Search results for: water based paints
32980 Water Management of Polish Agriculture and Adaptation to Climate Change
Authors: Dorota M. Michalak
Abstract:
The agricultural sector, due to the growing demand for food and over-exploitation of the natural environment, contributes to the deepening of climate change, on the one hand, and on the other hand, shrinking freshwater resources, as a negative effect of climate change, threaten the food security of each country. Therefore, adaptation measures to climate change should take into account effective water management and seek solutions ensuring food production at an unchanged or higher level, while not burdening the environment and not contributing to the worsening of the negative consequences of climate change. The problems of Poland's water management result not only from relatively small, natural water resources but to a large extent on the low efficiency of their use. Appropriate agricultural practices and state solutions in this field can contribute to achieving significant benefits in terms of economical water management in agriculture, providing a greater amount of water that could also be used for other purposes, including for purposes related to environmental protection. The aim of the article is to determine the level of use of water resources in Polish agriculture and the advancement of measures aimed at adapting Polish agriculture in the field of water management to climate change. The study provides knowledge about Polish legal regulations and water management tools, the shaping of water policy of Polish agriculture against the background of EU countries and other sources of energy, and measures supporting Polish agricultural holdings in the effective management of water resources run by state budget institutions. In order to achieve the above-mentioned goals, the author used research tools such as the analysis of existing sources and a survey conducted among five groups of entities, i.e. agricultural advisory centers and departments, agricultural, rural and environmental protection departments, regional water management boards, provincial agricultural chambers and restructuring and modernization of agriculture. The main conclusion of the analyses carried out is the low use of water in Polish agriculture in relation to other EU countries, other sources of intake in Poland, as well as irrigation. The analysis allows us to observe another problem, which is the lack of reporting and data collection, which is extremely important from the point of view of the effectiveness of adaptation measures to climate change. The results obtained from the survey indicate a very low level of support for government institutions in the implementation of adaptation measures to climate change and the water management of Polish farms. Some of the basic problems of the adaptation policy to change climate with regard to water management in Polish agriculture include a lack of knowledge regarding climate change, the possibilities of adapting, the available tools or ways to rationalize the use of water resources. It also refers to the lack of ordering procedures and the separation of responsibility with a proper territorial unit, non-functioning channels of information flow and practically low effects.Keywords: water management, adaptation policy, agriculture, climate change
Procedia PDF Downloads 14232979 Evaluation of Groundwater Quality and Its Suitability for Drinking and Agricultural Purposes Using Self-Organizing Maps
Authors: L. Belkhiri, L. Mouni, A. Tiri, T.S. Narany
Abstract:
In the present study, the self-organizing map (SOM) clustering technique was applied to identify homogeneous clusters of hydrochemical parameters in El Milia plain, Algeria, to assess the quality of groundwater for potable and agricultural purposes. The visualization of SOM-analysis indicated that 35 groundwater samples collected in the study area were classified into three clusters, which showed progressive increase in electrical conductivity from cluster one to cluster three. Samples belonging to cluster one are mostly located in the recharge zone showing hard fresh water type, however, water type gradually changed to hard-brackish type in the discharge zone, including clusters two and three. Ionic ratio studies indicated the role of carbonate rock dissolution in increases on groundwater hardness, especially in cluster one. However, evaporation and evapotranspiration are the main processes increasing salinity in cluster two and three.Keywords: groundwater quality, self-organizing maps, drinking water, irrigation water
