Search results for: learner’s cell phone use
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4325

Search results for: learner’s cell phone use

2975 A Review on Predictive Sound Recognition System

Authors: Ajay Kadam, Ramesh Kagalkar

Abstract:

The proposed research objective is to add to a framework for programmed recognition of sound. In this framework the real errand is to distinguish any information sound stream investigate it & anticipate the likelihood of diverse sounds show up in it. To create and industrially conveyed an adaptable sound web crawler a flexible sound search engine. The calculation is clamor and contortion safe, computationally productive, and hugely adaptable, equipped for rapidly recognizing a short portion of sound stream caught through a phone microphone in the presence of frontal area voices and other predominant commotion, and through voice codec pressure, out of a database of over accessible tracks. The algorithm utilizes a combinatorial hashed time-recurrence group of stars examination of the sound, yielding ordinary properties, for example, transparency, in which numerous tracks combined may each be distinguished.

Keywords: fingerprinting, pure tone, white noise, hash function

Procedia PDF Downloads 308
2974 Targeting Tumour Survival and Angiogenic Migration after Radiosensitization with an Estrone Analogue in an in vitro Bone Metastasis Model

Authors: Jolene M. Helena, Annie M. Joubert, Peace Mabeta, Magdalena Coetzee, Roy Lakier, Anne E. Mercier

Abstract:

Targeting the distant tumour and its microenvironment whilst preserving bone density is important in improving the outcomes of patients with bone metastases. 2-Ethyl-3-O-sulphamoyl-estra1,3,5(10)16-tetraene (ESE-16) is an in-silico-designed 2- methoxyestradiol analogue which aimed at enhancing the parent compound’s cytotoxicity and providing a more favourable pharmacokinetic profile. In this study, the potential radiosensitization effects of ESE-16 were investigated in an in vitro bone metastasis model consisting of murine pre-osteoblastic (MC3T3-E1) and pre-osteoclastic (RAW 264.7) bone cells, metastatic prostate (DU 145) and breast (MDA-MB-231) cancer cells, as well as human umbilical vein endothelial cells (HUVECs). Cytotoxicity studies were conducted on all cell lines via spectrophotometric quantification of 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide. The experimental set-up consisted of flow cytometric analysis of cell cycle progression and apoptosis detection (Annexin V-fluorescein isothiocyanate) to determine the lowest ESE-16 and radiation doses to induce apoptosis and significantly reduce cell viability. Subsequent experiments entailed a 24-hour low-dose ESE-16-exposure followed by a single dose of radiation. Termination proceeded 2, 24 or 48 hours thereafter. The effect of the combination treatment was investigated on osteoclasts via tartrate-resistant acid phosphatase (TRAP) activity- and actin ring formation assays. Tumour cell experiments included investigation of mitotic indices via haematoxylin and eosin staining; pro-apoptotic signalling via spectrophotometric quantification of caspase 3; deoxyribonucleic acid (DNA) damage via micronuclei analysis and histone H2A.X phosphorylation (γ-H2A.X); and Western blot analyses of bone morphogenetic protein-7 and matrix metalloproteinase-9. HUVEC experiments included flow cytometric quantification of cell cycle progression and free radical production; fluorescent examination of cytoskeletal morphology; invasion and migration studies on an xCELLigence platform; and Western blot analyses of hypoxia-inducible factor 1-alpha and vascular endothelial growth factor receptor 1 and 2. Tumour cells yielded half-maximal growth inhibitory concentration (GI50) values in the nanomolar range. ESE-16 concentrations of 235 nM (DU 145) and 176 nM (MDA-MB-231) and a radiation dose of 4 Gy were found to be significant in cell cycle and apoptosis experiments. Bone and endothelial cells were exposed to the same doses as DU 145 cells. Cytotoxicity studies on bone cells reported that RAW 264.7 cells were more sensitive to the combination treatment than MC3T3-E1 cells. Mature osteoclasts were more sensitive than pre-osteoclasts with respect to TRAP activity. However, actin ring morphology was retained. The mitotic arrest was evident in tumour and endothelial cells in the mitotic index and cell cycle experiments. Increased caspase 3 activity and superoxide production indicated pro-apoptotic signalling in tumour and endothelial cells. Increased micronuclei numbers and γ-H2A.X foci indicated increased DNA damage in tumour cells. Compromised actin and tubulin morphologies and decreased invasion and migration were observed in endothelial cells. Western blot analyses revealed reduced metastatic and angiogenic signalling. ESE-16-induced radiosensitization inhibits metastatic signalling and tumour cell survival whilst preferentially preserving bone cells. This low-dose combination treatment strategy may promote the quality of life of patients with metastatic bone disease. Future studies will include 3-dimensional in-vitro and murine in-vivo models.

Keywords: angiogenesis, apoptosis, bone metastasis, cancer, cell migration, cytoskeleton, DNA damage, ESE-16, radiosensitization.

Procedia PDF Downloads 143
2973 Numerical Simulation of the Rotating Vertical Bridgman Growth

Authors: Nouri Sabrina

Abstract:

Numerical parametric study is conducted to study the effects of ampoule rotation on the flows and the dopant segregation in Vertical Bridgman (VB) crystal growth. Calculations were performed in unsteady state. The extended darcy model, whıch includes the time derivative and coriolis terms, has been employed in the momentum equation. It is found that the convection, and dopant segregation can be affected significantly by ampoule rotation, and the effect is similar to that by an axial magnetıc field. Ampoule rotation decreases the intensity of convection and stretches the flow cell axıally. When the convectıon is weak, the flow can be suppressed almost completely by moderate ampoule rotation and the dopant segregation becomes diffusion-controlled. For stronger convection, the elongated flow cell by ampoule rotation may bring dopant mixing into the bulk melt reducing axial segregation at the early stage of the growth. However, if the cellular flow cannot be suppressed completely, ampoule rotation may induce larger radial segregation due to poor mixing.

