Search results for: computer assisted learning language
10503 Analysing Perceptions of Online Games-Based Learning: Case Study of the University of Northampton
Authors: Alison Power
Abstract:
Games-based learning aims to enhance students’ engagement with and enjoyment of learning opportunities using games-related principles to create a fun yet productive learning environment. Motivating students to learn in an online setting can be particularly challenging, so a cross-Faculty synchronous online session provided students with the opportunity to engage with ‘GAMING’: an interactive, flexible and scalable e-resource for students to work synchronously in groups to complete a series of e-tivities designed to enhance their skills of leadership, collaboration and negotiation. Findings from a post-session online survey found the majority of students had a positive learning experience, finding 'GAMING' to be an innovative and engaging e-resource which motivated their group to learn.Keywords: collaboration, games-based learning, groupwork, synchronous online learning, teamwork
Procedia PDF Downloads 12610502 Current Methods for Drug Property Prediction in the Real World
Authors: Jacob Green, Cecilia Cabrera, Maximilian Jakobs, Andrea Dimitracopoulos, Mark van der Wilk, Ryan Greenhalgh
Abstract:
Predicting drug properties is key in drug discovery to enable de-risking of assets before expensive clinical trials and to find highly active compounds faster. Interest from the machine learning community has led to the release of a variety of benchmark datasets and proposed methods. However, it remains unclear for practitioners which method or approach is most suitable, as different papers benchmark on different datasets and methods, leading to varying conclusions that are not easily compared. Our large-scale empirical study links together numerous earlier works on different datasets and methods, thus offering a comprehensive overview of the existing property classes, datasets, and their interactions with different methods. We emphasise the importance of uncertainty quantification and the time and, therefore, cost of applying these methods in the drug development decision-making cycle. To the best of the author's knowledge, it has been observed that the optimal approach varies depending on the dataset and that engineered features with classical machine learning methods often outperform deep learning. Specifically, QSAR datasets are typically best analysed with classical methods such as Gaussian Processes, while ADMET datasets are sometimes better described by Trees or deep learning methods such as Graph Neural Networks or language models. Our work highlights that practitioners do not yet have a straightforward, black-box procedure to rely on and sets a precedent for creating practitioner-relevant benchmarks. Deep learning approaches must be proven on these benchmarks to become the practical method of choice in drug property prediction.Keywords: activity (QSAR), ADMET, classical methods, drug property prediction, empirical study, machine learning
Procedia PDF Downloads 8110501 Improving Mathematics and Engineering Interest through Programming
Authors: Geoffrey A. Wright
Abstract:
In an attempt to address shortcomings revealed in international assessments and lamented in legislation, many schools are reducing or eliminating elective courses, applying the rationale that replacing "non-essential" subjects with core subjects, such as mathematics and language arts, will better position students in the global market. However, there is evidence that systematically pairing a core subject with another complementary subject may lead to greater overall learning in both subjects. In this paper, we outline the methods and preliminary findings from a study we conducted analyzing the influence learning programming has on student mathematical comprehension and ability. The purpose of this research is to demonstrate in what ways two subjects might complement each other, and to better understand the principles and conditions that encourage what we call lateral transfer, the synergistic effect that occurs when a learner studies two complementary subjects.Keywords: programming, engineering, technology, complementary subjects
Procedia PDF Downloads 35710500 Number Variation of the Personal Pronoun we Used by Chinese English Learners
Abstract:
Language variation signals the newest usage of language community, which might become the developmental trend of that language. However, language textbooks cannot keep up with these emergent usages. Most Chinese English learners nowadays are still exposed to traditional grammar prescribed in the textbook so that some variational usages cannot be acquired. The personal pronoun we is prescribed as a plural pronoun in the textbook grammar, but its number value is more flexible in actual use. Based on the Chinese Learner English Corpus (CLEC), and with the homemade Friends corpus as reference, the present research explores the number value of the first person pronoun we used by Chinese English learners. With consideration of the subjectivity of we, this paper annotated the number value of all the wes in “we+ PCU (Perception-cognation-utterance) verbs” collocations. Results show that though exposed to traditional textbooks which prescribe the plural reference of we, there still exists some unconventional usage (singular or vague in reference) in the writings of Chinese English learners, which is less frequent than that of the native speeches. Corpus data and results from manual semantic annotation show that this could be due to the impact of formulaic sequence on the learners and the positive transfer from their native language. An improved SLA model of native language, target language and interlanguage is put forward to recognize the existence of variation in second language acquisition, which should be given more attention during teaching.Keywords: Chinese English learners, number, PCU verbs, Personal pronoun we