Procedia PDF Downloads 25632978 Moisture Absorption Analysis of LLDPE-NR Nanocomposite for HV Insulation
Authors: M. S. Kamarulzaman, N. A. Muhamad, N. A. M. Jamail, M. A. M. Piah, N. F. Kasri
Abstract:
Insulation for high voltage application that has been service for a very long time is subjected to several types of degradation. The degradation can lead to premature breakdown and definitely will spent highly cost to replace the cable. Thus, there are many research on nano composite material get serious attention attention due to their abilities to enhance electrical performance by addition of nano filler. In this paper, water absorption of Low Linear Density Polyethyelene (LLDPE) with different amount of nano filler added is studied. This study is necessary to be conducted since most of electrical apparatus such as cable insulation are dominant used especially in high voltage application. The cable insulation are continuously exposed in uncontrolled environment may suffer degradation process. Three type of nano fillers, was used in this study are: Silicon dioxide (SiO2), Titanium dioxide (TiO2) and Monmorillonite (MMT). The percentage absorption of water was measured by weighted using high precision scales for absorption process up to 92 days. Experimental result demonstrate that SiO2 absorb less water than other filler while, the MMT has hydrophilic properties which it absorbs more water compare to another sample.Keywords: nano composite, nano filler, water absorption, hydrophilic properties
Procedia PDF Downloads 35632977 Chitin Nanocrystals as Sustainable Surfactant Alternative for Enhancing Oil-in-Water Emulsions Stability in Oil and Gas Fields
Authors: A. Altomi, A. Alhebshi, M. Rasm, B. Osman
Abstract:
This study explored the application of chitin nanocrystals (ChiNCs), derived from a renewable and environmentally friendly material, as stabilizers for oil-in-water (O/W) emulsions. O/W emulsions are commonly used in various applications but are prone to instability and degradation over time. Instability can occur due to factors such as flocculation, coalescence, and gravitational separation, including creaming and sedimentation, either independently or simultaneously. To produce ChiNCs, chitin powder underwent acid hydrolysis. Transmission electron microscopy (TEM) analysis revealed that ChiNCs exhibited a needle-like morphology, with lengths ranging from 200 to 800 nm and widths ranging from 20 to 80 nm. The surface charge of ChiNCs was negative at pH values above 7 and positive at pH values below 7. The rheological properties of O/W emulsions stabilized by ChiNCs were compared to those stabilized by synthetic surfactants, namely Tween 80 and CTAB. The emulsions stabilized by ChiNCs demonstrated higher yield stress and lower shear viscosity compared to those stabilized by synthetic surfactants. This indicates that ChiNC-stabilized emulsions are more stable and less prone to breakdown. Based on these findings, ChiNCs show promise as an alternative to synthetic surfactants for stabilizing O/W emulsions.Keywords: chitin nanocrystals, colloidal pickering, emulsion rheology, oil-in-water, synthetic surfactant
Procedia PDF Downloads 6232976 Gas Separation by Water-Swollen Membrane
Authors: Lenka Morávková, Zuzana Sedláková, Jiří Vejražka, Věra Jandová, Pavel Izák
Abstract:
The need to minimize the costs of biogas upgrading leads to a continuous search for new and more effective membrane materials. The improvement of biogas combustion efficiency is connected with polar gases removal from a feed stream. One of the possibilities is the use of water–swollen polyamide layer of thin film composite reverse osmosis membrane for simultaneous carbon dioxide and hydrogen sulphide removal. Transport properties and basic characteristics of a thin film composite membrane were compared in the term of appropriate water-swollen membrane choice for biogas upgrading. SEM analysis showed that the surface of the best performing composites changed significantly upon swelling by water. The surface changes were found to be a proof that the selective skin polyamide layer was swollen well. Further, the presence of a sufficient number of associative centers, namely amido groups, inside the upper layer of the hydrophilic thin composite membrane can play an important role in the polar gas separation from a non-polar gas. The next key factor is a high porosity of the membrane support.Keywords: biogas upgrading, carbon dioxide separation, hydrogen sulphide separation, water-swollen membrane