Keywords: rotating vertical solidification, Finite Volume Method, heat and mass transfer, porous medium, phase change

Procedia PDF Downloads 416
2972 Chemical and Physical Properties and Biocompatibility of Ti–6Al–4V Produced by Electron Beam Rapid Manufacturing and Selective Laser Melting for Biomedical Applications

Authors: Bing–Jing Zhao, Chang-Kui Liu, Hong Wang, Min Hu

Abstract:

Electron beam rapid manufacturing (EBRM) or Selective laser melting is an additive manufacturing process that uses 3D CAD data as a digital information source and energy in the form of a high-power laser beam or electron beam to create three-dimensional metal parts by fusing fine metallic powders together.Object:The present study was conducted to evaluate the mechanical properties ,the phase transformation,the corrosivity and the biocompatibility of Ti-6Al-4V by EBRM,SLM and forging technique.Method: Ti-6Al-4V alloy standard test pieces were manufactured by EBRM, SLM and forging technique according to AMS4999,GB/T228 and ISO 10993.The mechanical properties were analyzed by universal test machine. The phase transformation was analyzed by X-ray diffraction and scanning electron microscopy. The corrosivity was analyzed by electrochemical method. The biocompatibility was analyzed by co-culturing with mesenchymal stem cell and analyzed by scanning electron microscopy (SEM) and alkaline phosphatase assay (ALP) to evaluate cell adhesion and differentiation, respectively. Results: The mechanical properties, the phase transformation, the corrosivity and the biocompatibility of Ti-6Al-4V by EBRM、SLM were similar to forging and meet the mechanical property requirements of AMS4999 standard. a­phase microstructure for the EBM production contrast to the a’­phase microstructure of the SLM product. Mesenchymal stem cell adhesion and differentiation were well. Conclusion: The property of the Ti-6Al-4V alloy manufactured by EBRM and SLM technique can meet the medical standard from this study. But some further study should be proceeded in order to applying well in clinical practice.

Keywords: 3D printing, Electron Beam Rapid Manufacturing (EBRM), Selective Laser Melting (SLM), Computer Aided Design (CAD)

Procedia PDF Downloads 443
2971 Enhancing Anode Performance in Li-S Batteries via Coating with Waste Battery-Derived Materials

Authors: Mohsen Hajian Foroushani, Samane Maroufi, Rasoul Khayyam Nekouei, Veena Sahajwalla

Abstract:

Lithium (Li) metal possesses outstanding characteristics, with the highest specific capacity (3860 mAh g-1) and the lowest electrochemical potential (-3.04 V vs. SHE) among available metal anodes. The collaborative impact of Li and sulfur, featuring a specific capacity of 1670 mAh g-1, positions Li–S batteries (LSBs) as highly promising contenders for the next generation of high-energy-density batteries. However, the comprehensive commercialization of LSBs relies on addressing various challenges inherent to these batteries. One of the most formidable hurdles is the widespread issue of Li dendrite nucleation and growth on the anode surface, stemming from the inherent instability of the solid electrolyte interphase (SEI) layer. In this study, we employed a Zn-based coating derived from waste materials, significantly enhancing the performance of the symmetrical cell across various current densities. The applied coating not only improved the cyclability of the cell by more than fourfold but also reduced the charge transfer resistance from over 300 to less than 10 before cycling. Examination through SEM micrographs of both samples revealed the successful suppression of Li dendrites by the applied coating.

Keywords: Li-S batteries, Li dendrite, sustainability, Li anode

Procedia PDF Downloads 56
2970 Usability Issues of Smart Phone Applications: For Visually Challenged People

Authors: Anam Ashraf, Arif Raza

Abstract:

In this era of globalization, adoption of technology is quite difficult for people with physical disabilities compared to people with normal abilities. The advancement in mobile based accessible applications has opened up several different avenues for the visually challenged across the globe. Smartphones applications are not very common for blind people, but they access and use these applications in their daily lives to some extent. Several smartphone applications have a number of usability issues for the visually impaired. In this paper, we evaluate the usability of various android and iPhone applications for blind people through analysis and surveys. This paper aspires to provide guidance in order to increase smartphone application accessibility for the visually impaired. An abstract application design is also proposed to overcome usability issues in smartphone applications for visually challenged people.

Keywords: eyes-free shell, human computer interaction, usability engineering, visually challenged

Procedia PDF Downloads 347
2969 Unraveling Biostimulation of Decolorized Mediators for Microbial Fuel Cell-Aided Textile Dye Decontamination

Authors: Pei-Lin Yueh, Bor-Yann Chen, Chuan-Chung Hsueh

Abstract:

This first-attempt study revealed that decolorized intermediates of azo dyes could act as redox mediators to assist wastewater (WW) decolorization due to enhancement of electron-transport phenomena. Electrochemical impedance spectra indicated that hydroxyl and amino-substituent(s) were functional group(s) as redox-mediator(s). As azo dyes are usually multiple benzene rings structured, their derived decolorized intermediates are likely to play roles of electron shuttles due to lower barrier of energy gap for electron shuttling. According to cyclic voltammetric profiles, redox-mediating characteristics of decolorized intermediates of azo dyes (e.g., RBu171, RR198, RR141, and RBk5) were clearly disclosed. With supplementation of biodecolorized metabolites of RR141 and 198, decolorization performance of could be evidently augmented. This study also suggested the optimal modes of microbial fuel cell (MFC)-assisted WW decolorization would be plug-flow or batch mode of operation with no mix. Single chamber-MFCs would be more favourable than double chamber MFCs due to non-mixing contacting reactor scheme for operation.

Keywords: redox mediators, dye decolorization, bioelectricity generation, microbial fuel cells

Procedia PDF Downloads 308
2968 Development of Broad Spectrum Nitrilase Biocatalysts and Bioprocesses for Nitrile Biotransformation

Authors: Avinash Vellore Sunder, Shikha Shah, Pramod P. Wangikar

Abstract:

The enzymatic conversion of nitriles to carboxylic acids by nitrilases has gained significance in the green synthesis of several pharmaceutical precursors and fine chemicals. While nitrilases have been characterized from different sources, the industrial application requires the identification of nitrilases that possess higher substrate tolerance, wider specificity and better thermostability, along with the development of an efficient bioprocess for producing large amounts of nitrilase. To produce large amounts of nitrilase, we developed a fed-batch fermentation process on defined media for the high cell density cultivation of E. coli cells expressing the well-studied nitrilase from Alcaligenes fecalis. A DO-stat feeding approach was employed combined with an optimized post-induction strategy to achieve nitrilase titer of 2.5*105 U/l and 78 g/l dry cell weight. We also identified 16 novel nitrilase sequences from genome mining and analysis of substrate binding residues. The nitrilases were expressed in E. coli and their biocatalytic potential was evaluated on a panel of 22 industrially relevant nitrile substrates using high-throughput screening and HPLC analysis. Nine nitrilases were identified to exhibit high activity on structurally diverse nitriles including aliphatic and aromatic dinitriles, heterocyclic, -hydroxy and -keto nitriles. With fed-batch biotransformation, whole-cell Zobelia galactanivorans nitrilase achieved yields of 2.4 M nicotinic acid and 1.8 M isonicotinic acid from 3-cyanopyridine and 4-cyanopyridine respectively within 5 h, while Cupravidus necator nitrilase enantioselectively converted 740 mM mandelonitrile to (R)–mandelic acid. The nitrilase from Achromobacter insolitus could hydrolyze 542 mM iminodiacetonitrile in 1 h. The availability of highly active nitrilases along with bioprocesses for enzyme production expands the toolbox for industrial biocatalysis.

