resistivity (ρ) were measured from directionally solidified samples. The dependence of microstructures, microhardness and electrical resistivity on growth rate (V) was also determined by statistical analysis. According to these results, it has been found that for increasing values of V, the values of HV, σ and ρ increase. Variations of electrical resistivity for casting Al-Si-Cu alloy were also measured at the temperature in range 300-500 K. The enthalpy (ΔH) and the specific heat (Cp) for the Al-Si-Cu alloy were determined by differential scanning calorimeter (DSC) from heating trace during the transformation from solid to liquid. The results obtained in this work were compared with the similar experimental results in the literature.

Keywords: Al-Si-Cu alloy, microstructures, micro-hardness, tensile stress electrical resistivity, enthalpy

Procedia PDF Downloads 277
12110 Shear Stress and Oxygen Concentration Manipulation in a Micropillars Microfluidic Bioreactor

Authors: Deybith Venegas-Rojas, Jens Budde, Dominik Nörz, Manfred Jücker, Hoc Khiem Trieu

Abstract:

Microfluidics is a promising approach for biomedicine cell culture experiments with microfluidic bioreactors (MBR), which can provide high precision in volume and time control over mass transport and microenvironments in small-scale studies. Nevertheless, shear stress and oxygen concentration are important factors that affect the microenvironment and then the cell culture. It is presented a novel MBR design in which differences in geometry, shear stress, and oxygen concentration were studied and optimized for cell culture. The aim is to mimic the in vivo condition with biocompatible materials and continuous perfusion of nutrients, a healthy shear stress, and oxygen concentration. The design consists of a capture system of PDMS micropillars which keep cells in place, so it is not necessary any hydrogel or complicated scaffolds for cells immobilization. Besides, the design allows continuous supply with nutrients or even any other chemical for cell experimentation. Finite element method simulations were used to study and optimize the effect of parameters such as flow rate, shear stress, oxygen concentration, micropillars shape, and dimensions. The micropillars device was fabricated with microsystem technology such as soft-lithography, deep reactive ion etching, self-assembled monolayer, replica molding, and oxygen plasma bonding. Eight different geometries were fabricated and tested, with different flow rates according to the simulations. During the experiments, it was observed the effect of micropillars size, shape, and configuration for stability and shear stress control when increasing flow rate. The device was tested with several successful HepG2 3D cell cultures. With this MBR, the aforementioned parameters can be controlled in order to keep a healthy microenvironment according to specific necessities of different cell types, with no need of hydrogels and can be used for a wide range of experiments with cells.

Keywords: cell culture, micro-bioreactor, microfluidics, micropillars, oxygen concentration, shear stress

Procedia PDF Downloads 287
12109 Management Practices and Economic Performance of Smallholder Dairy Cattle Farms in Southern Vietnam

Authors: Ngoc-Hieu Vu

Abstract:

Although dairy production in Vietnam is a relatively new agricultural activity, milk production increased remarkably in recent years. Smallholders are still the main drivers for this development, especially in the southern part of the country. However, information on the farming practices is very limited. Therefore, this study aimed to characterize husbandry practices, educational experiences, decision-making practices, constraints, income and expenses of smallholder dairy farms in Southern Vietnam. A total of 200 farms, located in the regions Ho Chi Minh (HCM, N=80 farms), Lam Dong (N=40 farms), Binh Duong (N=40 farms) and Long An (N=40 farms) were included. Between October 2013 and December 2014 farmers were interviewed twice. On average, farms owned 3.200m2, 2.000m2, and 193m2 of pasture, cropping and housing area, respectively. The number of total, milking and dry cows, heifers, and calves were 20.4, 11.6, 4.7, 3.3, and 2.9 head. The number of lactating dairy cows was higher (p<0.001) in HCM (15.5) and Lam Dong (14.7) than in Binh Duong (6.7) and Long An (10.7). Animals were mainly crossbred Holstein-Friesian (HF) cows with at least 75% HF origin (84%), whereas a higher (P<0.001) percentage of purebred HF was found in HCM and Lam Dong and crossbreds in Binh Duong and Long An. Animals were mainly raised in tie-stalls (94%) and machine-milked (80%). Farmers used their own replacement animals (76%), and both genetic and phenotypic information (67%) for selecting sires. Farmers were predominantly educated at primary school level (53%). Major constraints for dairy farming were the lack of capital (43%), diseases (17%), marketing (22%), lack of knowledge (8%) and feed (7%). Monthly profit per lactating cow was superior in Lam Dong (2,817 thousand VND) and HCM (2,798 thousand VND) compared to other regions in Long An (2,597 thousand VND), and Binh Duong (1,775 thousand VND). Regional differences may be mainly attributed to environmental factors, urbanization, and particularly governmental support and the availability of extension and financial institutions. Results from this study provide important information on farming practices of smallholders in Southern Vietnam that are useful in determining regions that need to be addressed by authorities in order to improve dairy production.