Procedia PDF Downloads 34232975 Assessment of the Contribution of Geographic Information System Technology in Non Revenue Water: Case Study Dar Es Salaam Water and Sewerage Authority Kawe - Mzimuni Street
Authors: Victor Pesco Kassa
Abstract:
This research deals with the assessment of the contribution of GIS Technology in NRW. This research was conducted at Dar, Kawe Mzimuni Street. The data collection was obtained from existing source which is DAWASA HQ. The interpretation of the data was processed by using ArcGIS software. The data collected from the existing source reveals a good coverage of DAWASA’s water network at Mzimuni Street. Most of residents are connected to the DAWASA’s customer service. Also the collected data revealed that by using GIS DAWASA’s customer Geodatabase has been improved. Through GIS we can prepare customer location map purposely for site surveying also this map will be able to show different type of customer that are connected to DAWASA’s water service. This is a perfect contribution of the GIS Technology to address and manage the problem of NRW in DAWASA. Finally, the study recommends that the same study should be conducted in other DAWASA’s zones such as Temeke, Boko and Bagamoyo not only at Kawe Mzimuni Street. Through this study it is observed that ArcGIS software can offer powerful tools for managing and processing information geographically and in water and sanitation authorities such as DAWASA.Keywords: DAWASA, NRW, Esri, EURA, ArcGIS
Procedia PDF Downloads 8332974 Lake Water Surface Variations and Its Influencing Factors in Tibetan Plateau in Recent 10 Years
Authors: Shanlong Lu, Jiming Jin, Xiaochun Wang
Abstract:
The Tibetan Plateau has the largest number of inland lakes with the highest elevation on the planet. These massive and large lakes are mostly in natural state and are less affected by human activities. Their shrinking or expansion can truly reflect regional climate and environmental changes and are sensitive indicators of global climate change. However, due to the sparsely populated nature of the plateau and the poor natural conditions, it is difficult to effectively obtain the change data of the lake, which has affected people's understanding of the temporal and spatial processes of lake water changes and their influencing factors. By using the MODIS (Moderate Resolution Imaging Spectroradiometer) MOD09Q1 surface reflectance images as basic data, this study produced the 8-day lake water surface data set of the Tibetan Plateau from 2000 to 2012 at 250 m spatial resolution, with a lake water surface extraction method of combined with lake water surface boundary buffer analyzing and lake by lake segmentation threshold determining. Then based on the dataset, the lake water surface variations and their influencing factors were analyzed, by using 4 typical natural geographical zones of Eastern Qinghai and Qilian, Southern Qinghai, Qiangtang, and Southern Tibet, and the watersheds of the top 10 lakes of Qinghai, Siling Co, Namco, Zhari NamCo, Tangra Yumco, Ngoring, UlanUla, Yamdrok Tso, Har and Gyaring as the analysis units. The accuracy analysis indicate that compared with water surface data of the 134 sample lakes extracted from the 30 m Landsat TM (Thematic Mapper ) images, the average overall accuracy of the lake water surface data set is 91.81% with average commission and omission error of 3.26% and 5.38%; the results also show strong linear (R2=0.9991) correlation with the global MODIS water mask dataset with overall accuracy of 86.30%; and the lake area difference between the Second National Lake Survey and this study is only 4.74%, respectively. This study provides reliable dataset for the lake change research of the plateau in the recent decade. The change trends and influencing factors analysis indicate that the total water surface area of lakes in the plateau showed overall increases, but only lakes with areas larger than 10 km2 had statistically significant increases. Furthermore, lakes with area larger than 100 km2 experienced an abrupt change in 2005. In addition, the annual average precipitation of Southern Tibet and Southern Qinghai experienced significant increasing and decreasing trends, and corresponding abrupt changes in 2004 and 2006, respectively. The annual average temperature of Southern Tibet and Qiangtang showed a significant increasing trend with an abrupt change in 2004. The major reason for the lake water surface variation in Eastern Qinghai and Qilian, Southern Qinghai and Southern Tibet is the changes of precipitation, and that for Qiangtang is the temperature variations.Keywords: lake water surface variation, MODIS MOD09Q1, remote sensing, Tibetan Plateau