Keywords: biocatalysis, isonicotinic acid, iminodiacetic acid, mandelic acid, nitrilase

Procedia PDF Downloads 217
2967 Big Data for Local Decision-Making: Indicators Identified at International Conference on Urban Health 2017

Authors: Dana R. Thomson, Catherine Linard, Sabine Vanhuysse, Jessica E. Steele, Michal Shimoni, Jose Siri, Waleska Caiaffa, Megumi Rosenberg, Eleonore Wolff, Tais Grippa, Stefanos Georganos, Helen Elsey

Abstract:

The Sustainable Development Goals (SDGs) and Urban Health Equity Assessment and Response Tool (Urban HEART) identify dozens of key indicators to help local decision-makers prioritize and track inequalities in health outcomes. However, presentations and discussions at the International Conference on Urban Health (ICUH) 2017 suggested that additional indicators are needed to make decisions and policies. A local decision-maker may realize that malaria or road accidents are a top priority. However, s/he needs additional health determinant indicators, for example about standing water or traffic, to address the priority and reduce inequalities. Health determinants reflect the physical and social environments that influence health outcomes often at community- and societal-levels and include such indicators as access to quality health facilities, access to safe parks, traffic density, location of slum areas, air pollution, social exclusion, and social networks. Indicator identification and disaggregation are necessarily constrained by available datasets – typically collected about households and individuals in surveys, censuses, and administrative records. Continued advancements in earth observation, data storage, computing and mobile technologies mean that new sources of health determinants indicators derived from 'big data' are becoming available at fine geographic scale. Big data includes high-resolution satellite imagery and aggregated, anonymized mobile phone data. While big data are themselves not representative of the population (e.g., satellite images depict the physical environment), they can provide information about population density, wealth, mobility, and social environments with tremendous detail and accuracy when combined with population-representative survey, census, administrative and health system data. The aim of this paper is to (1) flag to data scientists important indicators needed by health decision-makers at the city and sub-city scale - ideally free and publicly available, and (2) summarize for local decision-makers new datasets that can be generated from big data, with layperson descriptions of difficulties in generating them. We include SDGs and Urban HEART indicators, as well as indicators mentioned by decision-makers attending ICUH 2017.

Keywords: health determinant, health outcome, mobile phone, remote sensing, satellite imagery, SDG, urban HEART

Procedia PDF Downloads 192
2966 Item Response Calibration/Estimation: An Approach to Adaptive E-Learning System Development

Authors: Adeniran Adetunji, Babalola M. Florence, Akande Ademola

Abstract:

In this paper, we made an overview on the concept of adaptive e-Learning system, enumerates the elements of adaptive learning concepts e.g. A pedagogical framework, multiple learning strategies and pathways, continuous monitoring and feedback on student performance, statistical inference to reach final learning strategy that works for an individual learner by “mass-customization”. Briefly highlights the motivation of this new system proposed for effective learning teaching. E-Review literature on the concept of adaptive e-learning system and emphasises on the Item Response Calibration, which is an important approach to developing an adaptive e-Learning system. This paper write-up is concluded on the justification of item response calibration/estimation towards designing a successful and effective adaptive e-Learning system.

Keywords: adaptive e-learning system, pedagogical framework, item response, computer applications

Procedia PDF Downloads 575
2965 Dependence of Ionomer Loading on the Hydrogen Generation Rate of a Proton Exchange Membrane Electrolyzer

Authors: Yingjeng James Li, Chih Chi Hsu, Chiao-Chih Hu

Abstract:

Membrane electrode assemblies MEAs for proton exchange membrane PEM water electrolyzers were prepared by employing 175um perfluorosulfonic acid PFSA membranes as the PEM, onto which iridium oxide catalyst was coated on one side as the anode and platinum catalyst was coated on the other side as the cathode. The cathode catalyst ink was prepared so that the weight ratio of the catalyst powder to ionomer was 75:25, 70:30, 65:35, 60:40, and 55:45, respectively. Whereas, the ratio of catalyst powder to ionomer of the anode catalyst ink keeps constant at 50:50. All the MEAs have a catalyst coated area of 5cm*5cm. The test cell employs a platinum plated titanium grid as anode gas diffusion media; whereas, carbon paper was employed as the cathode gas diffusion media. The measurements of the MEA gases production rate were carried out by holding the cell voltage ranging from 1.6 to 2.8 volts at room temperature. It was found that the MEA with cathode catalyst to ionomer ratio of 65:35 gives the largest hydrogen production rate which is 2.8mL/cm2*min.

Keywords: electrolyzer, membrane electrode assembly, proton exchange membrane, ionomer, hydrogen

Procedia PDF Downloads 238
2964 PARP1 Links Transcription of a Subset of RBL2-Dependent Genes with Cell Cycle Progression

Authors: Ewelina Wisnik, Zsolt Regdon, Kinga Chmielewska, Laszlo Virag, Agnieszka Robaszkiewicz

Abstract:

Apart from protecting genome, PARP1 has been documented to regulate many intracellular processes inter alia gene transcription by physically interacting with chromatin bound proteins and by their ADP-ribosylation. Our recent findings indicate that expression of PARP1 decreases during the differentiation of human CD34+ hematopoietic stem cells to monocytes as a consequence of differentiation-associated cell growth arrest and formation of E2F4-RBL2-HDAC1-SWI/SNF repressive complex at the promoter of this gene. Since the RBL2 complexes repress genes in a E2F-dependent manner and are widespread in the genome in G0 arrested cells, we asked (a) if RBL2 directly contributes to defining monocyte phenotype and function by targeting gene promoters and (b) if RBL2 controls gene transcription indirectly by repressing PARP1. For identification of genes controlled by RBL2 and/or PARP1,we used primer libraries for surface receptors and TLR signaling mediators, genes were silenced by siRNA or shRNA, analysis of gene promoter occupation by selected proteins was carried out by ChIP-qPCR, while statistical analysis in GraphPad Prism 5 and STATISTICA, ChIP-Seq data were analysed in Galaxy 2.5.0.0. On the list of 28 genes regulated by RBL2, we identified only four solely repressed by RBL2-E2F4-HDAC1-BRM complex. Surprisingly, 24 out of 28 emerged genes controlled by RBL2 were co-regulated by PARP1 in six different manners. In one mode of RBL2/PARP1 co-operation, represented by MAP2K6 and MAPK3, PARP1 was found to associate with gene promoters upon RBL2 silencing, which was previously shown to restore PARP1 expression in monocytes. PARP1 effect on gene transcription was observed only in the presence of active EP300, which acetylated gene promoters and activated transcription. Further analysis revealed that PARP1 binding to MA2K6 and MAPK3 promoters enabled recruitment of EP300 in monocytes, while in proliferating cancer cell lines, which actively transcribe PARP1, this protein maintained EP300 at the promoters of MA2K6 and MAPK3. Genome-wide analysis revealed a similar distribution of PARP1 and EP300 around transcription start sites and the co-occupancy of some gene promoters by PARP1 and EP300 in cancer cells. Here, we described a new RBL2/PARP1/EP300 axis which controls gene transcription regardless of the cell type. In this model cell, cycle-dependent transcription of PARP1 regulates expression of some genes repressed by RBL2 upon cell cycle limitation. Thus, RBL2 may indirectly regulate transcription of some genes by controlling the expression of EP300-recruiting PARP1. Acknowledgement: This work was financed by Polish National Science Centre grants nr DEC-2013/11/D/NZ2/00033 and DEC-2015/19/N/NZ2/01735. L.V. is funded by the National Research, Development and Innovation Office grants GINOP-2.3.2-15-2016-00020 TUMORDNS, GINOP-2.3.2-15-2016-00048-STAYALIVE and OTKA K112336. AR is supported by Polish Ministry of Science and Higher Education 776/STYP/11/2016.

Keywords: retinoblastoma transcriptional co-repressor like 2 (RBL2), poly(ADP-ribose) polymerase 1 (PARP1), E1A binding protein p300 (EP300), monocytes

Procedia PDF Downloads 191
2963 Exercise and Aging Process Related to Oxidative Stress

Authors: B. Dejanova, S. Petrovska, L. Todorovska, J. Pluncevic, S. Mancevska, V. Antevska, E. Sivevska, I. Karagjozova

Abstract:

Introduction: Aging process is mainly related to endothelial function which may be impaired by oxidative stress (OS). Exercise is known to be beneficial to aging process, which may improve health and prevent appearance of chronic diseases in elderly. The aim of the study was to investigate the OS markers related to exercise. Methods: A number of 80 subjects (healthy volunteers) were examined (38 male and 32 female), divided in 3 age groups: group I ≤ 30 years (n=24); group II – 31-50 years (n=24); group III - ≥ 51 year (n=32). Each group was divided to subgroups of sedentary subjects (SS) and subjects who exercise (SE). Group I: SS (n=11), SE (n=13); group II: SS (n=13), SE (n=10); group III: SS (n=23) SE (n=9). Lipid peroxidation (LP) as a fluorimetric method with thiobarbituric acid was used to estimate OS. Antioxidative status was determined by cell antioxidants such as enzymes - superoxide dismutase (SOD), glutathione peroxidase (GPx) and glucose 6 phosphate (G-6-PD); and by extra cell antioxidants such as glutathione reductase (GR), nitric oxide (NO) and total antioxidant capacity (TAC). Results: Increased values of LP were noticed along the aging process: group I – 3.30±0.3 µmol/L; group II – 3.91±0.2 µmol/L; group III – 3.94±0.8 µmol/L (p<0.05), while no statistical significance was found between male and female subjects. Statistical significance for OS was not found between SS and SE in group I as it was found in group II (p<0.05) and in group III (p<0.01). No statistical significance was found for all cell antioxidants and GR within the groups, while NO and TAC showed lower values in SS compared to SE in II (p<0.05) and in group III (p<0.05). Discussion and conclusion: Aging process showed increased OS which may be either due to impaired function of scavengers of free radicals or due to their enormous production. Well balanced exercise might be one of the factors that keep the integrity of blood vessel endothelium which slows down the aging process. Possible mechanism of exercise beneficial influence is shear stress by upregulation of genes coding for nitric oxide bioavailability. Thus, due to obtained results we may conclude that OS is found to be diminished in the subject groups who perform exercise.

Keywords: oxidative stress, aging process, exercise, endothelial function

Procedia PDF Downloads 371
2962 Protoplast Cultures of Murraya paniculata L. Jack and Their Regeneration into Plant Precocious Flowering

Authors: Hasan Basri Jumin

Abstract:

Protoplasts isolated from embryogenic callus of Murraya paniculata (L. Jack.) were cultured in MT (Murashige and Tucker, 1969) basal medium containing 5% sucrose supplemented with kinetin, malt extract (ME) and 0.6 M sorbitol. About 85% of the surviving protoplasts formed a cell wall within 6 d of culture and the first cell division was observed 7 days after isolation. The highest plating effi¬ciency was obtained on MT basal medium containing 5% sucrose supplemented with 0.01 mg 1-1 kinetin 600 mg 1-1 ME, MT basal medium containing 5% sucrose and supplemented with 0.01 mg 1-1 Indole-acetic-acid (IAA) was found to be a medium suitable for the development somatic embryos into heart-shaped somatic embryos. The highest percentage of shoot formation was obtained using 0.1 mg 1-1 Indole-acitic-acid (IAA) 0..1 mg 1-1 gibberellic acid (GA3). In this investigation 40 plants were survived and grew normally in the soil. After two months maitained in the soil plants formed flower and flower developed into fruits on the soil treated with BA.

Keywords: gibberellic-acid, indole-acetic-acid, protoplast, precocious-flowering, somatic-embryo

Procedia PDF Downloads 330
2961 High-Throughput Screening and Selection of Electrogenic Microbial Communities Using Single Chamber Microbial Fuel Cells Based on 96-Well Plate Array

Authors: Lukasz Szydlowski, Jiri Ehlich, Igor Goryanin

Abstract:

We demonstrate a single chamber, 96-well-plated based Microbial Fuel Cell (MFC) with printed, electronic components. This invention is aimed at robust selection of electrogenic microbial community under specific conditions, e.g., electrode potential, pH, nutrient concentration, salt concentration that can be altered within the 96 well plate array. This invention enables robust selection of electrogenic microbial community under the homogeneous reactor, with multiple conditions that can be altered to allow comparative analysis. It can be used as a standalone technique or in conjunction with other selective processes, e.g., flow cytometry, microfluidic-based dielectrophoretic trapping. Mobile conductive elements, like carbon paper, carbon sponge, activated charcoal granules, metal mesh, can be inserted inside to increase the anode surface area in order to collect electrogenic microorganisms and to transfer them into new reactors or for other analytical works. An array of 96-well plate allows this device to be operated by automated pipetting stations.