Keywords: dairy farms, milk yield, Southern Vietnam, socio-economics

Procedia PDF Downloads 463
12108 Supercomputer Simulation of Magnetic Multilayers Films

Authors: Vitalii Yu. Kapitan, Aleksandr V. Perzhu, Konstantin V. Nefedev

Abstract:

The necessity of studying magnetic multilayer structures is explained by the prospects of their practical application as a technological base for creating new storages medium. Magnetic multilayer films have many unique features that contribute to increasing the density of information recording and the speed of storage devices. Multilayer structures are structures of alternating magnetic and nonmagnetic layers. In frame of the classical Heisenberg model, lattice spin systems with direct short- and long-range exchange interactions were investigated by Monte Carlo methods. The thermodynamic characteristics of multilayer structures, such as the temperature behavior of magnetization, energy, and heat capacity, were investigated. The processes of magnetization reversal of multilayer structures in external magnetic fields were investigated. The developed software is based on the new, promising programming language Rust. Rust is a new experimental programming language developed by Mozilla. The language is positioned as an alternative to C and C++. For the Monte Carlo simulation, the Metropolis algorithm and its parallel implementation using MPI and the Wang-Landau algorithm were used. We are planning to study of magnetic multilayer films with asymmetric Dzyaloshinskii–Moriya (DM) interaction, interfacing effects and skyrmions textures. This work was supported by the state task of the Ministry of Education and Science of the Russia # 3.7383.2017/8.9

Keywords: The Monte Carlo methods, Heisenberg model, multilayer structures, magnetic skyrmion

Procedia PDF Downloads 164
12107 Effects of Particle Size Distribution on Mechanical Strength and Physical Properties in Engineered Quartz Stone

Authors: Esra Arici, Duygu Olmez, Murat Ozkan, Nurcan Topcu, Furkan Capraz, Gokhan Deniz, Arman Altinyay

Abstract:

Engineered quartz stone is a composite material comprising approximately 90 wt.% fine quartz aggregate with a variety of particle size ranges and `10 wt.% unsaturated polyester resin (UPR). In this study, the objective is to investigate the influence of particle size distribution on mechanical strength and physical properties of the engineered stone slabs. For this purpose, granular quartz with two particle size ranges of 63-200 µm and 100-300 µm were used individually and mixed with a difference in ratios of mixing. The void volume of each granular packing was measured in order to define the amount of filler; quartz powder with the size of less than 38 µm, and UPR required filling inter-particle spaces. Test slabs were prepared using vibration-compression under vacuum. The study reports that both impact strength and flexural strength of samples increased as the mix ratio of the particle size range of 63-200 µm increased. On the other hand, the values of water absorption rate, apparent density and abrasion resistance were not affected by the particle size distribution owing to vacuum compaction. It is found that increasing the mix ratio of the particle size range of 63-200 µm caused the higher porosity. This led to increasing in the amount of the binder paste needed. It is also observed that homogeneity in the slabs was improved with the particle size range of 63-200 µm.

Keywords: engineered quartz stone, fine quartz aggregate, granular packing, mechanical strength, particle size distribution, physical properties.

Procedia PDF Downloads 144
12106 Emotional Processing Difficulties in Recovered Anorexia Nervosa Patients: State or Trait

Authors: Telma Fontao de Castro, Kylee Miller, Maria Xavier Araújo, Isabel Brandao, Sandra Torres

Abstract:

Objective: There is a dearth of research investigating the long-term emotional functioning of individuals recovered from anorexia nervosa (AN). This 15-year longitudinal study aimed to examine whether difficulties in cognitive processing of emotions persisted after long-term AN recovery and its link to anxiety and depression. Method: Twenty-four females, who were tested longitudinally during their acute and recovered AN phases, and 24 healthy control (HC) women, were screened for anxiety, depression, alexithymia, and emotion regulation difficulties (ER; only assessed in recovery phase). Results: Anxiety, depression, and alexithymia levels decreased significantly with AN recovery. However, scores on anxiety and difficulty in identifying feelings (alexithymia factor) remained high when compared to the HC group. Scores on emotion regulation difficulties were also lower in HC group. The abovementioned differences between AN recovered group and HC group in difficulties in identifying and accepting feelings and lack of emotional clarity were no longer present when the effect of anxiety and depression was controlled. Conclusions: Findings suggest that emotional dysfunction tends to decrease in AN recovered phase. However, using an HC group as a reference, we conclude that several emotional difficulties are still increased after long-term AN recovery, in particular, limited access to emotion regulation strategies, and difficulty controlling impulses and engaging in goal-directed behavior, thus suggesting to be a trait vulnerability. In turn, competencies related to emotional clarity and acceptance of emotional responses seem to be state-dependent phenomena linked to anxiety and depression. In sum, managing emotions remains a challenge for individuals recovered from AN. Under this circumstance, maladaptive eating behavior can serve as an affect regulatory function, increasing the risk of relapse. Emotional education and stabilization of depressive and anxious symptomatology after recovery emerge as an important avenue to protect from long-term AN relapse.

Keywords: alexithymia, anorexia nervosa, emotion recognition, emotion regulation

Procedia PDF Downloads 123
12105 The Healing 'Touch' of Music: A Neuro-Acoustics Approach to Understand Its Therapeutic Effect

Authors: Jagmeet S. Kanwal, Julia F. Langley

Abstract:

Music can heal the body, but a mechanistic understanding of this phenomenon is lacking. This study explores the effects of music presentation on neurologic and physiologic responses leading to metabolic changes in the human body. The mind and body co-exist in a corporeal entity and within this framework, sickness ensues when the mind-body balance goes awry. It is further hypothesized that music has the capacity to directly reset this balance. Two lines of inquiry taken together can provide a mechanistic understanding of this phenomenon 1) Empirical evidence for a sound-sensitive pressure sensor system in the body, and 2) The notion of a “healing center” within the brain that is activated by specific patterns of sounds. From an acoustics perspective, music is spatially distributed as pressure waves ranging from a few cm to several meters in wavelength. These waves interact and propagate in three-dimensions in unique ways, depending on the wavelength. Furthermore, music creates dynamically changing wave-fronts. Frequencies between 200 Hz and 1 kHz generate wavelengths that range from 5'6" to 1 foot. These dimensions are in the range of the body size of most people making it plausible that these pressure waves can geometrically interact with the body surface and create distinct patterns of pressure stimulation across the skin surface. For humans, short wavelength, high frequency (> 200 Hz) sounds are best received via cochlear receptors. For low frequency (< 200 Hz), long wavelength sound vibrations, however, the whole body may act as an ideal receiver. A vast array of highly sensitive pressure receptors (Pacinian corpuscles) is present just beneath the skin surface, as well as in the tendons, bones, several organs in the abdomen, and the sexual organs. Per the available empirical evidence, these receptors contribute to music perception by allowing the whole body to function as a sound receiver, and knowledge of how they function is essential to fully understanding the therapeutic effect of music. Neuroscientific studies have established that music stimulates the limbic system that can trigger states of anxiety, arousal, fear, and other emotions. These emotional states of brain activity play a crucial role in filtering top-down feedback from thoughts and bottom-up sensory inputs to the autonomic system, which automatically regulates bodily functions. Music likely exerts its pleasurable and healing effects by enhancing functional and effective connectivity and feedback mechanisms between brain regions that mediate reward, autonomic, and cognitive processing. Stimulation of pressure receptors under the skin by low-frequency music-induced sensations can activate multiple centers in the brain, including the amygdala, the cingulate cortex, and nucleus accumbens. Melodies in music in the low (< 600 Hz) frequency range may augment auditory inputs after convergence of the pressure-sensitive inputs from the vagus nerve onto emotive processing regions within the limbic system. The integration of music-generated auditory and somato-visceral inputs may lead to a synergistic input to the brain that promotes healing. Thus, music can literally heal humans through “touch” as it energizes the brain’s autonomic system for restoring homeostasis.

Keywords: acoustics, brain, music healing, pressure receptors

Procedia PDF Downloads 166