Procedia PDF Downloads 23132973 In-situ Monitoring of Residual Stress Behavior-Temperature Profiles in Transparent Polyimide/Tetrapod Zinc Oxide Whisker Composites
Authors: Ki-Ho Nam, Haksoo Han
Abstract:
Tetrapod zinc oxide whiskers (TZnO-Ws) were successfully synthesized by a thermal oxidation method. A series of transparent polyimide (PI)/TZnO-W composites were successfully synthesized via a solution-blending method. The structural and morphological features of TZnO-Ws and PI/TZnO-W composites were characterized by Fourier transform infrared spectroscopy (FT-IR), wide-angle X-Ray diffraction (WAXD), and field emission scanning electron microscope (FE-SEM). Dynamic stress behaviors were investigated in-situ during thermal imidization of the soft-baked PI/TZnO-W composite precursor and thermally cured composite films using a thin film stress analyzer (TFSA) by wafer bending technique. The PI/TZnO-W composite films exhibited an optical transparency greater than 80% at 550 nm (≤ 0.5 wt% TZnO-W content), a low coefficient of thermal expansion (CTE), and enhanced glass transition temperature. However, the thermal decomposition temperature decreased as the TZnO-W content increased. The water diffusion coefficient and water uptake of the PI/TZNO-W composite films were obtained by best fits to a Fickian diffusion model. The water resistance capacity of PI was greatly enhanced and moisture diffusion in the pure PI was retarded by incorporating the TZnO-W. The PI composite films based on TZNO-W resultantly may have potential applications in optoelectronic manufacturing processes as a flexible transparent substrate.Keywords: polyimide (PI), tetrapod ZnO whisker (TZnO-W), transparent, dynamic stress behavior, water resistance
Procedia PDF Downloads 52532972 Water Gas Shift Activity of PtBi/CeO₂ Catalysts for Hydrogen Production
Authors: N. Laosiripojana, P. Tepamatr
Abstract:
The influence of bismuth on the water gas shift activities of Pt on ceria was studied. The flow reactor was used to study the activity of the catalysts in temperature range 100-400°C. The feed gas composition contains 5%CO, 10% H₂O and balance N₂. The total flow rate was 100 mL/min. The outlet gas was analyzed by on-line gas chromatography with thermal conductivity detector. The catalytic activities of bimetallic 1%Pt1%Bi/CeO₂ catalyst were greatly enhanced when compared with the activities of monometallic 2%Pt/CeO₂ catalyst. The catalysts were characterized by X-ray diffraction (XRD), Temperature-Programmed Reduction (TPR) and surface area analysis. X-ray diffraction pattern of Pt/CeO₂ and PtBi/CeO₂ indicated slightly shift of diffraction angle when compared with pure ceria. This result was due to strong metal-support interaction between platinum and ceria solid solution, causing conversion of Ce⁴⁺ to larger Ce³⁺. The distortions inside ceria lattice structure generated strain into the oxide lattice and facilitated the formation of oxygen vacancies which help to increase water gas shift performance. The H₂-Temperature Programmed Reduction indicated that the reduction peak of surface oxygen of 1%Pt1%Bi/CeO₂ shifts to lower temperature than that of 2%Pt/CeO₂ causing the enhancement of the water gas shift activity of this catalyst. Pt played an important role in catalyzing the surface reduction of ceria and addition of Bi alter the reduction temperature of surface ceria resulting in the improvement of the water gas shift activity of Pt catalyst.Keywords: bismuth, platinum, water gas shift, ceria
Procedia PDF Downloads 34832971 Molluscicidal Effect of Cassia occidentalis and Physalis angulata Leaf Extract in the Elimination of Water Snail
Authors: Haruna Karamba, Nafisa Muhammad Danyaro
Abstract:
The study describe the action of natural latex (extract) of two sub-aquatic macrophytes plants i.e., Cassia occidentalis and Physalis angulata which were tested against two water snail species; Bulinus globusus and Lymnaea natalensis, the intermediate host of Bilharziasis (chistosomiasis) in the tropical countries. Bilherziasis is a disease prevalent and endermic to tropical Africa, seriously undermining health status of Nigerian youth. The easiest way to eradicate the disease is to eliminate the secondary host of the pathogen, chistosoma species. Therefore we carried out a research to investigate the molluscicidal effect of the leaf extract of C. occidentalis and P. angulata on