Keywords: bioengineering, electrochemistry, electromicrobiology, microbial fuel cell

Procedia PDF Downloads 127
2960 Deciphering Tumor Stroma Interactions in Retinoblastoma

Authors: Rajeswari Raguraman, Sowmya Parameswaran, Krishnakumar Subramanian, Jagat Kanwar, Rupinder Kanwar

Abstract:

Background: Tumor microenvironment has been implicated in several cancers to regulate cell growth, invasion and metastasis culminating in outcome of therapy. Tumor stroma consists of multiple cell types that are in constant cross-talk with the tumor cells to favour a pro-tumorigenic environment. Not much is known about the existence of tumor microenvironment in the pediatric intraocular malignancy, Retinoblastoma (RB). In the present study, we aim to understand the multiple stromal cellular subtypes and tumor stromal interactions expressed in RB tumors. Materials and Methods: Immunohistochemistry for stromal cell markers CD31, CD68, alpha-smooth muscle (α-SMA), vimentin and glial fibrillary acidic protein (GFAP) was performed on formalin fixed paraffin embedded tissues sections of RB (n=12). The differential expression of stromal target molecules; fibroblast activation protein (FAP), tenascin-C (TNC), osteopontin (SPP1), bone marrow stromal antigen 2 (BST2), stromal derived factor 2 and 4 (SDF2 and SDF4) in primary RB tumors (n=20) and normal retina (n=5) was studied by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and Western blotting. The differential expression was correlated with the histopathological features of RB. The interaction between RB cell lines (Weri-Rb-1, NCC-RbC-51) and Bone marrow stromal cells (BMSC) was also studied using direct co-culture and indirect co-culture methods. The functional effect of the co-culture methods on the RB cells was evaluated by invasion and proliferation assays. Global gene expression was studied by using Affymetrix 3’ IVT microarray. Pathway prediction was performed using KEGG and the key molecules were validated using qRT-PCR. Results: The immunohistochemistry revealed the presence of several stromal cell types such as endothelial cells (CD31+;Vim+/-); macrophages (CD68+;Vim+/-); Fibroblasts (Vim+; CD31-;CD68- );myofibroblasts (α-SMA+/ Vim+) and invading retinal astrocytes/ differentiated retinal glia (GFAP+; Vim+). A characteristic distribution of these stromal cell types was observed in the tumor microenvironment, with endothelial cells predominantly seen in blood vessels and macrophages near actively proliferating tumor or necrotic areas. Retinal astrocytes and glia were predominant near the optic nerve regions in invasive tumors with sparse distribution in tumor foci. Fibroblasts were widely distributed with rare evidence of myofibroblasts in the tumor. Both gene and protein expression revealed statistically significant (P<0.05) up-regulation of FAP, TNC and BST2 in primary RB tumors compared to the normal retina. Co-culture of BMSC with RB cells promoted invasion and proliferation of RB cells in direct and indirect contact methods respectively. Direct co-culture of RB cell lines with BMSC resulted in gene expression changes in ECM-receptor interaction, focal adhesion, IL-8 and TGF-β signaling pathways associated with cancer. In contrast, various metabolic pathways such a glucose, fructose and amino acid metabolism were significantly altered under the indirect co-culture condition. Conclusion: The study suggests that the close interaction between RB cells and the stroma might be involved in RB tumor invasion and progression which is likely to be mediated by ECM-receptor interactions and secretory factors. Targeting the tumor stroma would be an attractive option for redesigning treatment strategies for RB.

Keywords: gene expression profiles, retinoblastoma, stromal cells, tumor microenvironment

Procedia PDF Downloads 370
2959 Photoplethysmography-Based Device Designing for Cardiovascular System Diagnostics

Authors: S. Botman, D. Borchevkin, V. Petrov, E. Bogdanov, M. Patrushev, N. Shusharina

Abstract:

In this paper, we report the development of the device for diagnostics of cardiovascular system state and associated automated workstation for large-scale medical measurement data collection and analysis. It was shown that optimal design for the monitoring device is wristband as it represents engineering trade-off between accuracy and usability. The monitoring device is based on the infrared reflective photoplethysmographic sensor, which allows collecting multiple physiological parameters, such as heart rate and pulsing wave characteristics. Developed device use BLE interface for medical and supplementary data transmission to the coupled mobile phone, which process it and send it to the doctor's automated workstation. Results of this experimental model approbation confirmed the applicability of the proposed approach.

Keywords: cardiovascular diseases, health monitoring systems, photoplethysmography, pulse wave, remote diagnostics

Procedia PDF Downloads 480
2958 Introducing Data-Driven Learning into Chinese Higher Education English for Academic Purposes Writing Instructional Settings

Authors: Jingwen Ou

Abstract:

Writing for academic purposes in a second or foreign language is one of the most important and the most demanding skills to be mastered by non-native speakers. Traditionally, the EAP writing instruction at the tertiary level encompasses the teaching of academic genre knowledge, more specifically, the disciplinary writing conventions, the rhetorical functions, and specific linguistic features. However, one of the main sources of challenges in English academic writing for L2 students at the tertiary level can still be found in proficiency in academic discourse, especially vocabulary, academic register, and organization. Data-Driven Learning (DDL) is defined as “a pedagogical approach featuring direct learner engagement with corpus data”. In the past two decades, the rising popularity of the application of the data-driven learning (DDL) approach in the field of EAP writing teaching has been noticed. Such a combination has not only transformed traditional pedagogy aided by published DDL guidebooks in classroom use but also triggered global research on corpus use in EAP classrooms. This study endeavors to delineate a systematic review of research in the intersection of DDL and EAP writing instruction by conducting a systematic literature review on both indirect and direct DDL practice in EAP writing instructional settings in China. Furthermore, the review provides a synthesis of significant discoveries emanating from prior research investigations concerning Chinese university students’ perception of Data-Driven Learning (DDL) and the subsequent impact on their academic writing performance following corpus-based training. Research papers were selected from Scopus-indexed journals and core journals from two main Chinese academic databases (CNKI and Wanfang) published in both English and Chinese over the last ten years based on keyword searches. Results indicated an insufficiency of empirical DDL research despite a noticeable upward trend in corpus research on discourse analysis and indirect corpus applications for material design by language teachers. Research on the direct use of corpora and corpus tools in DDL, particularly in combination with genre-based EAP teaching, remains a relatively small fraction of the whole body of research in Chinese higher education settings. Such scarcity is highly related to the prevailing absence of systematic training in English academic writing registers within most Chinese universities' EAP syllabi due to the Chinese English Medium Instruction policy, where only English major students are mandated to submit English dissertations. Findings also revealed that Chinese learners still held mixed attitudes towards corpus tools influenced by learner differences, limited access to language corpora, and insufficient pre-training on corpus theoretical concepts, despite their improvements in final academic writing performance.