Procedia PDF Downloads 35510499 Microwave-Assisted Alginate Extraction from Portuguese Saccorhiza polyschides – Influence of Acid Pretreatment
Authors: Mário Silva, Filipa Gomes, Filipa Oliveira, Simone Morais, Cristina Delerue-Matos
Abstract:
Brown seaweeds are abundant in Portuguese coastline and represent an almost unexploited marine economic resource. One of the most common species, easily available for harvesting in the northwest coast, is Saccorhiza polyschides grows in the lowest shore and costal rocky reefs. It is almost exclusively used by local farmers as natural fertilizer, but contains a substantial amount of valuable compounds, particularly alginates, natural biopolymers of high interest for many industrial applications. Alginates are natural polysaccharides present in cell walls of brown seaweed, highly biocompatible, with particular properties that make them of high interest for the food, biotechnology, cosmetics and pharmaceutical industries. Conventional extraction processes are based on thermal treatment. They are lengthy and consume high amounts of energy and solvents. In recent years, microwave-assisted extraction (MAE) has shown enormous potential to overcome major drawbacks that outcome from conventional plant material extraction (thermal and/or solvent based) techniques, being also successfully applied to the extraction of agar, fucoidans and alginates. In the present study, acid pretreatment of brown seaweed Saccorhiza polyschides for subsequent microwave-assisted extraction (MAE) of alginate was optimized. Seaweeds were collected in Northwest Portuguese coastal waters of the Atlantic Ocean between May and August, 2014. Experimental design was used to assess the effect of temperature and acid pretreatment time in alginate extraction. Response surface methodology allowed the determination of the optimum MAE conditions: 40 mL of HCl 0.1 M per g of dried seaweed with constant stirring at 20ºC during 14h. Optimal acid pretreatment conditions have enhanced significantly MAE of alginates from Saccorhiza polyschides, thus contributing for the development of a viable, more environmental friendly alternative to conventional processes.Keywords: acid pretreatment, alginate, brown seaweed, microwave-assisted extraction, response surface methodology
Procedia PDF Downloads 38210498 Comparing Deep Architectures for Selecting Optimal Machine Translation
Authors: Despoina Mouratidis, Katia Lida Kermanidis
Abstract:
Machine translation (MT) is a very important task in Natural Language Processing (NLP). MT evaluation is crucial in MT development, as it constitutes the means to assess the success of an MT system, and also helps improve its performance. Several methods have been proposed for the evaluation of (MT) systems. Some of the most popular ones in automatic MT evaluation are score-based, such as the BLEU score, and others are based on lexical similarity or syntactic similarity between the MT outputs and the reference involving higher-level information like part of speech tagging (POS). This paper presents a language-independent machine learning framework for classifying pairwise translations. This framework uses vector representations of two machine-produced translations, one from a statistical machine translation model (SMT) and one from a neural machine translation model (NMT). The vector representations consist of automatically extracted word embeddings and string-like language-independent features. These vector representations used as an input to a multi-layer neural network (NN) that models the similarity between each MT output and the reference, as well as between the two MT outputs. To evaluate the proposed approach, a professional translation and a "ground-truth" annotation are used. The parallel corpora used are English-Greek (EN-GR) and English-Italian (EN-IT), in the educational domain and of informal genres (video lecture subtitles, course forum text, etc.) that are difficult to be reliably translated. They have tested three basic deep learning (DL) architectures to this schema: (i) fully-connected dense, (ii) Convolutional Neural Network (CNN), and (iii) Long Short-Term Memory (LSTM). Experiments show that all tested architectures achieved better results when compared against those of some of the well-known basic approaches, such as Random Forest (RF) and Support Vector Machine (SVM). Better accuracy results are obtained when LSTM layers are used in our schema. In terms of a balance between the results, better accuracy results are obtained when dense layers are used. The reason for this is that the model correctly classifies more sentences of the minority class (SMT). For a more integrated analysis of the accuracy results, a qualitative linguistic analysis is carried out. In this context, problems have been identified about some figures of speech, as the metaphors, or about certain linguistic phenomena, such as per etymology: paronyms. It is quite interesting to find out why all the classifiers led to worse accuracy results in Italian as compared to Greek, taking into account that the linguistic features employed are language independent.Keywords: machine learning, machine translation evaluation, neural network architecture, pairwise classification
Procedia PDF Downloads 13210497 Disparity of Learning Styles and Cognitive Abilities in Vocational Education
Authors: Mimi Mohaffyza Mohamad, Yee Mei Heong, Nurfirdawati Muhammad Hanafi, Tee Tze Kiong
Abstract:
This study is conducted to investigate the disparity of between learning styles and cognitive abilities specifically in Vocational Education. Felder and Silverman Learning Styles Model (FSLSM) was applied to measure the students’ learning styles while the content in Building Construction Subject consists; knowledge, skills and problem solving were taken into account in constructing the elements of cognitive abilities. There are four dimension of learning styles proposed by Felder and Silverman intended to capture student learning preferences with regards to processing either active or reflective, perception based on sensing or intuitive, input of information used visual or verbal and understanding information represent with sequential or global learner. The study discovered that students are tending to be visual learners and each type of learner having significant difference whereas cognitive abilities. The finding may help teachers to facilitate students more effectively and to boost the student’s cognitive abilities.Keywords: learning styles, cognitive abilities, dimension of learning styles, learning preferences
Procedia PDF Downloads 40210496 E–Learning System in Virtual Learning Environment to Develop Problem Solving Ability and Team Learning for Learners in Higher Education
Authors: Noawanit Songkram
Abstract:
This paper is a report on the findings of a study conducted on e–learning system in virtual learning environment to develop problem solving ability and team learning for learners in higher education. The methodology of this study was R&D research. The subjects were 18 undergraduate students in Faculty of Education, Chulalongkorn University in the academic year of 2013. The research instruments were a problem solving ability assessment, a team learning evaluation form, and an attitude questionnaire. The data was statistically analyzed using mean, standard deviation, one way repeated measure ANOVA and t–test. The research findings discovered the e –learning system in virtual learning environment to develop problem solving ability and team learning for learners in higher education consisted of five components:(1) online collaborative tools, (2) active learning activities, (3) creative thinking, (4) knowledge sharing process, (5) evaluation and nine processes which were (1) preparing in group working, (2) identifying interested topic, (3) analysing interested topic, (4) collecting data, (5) concluding idea (6) proposing idea, (7) creating workings, (8) workings evaluation, (9) sharing knowledge from empirical experience.Keywords: e-learning system, problem solving ability, team leaning, virtual learning environment
Procedia PDF Downloads 43810495 Risk Based on Computer Auditing and Measures of Prevention
Authors: Mohammad Hadi Khorashadi Zadeh, Amin Karkon, Seyd Mohammad Reza Mashhoori
Abstract:
The technology of computer audit played a major role in the progress and prospects of a proper application to improve the quality and efficiency of audit work. But due to the technical complexity and the specific risks of computer audit, it should be shown effective in audit and preventive action. Mainly through research in this paper, we propose the causes of audit risk in a computer environment and the risk of further proposals for measures to control, to some extent reduce the risk of computer audit and improve the audit quality.Keywords: computer auditing, risk, measures to prevent, information management
Procedia PDF Downloads 52610494 E-Learning Approaches Based on Artificial Intelligence Techniques: A Survey
Authors: Nabila Daly, Hamdi Ellouzi, Hela Ltifi
Abstract:
In last year’s, several recent researches’ that focus on e-learning approaches having as goal to improve pedagogy and student’s academy level assessment. E-learning-related works have become an important research file nowadays due to several problems that make it impossible for students join classrooms, especially in last year’s. Among those problems, we note the current epidemic problems in the word case of Covid-19. For those reasons, several e-learning-related works based on Artificial Intelligence techniques are proposed to improve distant education targets. In the current paper, we will present a short survey of the most relevant e-learning based on Artificial Intelligence techniques giving birth to newly developed e-learning tools that rely on new technologies.Keywords: artificial intelligence techniques, decision, e-learning, support system, survey
Procedia PDF Downloads 22510493 Evaluation of Computer Usage and Related Health Hazards
Authors: B. O. Adegoke, B. O. Ola, D. T. Ademiluyi
Abstract:
This paper examines the use of computer and its related health hazard among computer users in South-Western zone of Nigeria. Two hundred and eighteen (218) computer users constituted the population used to evaluate association between posture, extensive computer use and related health hazard. The instruments for the study are a questionnaire on demographics, lifestyle, body features and work ability index while mean rating, standard deviation and t test were used for data analysis. Identified health related hazard include damages to the eyesight, bad posture, arthritis, musculoskeletal disorders, headache, stress and so on. The results showed that factors such as work demand, posture, closeness to computer screen and excessive working hours on computers constitute health hazards in both old and young computer users of various gender. It is therefore recommended that total number of hours spent with computer should be monitored and controlled.Keywords: computer-related health hazard, musculoskeletal disorders, computer usage, work ability index
Procedia PDF Downloads 48910492 The Link Between Knowledge Management, Organizational Learning and Collective Competence
Authors: Amira Khelil, Habib Affes
Abstract:
The XXIst century is characterized by promoting teamwork as one of the main drivers of firms` performance. Collective competence is becoming crucial in developing and maintaining a firm’s competitive advantage, as well as its contributions to organizational innovation. In other words, the improvement of collective competence for a firm is no longer a choice, but rather an obligation. Learning capabilities of a firm in the context of knowledge management are assumed to be the main drivers of collective competence. Although there are some efforts to consider these concepts together; they are mostly discussed separately in the management theory. Thus, this paper aims to offer a holistic approach for development collective competence on the basis of Knowledge Management and Organizational Learning Capabilities. A theoretical model that defines a relationship between knowledge management, organizational learning and collective competence is presented at the end of this paper.Keywords: collective competence, exploitation learning, exploration learning, knowledge management, organizational learning capabilities
Procedia PDF Downloads 50710491 Exploring Teaching Strategies Utilized by Primary School English Language Teachers
Authors: Belyihun Muchie
Abstract:
Teaching strategies significantly influence the effectiveness of language teaching practices. Macro/micro ELT strategies realizes the practicality of language teaching in the classroom, where the teacher and students play together. The study aimed to identify teaching strategies employed by primary English language teachers in EFL classrooms. It also analyzed the alignment of teaching strategies with the contemporary language teaching approaches and principles. More over, the study evaluated primary English language teachers' perceptions of the challenges and benefits of implementing innovative teaching strategies. The study used a descriptive survey research design with mixed methods approaches and convergent parallel mixed methods of data collection and analysis. Ten primary schools were selected conveniently, including 60 teachers in total. To collect the adequate data classroom observation, questionnaire and document analysis were used. From the analysis, it was found that primary school English language teachers were not teaching English using innovative teaching strategies. Hence, the alignment of their teaching strategies with the principles and syllabus of the English subject was mismatched. Finally, although there were hindrances of employing innovative teaching strategies, teachers’ commitment of trying much alternatives, was found to be less. They voiced concerns about the erosion of respect for the teaching profession, low salaries, lack of incentives for best practices, insufficient teaching resources, and autocratic leadership within schools. Therefore, as teachers found it increasingly difficult to teach English, it was concluded that primary school English language teachers were not employing innovative ELT strategies in their EFL classroom for effective language teaching in Ethiopia.Keywords: ELT strategies, descriptive survey research design, innovative teaching strategies, primary school English language teachers
Procedia PDF Downloads 910490 Unraveling the Phonosignological Foundations of Human Language and Semantic Analysis of Linguistic Elements in Cross-Cultural Contexts
Authors: Mahmudjon Kuchkarov, Marufjon Kuchkarov, Mukhayyo Sobirjanova
Abstract:
The origins of human language remain a profound scientific mystery, characterized by speculative theories often lacking empirical support. This study presents findings that may illuminate the genesis of human language, emphasizing its roots in natural, systematic, and repetitive sound patterns. Also, this paper presents the phonosignological and semantic analysis of linguistic elements across various languages and cultures. By utilizing the principles of the "Human Language" theory, we analyze the symbolic, phonetic, and semantic characteristics of elements such as "A", "L", "I", "F", and "四" (pronounced /si/ in Chinese and /shi/ in Japanese). Our findings reveal that natural sounds and their symbolic representations form the foundation of language, with significant implications for understanding religious and secular myths. This paper explores the intricate relationships between these elements and their cultural connotations, particularly focusing on the concept of "descent" in the context of the phonetic sequence "A, L, I, F," and the symbolic associations of the number four with death.Keywords: empirical research, human language, phonosignology, semantics, sound patterns, symbolism, body shape, body language, coding, Latin alphabet, merging method, natural sound, origin of language, pairing, phonetics, sound and shape production, word origin, word semantic
Procedia PDF Downloads 3710489 Size-Controlled Synthesis of Bismuth Nanoparticles by Temperature Assisted Pulsed Laser Deposition
Authors: Ranjit A. Patil, Yung Liou, Yuan-Ron Ma
Abstract:
It has been observed that when the size of metals such as, Au, Zn, Ag, Cu, Te, and metal oxides is reduced to several nano-meters, it starts to show further interesting properties. These new properties boost the use of nano-structures to produce attractive functional materials or used as promising building blocks in electronic devices. Present work describes the synthesis of bismuth (Bi) nanoparticles (NP’s) having uniform morphology, high crystallinity, and single phase purity by the temperature assisted pulsed laser deposition (TAPLD). Pulsed Laser deposition (PLD) technique is one of the promising methods to synthesize nano-structures. It can provide the stable nucleation sites in orders of magnitudes higher than for MBE and sputtering deposition. The desired size of purely metallic Bi NP’s of can be easily controlled by adjusting the temperature of the substrate varying from 1000 C to 250 0C. When the temperatures of the substrate raised step wise the average size of Bi NP’s appeared to be increased by maintaining the uniform distribution of NP’s on the Si surfaces. The diameter range of NP’s is ~33-84 nm shows size distribution constrained in the limited range. The EDS results show that the 0D Bi NP’s synthesized at high temperature (250 0C) at a high vacuum still remained in a metallic phase. Moreover, XRD, TEM and SAED results showed that these Bi NP’s are hexagonal in crystalline in a space group R -3 m and no traces of bismuth oxide, confirming that Bi NP’s synthesized at wide range of temperatures persisted of the pure Bi-metallic phase.Keywords: metal nano particles, bismuth, pulsed laser deposition (PLD), nano particles, temperature assisted growth
Procedia PDF Downloads 34810488 Ubiquitous Learning Environments in Higher Education: A Scoping Literature Review
Authors: Mari A. Virtanen, Elina Haavisto, Eeva Liikanen, Maria Kääriäinen
Abstract:
Ubiquitous learning and the use of ubiquitous learning environments herald a new era in higher education. Ubiquitous environments fuse together authentic learning situations and digital learning spaces where students can seamlessly immerse themselves into the learning process. Definitions of ubiquitous learning are wide and vary in the previous literature and learning environments are not systemically described. The aim of this scoping review was to identify the criteria and the use of ubiquitous learning environments in higher education contexts. The objective was to provide a clear scope and a wide view for this research area. The original studies were collected from nine electronic databases. Seven publications in total were defined as eligible and included in the final review. An inductive content analysis was used for the data analysis. The reviewed publications described the use of ubiquitous learning environments (ULE) in higher education. Components, contents and outcomes varied between studies, but there were also many similarities. In these studies, the concept of ubiquitousness was defined as context-awareness, embeddedness, content-personalization, location-based, interactivity and flexibility and these were supported by using smart devices, wireless networks and sensing technologies. Contents varied between studies and were customized to specific uses. Measured outcomes in these studies were focused on multiple aspects as learning effectiveness, cost-effectiveness, satisfaction, and usefulness. This study provides a clear scope for ULE used in higher education. It also raises the need for transparent development and publication processes, and for practical implications of ubiquitous learning environments.Keywords: higher education, learning environment, scoping review, ubiquitous learning, u-learning
Procedia PDF Downloads 26310487 Types of Motivation at a Rural University
Authors: Sandra Valdez-Hernández
Abstract:
Motivation is one of the most important factors when teaching language. Most institutions at least in Mexico, pay low attention to the types of motivation students have when they are studying English; however, considering the motivation they have, may lead to better understanding about their needs and purposes for learning English and the professors may understand and focus on their interests for making them persist in action through the course. This topic has been widely investigated in different countries, but more research needs to be done in Mexico to shed light on this area of potential impact. The aim of this research is to focus on the types of motivation, intrinsic and extrinsic, instrumental and integrative and the attitudes students have about English language to identify aspects that are alike to other contexts and research areas based on the theory of Dörnyei (2013) and Gardner (2001). It was carried out at a Mexican University in a small village in Quintana Roo. The potential implications, the findings as well as the limitations are presented.Keywords: attides of motivation, factors of motivation, extrinsic and intrinsic motivation, instrumental and integrative motivation
Procedia PDF Downloads 8910486 At the Crossroads of Education and Human Rights for Girls and Women in Nigeria: The Language Perspective
Authors: Crescentia Ugwuona
Abstract:
Appropriate language use has been central and critical in advancing education and human rights for women and girls in many countries the world over. Unfortunately, these lofty aims have often been violated by rural Igbo-Nigerians as they use stereotyping and dehumansing language in their cultural songs against women and girls. The psychological impact of the songs has a significant negative impact on education, human rights, quality of life, and opportunities for many rural Igbo-women and girls in Nigeria. This study, therefore, examines the forms, shades, and manifestations of derogatory and stereotypical language against women and girls the Igbo cultural songs; and how they impede education and human rights for females in Nigeria. Through Critical discourse analysis (CDA) of data collected via recording, the study identifies manifestations of women and girls’ stereotypes such as subjugations, male dominance, inequality in gender roles, suppression, and oppression, and derogatory use of the language against women and girls in the Igbo cultural songs. This study has a great promise of alerting the issues of derogatory and stereotypical language in songs, and contributes to an education aimed at gender equality, emancipator practice of appropriate language use in songs, equal education and human rights for both male and female, respect and solidarity in Nigeria and beyond.Keywords: gender stereotypes, cultural songs, women and girls, language use in Nigeria, critical discourse analysis, CDA, education