mortality rate of B. globusus and L. natalensis water snails using pond water in the laboratory of science laboratory department of Kano State Polytechnic, Nigeria. One hundred and fifty juveniles’ snails were collected from Jakara Dam in the Northeastern part of Kano, Nigeria. The snails were put inside a plastic container and transported immediately to the laboratory where they were transferred into reservoir tank containing pond water and kept for 48 hours to get acclimatized with laboratory environment. Twelve water bathes 2/3 filled with pond water were prepared and kept in the laboratory. Leaf extract of the plants were obtained by blending and homogenizing the leaf tissue from which the extract were obtained and prepared in 10, 20, 30, 40 and 50 ppm, in addition to 0 ppm, which served as control. Ten snails were placed in each of the twelve water bathes. Six water bathes for the species of C. accidentalis extract and other six for P. angulata. The treatment combinations were maintained for 2 days after which the number of living snails present in each water bathes were counted and subsequently at 2 days intervals. The result indicated that extracts from both plants were lethal to the snails as concentration of the extract increases particularly mortality rate was highest at 40 and 50 ppm. Conclusively the toxicity of the extracts from these plants proven lethal to snails and hence can be used as molluscicides for cheap and easy method of eliminating water snails and therefore reducing the incidence of Bilharziasis.Keywords: schistosomiasis, bilharziasis, Bulinus globusus, Lymnea natalensis, Physalis angulata, Cassia occidentalis, Kano
Procedia PDF Downloads 35632970 PDDA: Priority-Based, Dynamic Data Aggregation Approach for Sensor-Based Big Data Framework
Authors: Lutful Karim, Mohammed S. Al-kahtani
Abstract:
Sensors are being used in various applications such as agriculture, health monitoring, air and water pollution monitoring, traffic monitoring and control and hence, play the vital role in the growth of big data. However, sensors collect redundant data. Thus, aggregating and filtering sensors data are significantly important to design an efficient big data framework. Current researches do not focus on aggregating and filtering data at multiple layers of sensor-based big data framework. Thus, this paper introduces (i) three layers data aggregation and framework for big data and (ii) a priority-based, dynamic data aggregation scheme (PDDA) for the lowest layer at sensors. Simulation results show that the PDDA outperforms existing tree and cluster-based data aggregation scheme in terms of overall network energy consumptions and end-to-end data transmission delay.Keywords: big data, clustering, tree topology, data aggregation, sensor networks
Procedia PDF Downloads 34632969 Hybrid Solutions in Physicochemical Processes for the Removal of Turbidity in Andean Reservoirs
Authors: María Cárdenas Gaudry, Gonzalo Ramces Fano Miranda
Abstract:
Sediment removal is very important in the purification of water, not only for reasons of visual perception but also because of its association with odor and taste problems. The Cuchoquesera reservoir, which is in the Andean region of Ayacucho (Peru) at an altitude of 3,740 meters above sea level, visually presents suspended particles and organic impurities indicating that it contains water of dubious quality to deduce that it is suitable for direct consumption of human beings. In order to quantitatively know the degree of impurities, water quality monitoring was carried out from February to August 2018, in which four sampling stations were established in the reservoir. The selected measured parameters were electrical conductivity, total dissolved solids, pH, color, turbidity, and sludge volume. The indicators of the studied parameters exceed the permissible limits except for electrical conductivity (190 μS/cm) and total dissolved solids (255 mg/L). In this investigation, the best combination and the optimal doses of reagents were determined that allowed the removal of sediments from the waters of the Cuchoquesera reservoir, through the physicochemical process of coagulation-flocculation. In order to improve this process during the rainy season, six combinations of reagents were evaluated, made up of three coagulants (ferric chloride, ferrous sulfate, and aluminum sulfate) and two natural flocculants: prickly pear powder (Opuntia ficus-indica) and tara gum (Caesalpinia spinoza). For each combination of reagents, jar tests were developed following the