Keywords: corpus linguistics, data-driven learning, EAP, tertiary education in China

Procedia PDF Downloads 33
2957 Xanthotoxin: A Plant Derived Furanocoumarin with Antipathogenic and Cytotoxic Activities

Authors: Seyed Mehdi Razavi Khosroshahi

Abstract:

In recent years a great deal of efforts has been made to find natural derivative compounds to replace it's with synthetic drugs, herbicides or pesticides for management of human health and agroecosystem programs. This process can lead to a reduction in environmental harmful effects of synthetic chemicals. Xanthotoxin, as a furanocoumarin compound, found in some genera of the Apiaceae family of plants. The current work focuses on some xanthotoxin cytotoxicity and antipathogenic activities. The results indicated that xanthotoxin showed strong cytotoxic effects against LNCaP cell line with the IC₅₀ value of 0.207 mg/ml in a dose-dependent manner. After treatments of the cell line with 0.1 mg/ml of the compound, the viability of the cells was reached to zero. The current study revealed that xanthotoxin displayed strong antifungal activity against human or plant pathogen fungi, Aspergillus fumigatus, Aspegillusn flavus and Fusarum graminearum with minimum inhibitory concentration values of 52-68 µg/ml. The compound exhibited antibacterial effects on some Erwinia and Xanthomonas species of bacteria, as well

Keywords: Xanthomonas, cytotoxic, antipathogen, LNCaP, Aspergillus fumigatus, spegillusn flavus

Procedia PDF Downloads 128
2956 Enhanced Modification Effect of CeO2 on Pt-Pd Binary Catalysts for Formic Acid Oxidation

Authors: Azeem Ur Rehman, Asma Tayyaba

Abstract:

This article deals with the promotional effects of CeO2 on PtPd/CeO2-OMC electro catalysts. The synthesized catalysts are characterized using different physico chemical techniques and evaluated in a formic acid oxidation fuel cell. N2 adsorption/desorption analysis shows that CeO2 modification increases the surface area of OMC from 1005 m2/g to 1119 m2/g. SEM, XRD and TEM analysis reveal that the presence of CeO2 enhances the active metal(s) dispersion on the CeO2-OMC surface. The average particle size of the dispersed metal decreases with the increase of Pt/Pd ratio on CeO2-OMC support. Cyclic voltametry measurement of Pd/CeO2-OMC gives 12 % higher anodic current activity with 83 mV negative shift of the peak potential as compared to unmodified Pd/OMC. In bimetallic catalysts, the addition of Pt improves the activity and stability of the catalysts significantly. Among the bimetallic samples, Pd3Pt1/CeO2-OMC displays superior current density (74.6 mA/cm2), which is 28.3 times higher than that of Pt/CeO2-OMC. It also shows higher stability in extended period of runs with least indication of CO poisoning effects.

Keywords: CeO2, ordered mesoporous carbon (OMC), electro catalyst, formic acid fuel cell

Procedia PDF Downloads 475
2955 Ultra Reliable Communication: Availability Analysis in 5G Cellular Networks

Authors: Yosra Benchaabene, Noureddine Boujnah, Faouzi Zarai

Abstract:

To meet the growing demand of users, the fifth generation (5G) will continue to provide services to higher data rates with higher carrier frequencies and wider bandwidths. As part of the 5G communication paradigm, Ultra Reliable Communication (URC) is envisaged as an important technology pillar for providing anywhere and anytime services to end users. Ultra Reliable Communication (URC) is considered an important technology that why it has become an active research topic. In this work, we analyze the availability of a service in the space domain. We characterize spatially available areas consisting of all locations that meet a performance requirement with confidence, and we define cell availability and system availability, individual user availability, and user-oriented system availability. Poisson point process (PPP) and Voronoi tessellation are adopted to model the spatial characteristics of a cell deployment in heterogeneous networks. Numerical results are presented, also highlighting the effect of different system parameters on the achievable link availability.

Keywords: URC, dependability and availability, space domain analysis, Poisson point process, Voronoi Tessellation

Procedia PDF Downloads 104
2954 Fabrication of Ligand Coated Lipid-Based Nanoparticles for Synergistic Treatment of Autoimmune Disease

Authors: Asiya Mahtab, Sushama Talegaonkar

Abstract:

The research is aimed at developing targeted lipid-based nanocarrier systems of chondroitin sulfate (CS) to deliver an antirheumatic drug to the inflammatory site in arthritic paw. Lipid-based nanoparticle (TEF-lipo) was prepared by using a thin-film hydration method. The coating of prepared drug-loaded nanoparticles was done by the ionic interaction mechanism. TEF-lipo and CS-coated lipid nanoparticle (CS-lipo) were characterized for mean droplet size, zeta potential, and surface morphology. TEF-lipo and CS-lipo were further subjected to in vitro cell line studies on RAW 264.7 murine macrophage, U937, and MG 63 cell lines. The pharmacodynamic study was performed to establish the effectiveness of the prepared lipid-based conventional and targeted nanoparticles in comparison to pure drugs. Droplet size and zeta potential of TEF-lipo were found to be 128. 92 ± 5.42 nm and +12.6 ± 1.2 mV. It was observed that after the coating of TEF-lipo with CS, particle size increased to 155.6± 2.12 nm and zeta potential changed to -10.2± 1.4mV. Transmission electron microscopic analysis revealed that the nanovesicles were uniformly dispersed and detached from each other. Formulations followed sustained release pattern up to 24 h. Results of cell line studies ind icated that CS-lipo formulation showed the highest cytotoxic potential, thereby proving its enhanced ability to kill the RAW 264.7 murine macrophage and U937 cells when compared with other formulations. It is clear from our in vivo pharmacodynamic results that targeted nanocarriers had a higher inhibitory effect on arthritis progression than nontargeted nanocarriers or free drugs. Results demonstrate that this approach will provide effective treatment for rheumatoid arthritis, and CS served as a potential prophylactic against the advancement of cartilage degeneration.