Procedia PDF Downloads 34310485 Pros and Cons of Distance Learning in Europe and Perspective for the Future
Authors: Aleksandra Ristic
Abstract:
The Coronavirus Disease – 2019 hit Europe in February 2020, and infections took place in four waves. It left consequences and demanded changes for the future. More than half of European countries responded quickly by declaring a state of emergency and introducing various containment measures that have had a major impact on individuals’ lives in recent years. Closing public lives was largely achieved by limited access and/or closing public institutions and services, including the closure of educational institutions. Teaching in classrooms converted to distance learning. In the research, we used a quantitative study to analyze various factors of distance learning that influenced pupils in different segments: teachers’ availability, family support, entire online conference learning, successful distance learning, time for themselves, reliable sources, teachers’ feedback, successful distance learning, online participation classes, motivation and teachers’ communication and theoretical review of the importance of digital skills, e-learning Index, World comparison of e-learning in the past, digital education plans for the field of Europe. We have gathered recommendations and distance learning solutions to improve the learning process by strengthening teachers and creating more tiered strategies for setting and achieving learning goals by the children.Keywords: availability, digital skills, distance learning, resources
Procedia PDF Downloads 10210484 Review of Currently Adopted Intelligent Programming Tutors
Authors: Rita Garcia
Abstract:
Intelligent Programming Tutors, IPTs, are supplemental educational devices that assist in teaching software development. These systems provide customized learning allowing the user to select the presentation pace, pedagogical strategy, and to recall previous and additional teaching materials reinforcing learning objectives. In addition, IPTs automatically records individual’s progress, providing feedback to the instructor and student. These tutoring systems have an advantage over Tutoring Systems because Intelligent Programming Tutors are not limited to one teaching strategy and can adjust when it detects the user struggling with a concept. The Intelligent Programming Tutor is a category of Intelligent Tutoring Systems, ITS. ITS are available for many fields in education, supporting different learning objectives and integrate into other learning tools, improving the student's learning experience. This study provides a comparison of the IPTs currently adopted by the educational community and will focus on the different teaching methodologies and programming languages. The study also includes the ability to integrate the IPT into other educational technologies, such as massive open online courses, MOOCs. The intention of this evaluation is to determine one system that would best serve in a larger ongoing research project and provide findings for other institutions looking to adopt an Intelligent Programming Tutor.Keywords: computer education tools, integrated software development assistance, intelligent programming tutors, tutoring systems
Procedia PDF Downloads 31710483 Learning Environments in the Early Years: A Case Study of an Early Childhood Centre in Australia
Authors: Mingxi Xiao
Abstract:
Children’s experiences in the early years build and shape the brain. The early years learning environment plays a significantly important role in children’s development. A well-constructed environment will facilitate children’s physical and mental well-being. This case study used an early learning centre in Australia called SDN Hurstville as an example, describing the learning environment in the centre, as well as analyzing the functions of the affordances. In addition, this report talks about the sustainability of learning in the centre, and how the environment supports cultural diversity and indigenous learning. The early years for children are significant. Different elements in the early childhood centre should work together to help children develop better. This case study found that the natural environment and the artificial environment are both critical to children; only when they work together can children have better development in physical and mental well-being and have a sense of belonging when playing and learning in the centre.Keywords: early childhood center, early childhood education, learning environment, Australia
Procedia PDF Downloads 24210482 Using WebQuest for Developing English Reading Comprehension Skills for Preparatory Experimental School Students: Proposed Design
Authors: Sarah Hamdy Abd-Al Hamid Seyam
Abstract:
The research aimed investigating the effect of using web quest on developing English reading comprehension skills for preparatory experimental school students. The descriptive design was adopted in the study. The tools of the study are represented in: a checklist for the English reading comprehension skills and a test of the English reading comprehension skills for the first year preparatory experimental school students. Results of the study were discussed in relation to various factors that affect the learning process. Finally the research presented applicable contributions according to using web quest in teaching English as a foreign language generally and improving reading comprehension in particular.Keywords: English as a second language, preparatory experimental schools, reading comprehension, WebQuest
Procedia PDF Downloads 32510481 An Electrocardiography Deep Learning Model to Detect Atrial Fibrillation on Clinical Application