central composite experimental design (CCED), where the design factors were the doses of coagulant and flocculant and the initial turbidity. The results of the jar tests were adjusted to mathematical models, obtaining that to treat the water from the Cuchoquesera reservoir, with a turbidity of 150 UTN and a color of 137 U Pt-Co, 27.9 mg/L of the coagulant aluminum sulfate with 3 mg/L of the natural tara gum flocculant to produce a purified water quality of 1.7 UTN of turbidity and 3.2 U Pt-Co of apparent color. The estimated cost of the dose of coagulant and flocculant found was 0.22 USD/m³. This is how “grey-green” technologies can be used as a combination in nature-based solutions in water treatment, in this case, to achieve potability, making it more sustainable, especially economically, if green technology is available at the site of application of the nature-based hybrid solution. This research is a demonstration of the compatibility of natural coagulants/flocculants with other treatment technologies in the integrated/hybrid treatment process, such as the possibility of hybridizing natural coagulants with other types of coagulants.Keywords: prickly pear powder, tara gum, nature-based solutions, aluminum sulfate, jar test, turbidity, coagulation, flocculation
Procedia PDF Downloads 10832968 Groundwater Potential in the Central Part of Al Jabal Al Akhdar Area, Ne Libya
Authors: Maged El Osta, Milad Masoud
Abstract:
Al Jabal Al Akhdar in the north-eastern part of Libya represents a region with promising ecological underpinning for grazing and other agricultural developments. The groundwater potential of both Upper Cretaceous and Eocene aquifers was studied based the available literature and a complete database for about 112 water wells drilled in the period 2003-2009. In this research, the hydrogeological methods will be integrated with the Geographic Information System (GIS) that played a main role in highlighting the spatial characteristics of the groundwater system. The results indicate that the depth to water for the Upper Cretaceous aquifer ranges from 150 to 458 m, and the piezometric surface decreases from over 500 m (m.s.l) in the northern parts to -20 m (m.s.l) in southeastern part. Salinity ranges between 303 and 1329 mg/l indicating that groundwater belongs to the slightly fresh water class. In the Eocene aquifer, the depth to groundwater ranges from 120 to 290.5 m and the potentiometric level decreases gradually southwards from 220 to -51 m (m.s.l) and characterized by steep slope in the southeastern part of the study area, where the aquifer characterized by relatively high productivity (specific capacity ranges between 10.08 and 332.3 m2/day). The groundwater salinity within this aquifer ranges between 198 and 2800 mg/l (fresh to brackish water class). The annual average rainfall (from 280 to 500 mm) plays a significant role in the recharge of the two aquifers. The priority of groundwater quality and potentiality increases towards the central and northern portions of the concerned area.Keywords: Eocene and Upper Cretaceous aquifers, rainfall, potentiality, Geographic Information System (GIS)
Procedia PDF Downloads 22332967 Groundwater Quality in the Rhiss-Nekor Plain, Morocco: Impacts of Human Activities
Authors: Ali Ait Boughrous, Said Benyoussef, Hossain El Ouarghi, Moulay Abdelazize Aboulhassan, Samah Aitbnichou, Said Benguamra
Abstract:
The Rhiss-Nekor aquifer represents a primary water source for the central Rif region. Many operating structures were built for irrigation and drinking water supply. Because of the vulnerability of this aquifer, a thorough knowledge of the environment is needed to evaluate and protect resources. This work aims at the quality assessment of the water table of the plain Ghiss-Nekor and determination of pollution sources in order to establish a map of the web. The plain-Rhiss Nekor, with an area of 100 km2, is located on the Mediterranean coast of Morocco. It has a particular geological structure resulting from the opening of a graben at the end of the Tertiary, which is filled by the accumulation of hundreds of meters of sediment, generating considerable heterogeneity in deposits. This heterogeneity gives various hydrodynamic properties within the aquifer of the plain. The analysis of the water quality of twenty water points, well distributed over the plain, showed high natural salinity linked to the geological nature of the area. This salinity increases in the littoral area by the seawater intrusion phenomenon. This is accentuated by overexploitation of the ground water due to the growing demand. Some wells, located inland, are characterized by organic pollution caused by wastewater seepage from septic tanks and lost wells widespread in the region.Keywords: anthropogenic factors, groundwater quality, marine intrusion, Rhiss-Nekor aquifer