Keywords: adjuvant induced arthritis, chondroitin sulfate, rheumatoid arthritis, teriflunomide

Procedia PDF Downloads 117
2953 Partially Fluorinated Electrolyte for Lithium-Ion Batteries

Authors: Gebregziabher Brhane Berhe, Bing Joe Hwange, Wei-Nien Su

Abstract:

For a high-voltage cell, severe capacity fading is usually observed when the commercially carbonate-based electrolyte is employed due to the oxidative decomposition of solvents. To mitigate this capacity fading, an advanced electrolyte of fluoroethylene carbonate, ethyl methyl carbonate (EMC), and 1,1,2,2-Tetrafluoroetyle-2,2,3,3-tetrafluoropropyl ether (TTE) (in vol. ratio of 3:2:5) is dissolved with oxidative stability. A high-voltage lithium-ion battery was designed by coupling sulfured carbon anode from polyacrylonitrile (S-C(PAN)) and LiN0.5Mn1.5 O4 (LNMO) cathode. The discharged capacity of the cell made with modified electrolyte reaches 688 mAhg-1S a rate of 2 C, while only 19 mAhg-1S for the control electrolyte. The adopted electrolyte can effectively stabilize the sulfurized carbon anode and LNMO cathode surfaces, as the X-ray photoelectron spectroscopy (XPS) results confirmed. The developed robust high-voltage lithium-ion battery enjoys wider oxidative stability, high rate capability, and good cyclic performance, which can be attributed to the partially fluorinated electrolyte formulations with balanced viscosity and conductivity.

Keywords: high voltage, LNMO, fluorinated electrolyte, lithium-ion batteries

Procedia PDF Downloads 40
2952 Static Balance in the Elderly: Comparison Between Elderly Performing Physical Activity and Fine Motor Coordination Activity

Authors: Andreia Guimaraes Farnese, Mateus Fernandes Reu Urban, Leandro Procopio, Renato Zangaro, Regiane Albertini

Abstract:

Senescence changes include postural balance, inferring the risk of falls, and can lead to fractures, bedridden, and the risk of death. Physical activity, e.g., cardiovascular exercises, is notable for improving balance due to brain cell stimulations, but fine coordination exercises also elevate cell brain metabolism. This study aimed to verify whether the elderly person who performs fine motor activity has a balance similar to that of those who practice physical activity. The subjects were divided into three groups according to the activity practice: control group (CG) with seven participants for the sedentary individuals, motor coordination group (MCG) with six participants, and activity practitioner group (PAG) with eight participants. Data comparisons were from the Berg balance scale, Time up and Go test, and stabilometric analysis. Descriptive statistical and ANOVA analyses were performed for data analysis. The results reveal that including fine motor activities can improve the balance of the elderly and indirectly decrease the risk of falls.

Keywords: balance, barapodometer, coordination, elderly

Procedia PDF Downloads 148
2951 Polymer Solar Cells Synthesized with Copper Oxide Nanoparticles

Authors: Nidal H. Abu-Zahra, Aruna P. Wanninayake

Abstract:

Copper Oxide (CuO) is a p-type semiconductor with a band gap energy of 1.5 eV, this is close to the ideal energy gap of 1.4 eV required for solar cells to allow good solar spectral absorption. The inherent electrical characteristics of CuO nano particles make them attractive candidates for improving the performance of polymer solar cells when incorporated into the active polymer layer. The UV-visible absorption spectra and external quantum efficiency of P3HT/PC70BM solar cells containing different weight percentages of CuO nano particles showed a clear enhancement in the photo absorption of the active layer, this increased the power conversion efficiency of the solar cells by 24% in comparison to the reference cell. The short circuit current of the reference cell was found to be 5.234 mA/cm2 and it seemed to increase to 6.484 mA/cm2 in cells containing 0.6 mg of CuO NPs; in addition the fill factor increased from 61.15% to 68.0%, showing an enhancement of 11.2%. These observations suggest that the optimum concentration of CuO nano particles was 0.6 mg in the active layer. These significant findings can be applied to design high-efficiency polymer solar cells containing inorganic nano particles.

Keywords: copper oxide nanoparticle, UV-visible spectroscopy, polymer solar cells, P3HT/PCBM

Procedia PDF Downloads 405
2950 DFT and SCAPS Analysis of an Efficient Lead-Free Inorganic CsSnI₃ Based Perovskite Solar Cell by Modification of Hole Transporting Layer

Authors: Seyedeh Mozhgan Seyed Talebi, Chih -Hao Lee

Abstract:

With an abrupt rise in the power conservation efficiency (PCE) of perovskite solar cells (PSCs) within a short span of time, the toxicity of lead was raised as a major hurdle in the path toward their commercialization. In the present research, a systematic investigation of the electrical and optical characteristics of the all-inorganic CsSnI₃ perovskite absorber layer was performed with the Vienna Ab Initio Simulation Package (VASP) using the projector-augmented wave method. The presence of inorganic halide perovskite offers the advantages of enhancing the degradation resistance of the device, reducing the cost of cells, and minimizing the recombination of generated carriers. The simulated standard device using a 1D simulator like solar cell capacitance simulator (SCAPS) version 3308 involves FTO/n-TiO₂/CsSnI₃ Perovskite absorber/Spiro OmeTAD HTL/Au contact layer. The variation in the device design key parameters such as the thickness and defect density of perovskite absorber, hole transport layer and electron transport layer and interfacial defects are examined with their impact on the photovoltaic characteristic parameters. The effect of an increase in operating temperature from 300 K to 400 K on the performance of CsSnI3-based perovskite devices is also investigated. The optimized standard device at room temperature shows the highest PCE of 25.18 % with FF of 75.71 %, Voc of 0.96 V, and Jsc of 34.67 mA/cm². The outcomes and interpretation of different inorganic Cu-based HTLs presence, such as CuSCN, Cu₂O, CuO, CuI, SrCu₂O₂, and CuSbS₂, here represent a critical avenue for the possibility of fabricating high PCE perovskite devices made of stable, low-cost, efficient, safe, and eco-friendly all-inorganic materials like CsSnI₃ perovskite light absorber.