Authors: Jui-Chien Hsieh
Abstract:
Background:12-lead electrocardiography(ECG) is one of frequently-used tools to detect atrial fibrillation (AF), which might degenerate into life-threaten stroke, in clinical Practice. Based on this study, the AF detection by the clinically-used 12-lead ECG device has only 0.73~0.77 positive predictive value (ppv). Objective: It is on great demand to develop a new algorithm to improve the precision of AF detection using 12-lead ECG. Due to the progress on artificial intelligence (AI), we develop an ECG deep model that has the ability to recognize AF patterns and reduce false-positive errors. Methods: In this study, (1) 570-sample 12-lead ECG reports whose computer interpretation by the ECG device was AF were collected as the training dataset. The ECG reports were interpreted by 2 senior cardiologists, and confirmed that the precision of AF detection by the ECG device is 0.73.; (2) 88 12-lead ECG reports whose computer interpretation generated by the ECG device was AF were used as test dataset. Cardiologist confirmed that 68 cases of 88 reports were AF, and others were not AF. The precision of AF detection by ECG device is about 0.77; (3) A parallel 4-layer 1 dimensional convolutional neural network (CNN) was developed to identify AF based on limb-lead ECGs and chest-lead ECGs. Results: The results indicated that this model has better performance on AF detection than traditional computer interpretation of the ECG device in 88 test samples with 0.94 ppv, 0.98 sensitivity, 0.80 specificity. Conclusions: As compared to the clinical ECG device, this AI ECG model promotes the precision of AF detection from 0.77 to 0.94, and can generate impacts on clinical applications.Keywords: 12-lead ECG, atrial fibrillation, deep learning, convolutional neural network
Procedia PDF Downloads 11410480 “Teacher, You’re on Mute!”: Teachers as Cultivators of Trans-Literacies
Authors: Efleda Preclaro Tolentino
Abstract:
Research indicates that an educator’s belief system is reflected in the way they structure the learning environment. Their values and belief system have the potential to positively impact school readiness through an understanding of children’s development and the creation of a stable, motivating environment. Based on the premise that the social environment influences the development of social skills, knowledge construct, and shared values of young children, this study examined verbal and nonverbal exchanges between early childhood teachers and their preschool students within the context of remote learning. Using the qualitative method of data collection, the study determined the nature of interactions between preschoolers and their teachers within a remote learning environment at a preschool in Southeast Asia that utilized the Mother Tongue-based Multilingual Education (MTBMLE) Approach. From the lens of sociocultural theory, the study investigated preschoolers’ use of literacies to convey meaning and to interact within a remote learning environment. Using a Strengths Perspective, the study revealed the creativity and resourcefulness of preschoolers in expressing themselves through trans-literacies that were made possible by the use of online mode of learning within cultural and subcultural norms. The study likewise examined how social skills acquired by young children were transmitted (verbally or nonverbally) in their interactions with peers during Zoom meetings. By examining the dynamics of social exchanges between teachers and children, the findings of the study underscore the importance of providing support for preschool students as they apply acquired values and shared practices within a remote learning environment. The potential of distance learning in the early years will be explored, specifically in supporting young children’s language and literacy development. At the same time, the study examines the role of teachers as cultivators of trans-literacies. The teachers’ skillful use of technology in facilitating young children’s learning, as well as in supporting interactions with families, will be examined. The findings of this study will explore the potential of distance learning in early childhood education to establish continuity in learning, supporting young children’s social and emotional transitions, and nurturing trans-literacies that transcend prevailing definitions of learning contexts. The implications of teachers and parents working collaboratively to support student learning will be examined. The importance of preparing teachers to be resourceful, adaptable, and innovative to ensure that learning takes place across a variety of modes and settings will be discussed.Keywords: transliteracy, preschoolers, remote learning, strengths perspective
Procedia PDF Downloads 9110479 Hate Speech Detection Using Deep Learning and Machine Learning Models
Authors: Nabil Shawkat, Jamil Saquer
Abstract:
Social media has accelerated our ability to engage with others and eliminated many communication barriers. On the other hand, the widespread use of social media resulted in an increase in online hate speech. This has drastic impacts on vulnerable individuals and societies. Therefore, it is critical to detect hate speech to prevent innocent users and vulnerable communities from becoming victims of hate speech. We investigate the performance of different deep learning and machine learning algorithms on three different datasets. Our results show that the BERT model gives the best performance among all the models by achieving an F1-score of 90.6% on one of the datasets and F1-scores of 89.7% and 88.2% on the other two datasets.Keywords: hate speech, machine learning, deep learning, abusive words, social media, text classification
Procedia PDF Downloads 13610478 Reconciling the Modern Standard Arabic with the Local Dialects in Writing Literary Texts
Authors: Ahmed M. Ghaleb, Ehab S. Al-Nuzaili
Abstract:
This paper attempts to shed light on the question of the choice between standard Arabic and the vernacular in writing literary texts. Modern Standard Arabic (MSA) has long been the formal language of writing education, administration, and media, shred across the Arab countries. In the mid-20th century, some writers have begun to write their literary works in local dialects claiming that they can be more realistic. On the other hand, other writers have opposed this new trend as it can be a threat to the Standard Arabic or MSA that unify all Arabs. However, some other writers, like Tawfiq al-Hakim, Hamed Damanhouri, Najib Mahfouz, and Hanna Mineh, attempted to solve this problem by using what W. M. Hutchins called a 'hybrid language', a middle language between the standard and the vernacular. It is also termed 'a third language'. The paper attempts to examine some of the literary texts in which a combination of the standard and the colloquial is employed. Thus, the paper attempts to find out a solution by proposing a third language, a form that can combine the MSA and the colloquial, and the possibility of using it in writing literary texts. Therefore, the paper can bridge the gap between the different levels of Arabic.Keywords: modern standard arabic, dialect or vernacular, diglossia, third language
Procedia PDF Downloads 12910477 The Role of Context in Interpreting Emotional Body Language in Robots
Authors: Jekaterina Novikova, Leon Watts
Abstract:
In the emerging world of human-robot interaction, people and robots will interact socially in real-world situations. This paper presents the results of an experimental study probing the interaction between situational context and emotional body language in robots. 34 people rated video clips of robots performing expressive behaviours in different situational contexts both for emotional expressivity on Valence-Arousal-Dominance dimensions and by selecting a specific emotional term from a list of suggestions. Results showed that a contextual information enhanced a recognition of emotional body language of a robot, although it did not override emotional signals provided by robot expressions. Results are discussed in terms of design guidelines on how an emotional body language of a robot can be used by roboticists developing social robots.Keywords: social robotics, non-verbal communication, situational context, artificial emotions, body language
Procedia PDF Downloads 28910476 The Impact of Technology on Computer Systems and Technology
Authors: Bishoy Abouelsoud Saad Amin
Abstract:
This paper examines the use of computer and its related health hazard among computer users in South-Western zone of Nigeria. Two hundred and eighteen (218) computer users constituted the population used to evaluate association between posture, extensive computer use and related health hazard. The instruments for the study are a questionnaire on demographics, lifestyle, body features and work ability index while mean rating, standard deviation and t test were used for data analysis. Identified health related hazard include damages to the eyesight, bad posture, arthritis, musculoskeletal disorders, headache, stress and so on. The results showed that factors such as work demand, posture, closeness to computer screen and excessive working hours on computers constitute health hazards in both old and young computer users of various gender. It is therefore recommended that total number of hours spent with computer should be monitored and controlled.Keywords: computer game, metaphor, middle school students, virtual environments computer auditing, risk, measures to prevent, information management computer-related health hazard, musculoskeletal disorders, computer usage, work ability index
Procedia PDF Downloads 6810475 Development of Microwave-Assisted Alkalic Salt Pretreatment Regimes for Enhanced Sugar Recovery from Corn Cobs
Authors: Yeshona Sewsynker
Abstract:
This study presents three microwave-assisted alkalic salt pretreatments to enhance delignification and enzymatic saccharification of corn cobs. The effects of process parameters of salt concentration (0-15%), microwave power intensity (0-800 W) and pretreatment time (2-8 min) on reducing sugar yield from corn cobs were investigated. Pretreatment models were developed with the high coefficient of determination values (R2>0.85). Optimization gave a maximum reducing sugar yield of 0.76 g/g. Scanning electron microscopy (SEM) and Fourier Transform Infrared analysis (FTIR) showed major changes in the lignocellulosic structure after pretreatment. A 7-fold increase in the sugar yield was observed compared to previous reports on the same substrate. The developed pretreatment strategy was effective for enhancing enzymatic saccharification from lignocellulosic wastes for microbial biofuel production processes and value-added products.Keywords: pretreatment, lignocellulosic biomass, enzymatic hydrolysis, delignification
Procedia PDF Downloads 50010474 Optimize Data Evaluation Metrics for Fraud Detection Using Machine Learning
Authors: Jennifer Leach, Umashanger Thayasivam
Abstract:
The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, though, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate people. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease this advancement. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent data, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which testing split and technique would lead to the most optimal results.Keywords: data science, fraud detection, machine learning, supervised learning
Procedia PDF Downloads 196