Keywords: CsSnI₃, hole transporting layer (HTL), lead-free perovskite solar cell, SCAPS-1D software

Procedia PDF Downloads 65
2949 Non-Cytotoxic Natural Sourced Inorganic Hydroxyapatite (HAp) Scaffold Facilitate Bone-like Mechanical Support and Cell Proliferation

Authors: Sudip Mondal, Biswanath Mondal, Sudit S. Mukhopadhyay, Apurba Dey

Abstract:

Bioactive materials improve devices for a long lifespan but have mechanical limitations. Mechanical characterization is one of the very important characteristics to evaluate the life span and functionality of the scaffold material. After implantation of scaffold material the primary stage rejection of scaffold occurs due to non biocompatible effect of host body system. The second major problems occur due to the effect of mechanical failure. The mechanical and biocompatibility failure of the scaffold materials can be overcome by the prior evaluation of the scaffold materials. In this study chemically treated Labeo rohita scale is used for synthesizing hydroxyapatite (HAp) biomaterial. Thermo-gravimetric and differential thermal analysis (TG-DTA) is carried out to ensure thermal stability. The chemical composition and bond structures of wet ball-milled calcined HAp powder is characterized by Fourier Transform Infrared spectroscopy (FTIR), X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX) analysis. Fish scale derived apatite materials consists of nano-sized particles with Ca/P ratio of 1.71. The biocompatibility through cytotoxicity evaluation and MTT assay are carried out in MG63 osteoblast cell lines. In the cell attachment study, the cells are tightly attached with HAp scaffolds developed in the laboratory. The result clearly suggests that HAp material synthesized in this study do not have any cytotoxic effect, as well as it has a natural binding affinity for mammalian cell lines. The synthesized HAp powder further successfully used to develop porous scaffold material with suitable mechanical property of ~0.8GPa compressive stress, ~1.10 GPa a hardness and ~ 30-35% porosity which is acceptable for implantation in trauma region for animal model. The histological analysis also supports the bio-affinity of processed HAp biomaterials in Wistar rat model for investigating the contact reaction and stability at the artificial or natural prosthesis interface for biomedical function. This study suggests the natural sourced fish scale-derived HAp material could be used as a suitable alternative biomaterial for tissue engineering application in near future.

Keywords: biomaterials, hydroxyapatite, scaffold, mechanical property, tissue engineering

Procedia PDF Downloads 443
2948 Rejuvenation of Premature Ovarian Failure with Stem Cells/IVA Technique

Authors: Elham Vojoudi, Marzieh Mehrafza, Ahmad Hosseini, Azadeh Raofi, Maryam Najafi

Abstract:

Premature ovarian failure (POF) has become one of the main causes of infertility in women of childbearing age and the incidence of this disorder is increasing year by year. In these patients, poor ovarian response (POR) to gonadotropins reflects a diminished ovarian reserve (DOR) that gives place to few follicles despite aggressive stimulation. Up to now, egg donation is the only way to resolve infertility problems in POF patients. Therefore, some novel aspects such as activating (Akt signaling pathway) and inhibiting (Hippo-signaling) elements have been identified as IVA procedure that promotes primordial follicle activation. In this study, we used the newly developed technique (combination of in vitro activation of dormant follicles (IVA) and stem cell therapy) to promote ovarian follicle growth much more efficiently than the natural, in vivo process for women with POF. Transplantation of Warton Jelly-MSCs to the ovaries of POF patients rescued overall ovarian function. Participants (10 patients) were followed up monthly for a period of six months by hormonal (AMH, FSH, LH and E2), clinical (resuming menstruation), and US (folliculometry) outcomes after a laparoscopic operation. In summary, IVA/WJ-MSC transplantation may provide an effective treatment for POF.

Keywords: POF, in vitro activation, stem cell therapy, infertility

Procedia PDF Downloads 118
2947 Cytotoxic Metabolites from Tagetes minuta L. Growing in Saudi Arabia

Authors: Ali A. A. Alqarni, Gamal A. Mohamed, Hossam M. Abdallah, Sabrin R. M. Ibrahim

Abstract:

Phytochemical investigation of the methanolic extract of aerial parts of Tagetes minuta L. (Family: Asteraceae) using different chromatographic techniques led to the isolation of five compounds; ecliptal (1), scopoletin (2), P-hydroxy benzoic acid (3), patuletin (4), and patuletin-7-O-β-D-glucopyranoside (5) (Figure 1). Their structures were established based on physical, chemical, and spectral data [Ultraviolet (UV), Proton ¹H, Carbon thirteen ¹³C, and Heteronuclear Multiple Bond Correlation (HMBC) NMR], as well as Electrospray Ionization Mass Spectroscopy (ESIMS) and comparison with literature data. Their cytotoxic activity was assessed towards human liver hepatocellular carcinoma (HepG2), human breast cancer (MCF-7), and human colon cancer (HCT116) cancer cell lines using sulphorhodamine B (SRB) assay. It is noteworthy that compound 1 demonstrated a significant cytotoxic potential towards HepG2, MCF7, and HCT116 cells with IC₅₀s ranging from 2.74 to 7.01 μM, compared to doxorubicin (IC₅₀ 0.18, 0.60, and 0.20 μM, respectively), whereas compounds 2, 4, and 5 showed moderate cytotoxic potential with IC50s ranging from 11.71 to 35.64 μM. However, 3 was inactive up to a concentration of 100 μM towards the three tested cancer cell lines.

Keywords: Asteraceae, cytotoxicity, metabolites, Tagetes minuta

Procedia PDF Downloads 150
2946 The Development of Solar Cells to Maximize the Utilization of Solar Energy in Al-Baha Area

Authors: Mohammed Ahmed Alghamdi, Hazem Mahmoud Ali Darwish, Mostafa Mohamed Abdelraheem

Abstract:

Transparent conducting oxides (TCOs) possess low resistivity, exhibit good adherence to many substrates, and have good transmission characteristics from the visible to near-infrared wavelengths, which make it useful for various applications. Thin films of transparent conducting oxide (TCO’s) have received much attention because of their wide applications in the field of optoelectronic devices. Advancement of transparent conducting oxides TCO’s may not only lie within the improvement of existing materials in use, but also the development of novel materials. Solar cells are devices, which convert solar energy into electricity, either directly via the photovoltaic effect, or indirectly by first converting the solar energy to heat or chemical energy. Solar power has attracted attention of late as the most advanced of the alternative energy resources. The project aims to access the solar energy in Al-Baha region by search for materials (transparent-conductive oxides (TCO's)) to use in solar cells with highly transparent to the solar spectrum, have low electrical resistivity, be stable under H-plasma, and have a suitable structure in particular for a-Si solar cells. As the PV surface is exposed to the sunlight, the module temperature increases. High ambient temperatures along with long sunlight exposure time increases the temperature impact on PV cells efficiency. Since Al-Baha area is characterized by an atmosphere and pressure different from their counterparts in Saudi Arabia due to the height above sea level, hence it is appropriate to do studies to improve the efficiency of solar cells under these conditions. In this work, some ion change materials will be deposited using either sputtering/ or electron beam evaporation techniques. The optical properties of the synthesized materials will be studied in details for solar cell application. As we will study the effect of some dyes on the optical properties of the prepared films. The efficiency and other parameters of solar cell will be determined.

Keywords: thin films, solar cell, optical properties, electrical properties

Procedia PDF Downloads 449