Procedia PDF Downloads 14132966 Characterization of Brewery Wastewater Composition
Authors: Abimbola M. Enitan, Josiah Adeyemo, Sheena Kumari, Feroz M. Swalaha, Faizal Bux
Abstract:
With the competing demand on water resources and water reuse, discharge of industrial effluents into the aquatic environment has become an important issue. Much attention has been placed on the impact of industrial wastewater on water bodies worldwide due to the accumulation of organic and inorganic matter in the receiving water bodies. The scope of the present work is to assess the physic-chemical composition of the wastewater produced from one of the brewery industry in South Africa. This is to estimate the environmental impact of its discharge into the receiving water bodies or the municipal treatment plant. The parameters monitored for the quantitative analysis of brewery wastewater include biological oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids, volatile suspended solids, ammonia, total oxidized nitrogen, nitrate, nitrite, phosphorus, and alkalinity content. In average, the COD concentration of the brewery effluent was 5340.97 mg/l with average pH values of 4.0 to 6.7. The BOD and the solids content of the wastewater from the brewery industry were high. This means that the effluent is very rich in organic content and its discharge into the water bodies or the municipal treatment plant could cause environmental pollution or damage the treatment plant. In addition, there were variations in the wastewater composition throughout the monitoring period. This might be as a result of different activities that take place during the production process, as well as the effects of the peak period of beer production on the water usage.Keywords: Brewery wastewater, environmental pollution, industrial effluents, physic-chemical composition
Procedia PDF Downloads 45332965 Contamination of the Groundwater by the Flow of the Discharge in Khouribga City (Morocco) and the Danger It Presents to the Health of the Surrounding Population.
Authors: Najih Amina
Abstract:
Our study focuses on monitoring the spatial evolution of a number of physico-chemical parameters of wells waters located at different distances from the discharge of the city of Khouribga (S0 upstream station, S1, S2 et S3 are respectively located at 5.5, 7.5, 11 Km away from solid waste discharge of the city). The absence of a source of drinking water in this region involves the population to feeding on its groundwater wells. Through the results, we note that most of the analyzed parameters exceed the potable water standards from S1. At this source of water, we find that the conductivity (1290 μmScm-1; Standard 1000 μmScm-1), Total Hardness TH (67.2°F/ Standard 50° F), Ca2 + (146 mg l-1 standard 60 mg l-1), Cl- (369 mg l-1 standard 150 mg l-1), NaCl (609 mgl-1), Methyl orange alakanity “M. alk” (280 mg l-1) greatly exceed the drinking water standards. By following these parameters, it is obvious that some values have decreased in the downstream stations, while others become important. We find that the conductivity is always higher than 950 μmScm-1; the TH registers 72°F in S3; Ca 2+ is in the range of 153 mg l-1 in S3, Cl- and NaCl- reached 426 mg l-1 and 702 mg l-1 respectively in S2, M alk becomes higher and reaches 430 to 350 in S3. At the wells S2, we found that the nitrites are well beyond the standard 1.05 mg l-1. Whereas, at the control station S0, the values are lower or at the limit of drinking water standards: conductivity (452 μmScm-1), TH (34 F°), Ca2+ (68 mg l-1), Cl- (157 mg l-1), NaCl- (258 mg l-1), M alk (220 mg l-1). Thus, the diagnosis reveals the presence of a high pollution caused by the leachates of the household waste discharge and by the effluents of the sewage waste water plant (SWWP). The phenomenon of the water hardness could, also, be generated by the processes of erosion, leaching and soil infiltration in the region (phosphate layers, intercalated layers of marl and limestone), phenomenons also caused by the acidity due to this surrounding pollution. The source S1 is the nearest surrounding site of the discharge and the most affected by the phenomenon of pollution, especially, it is near to a superficial water source S’1 polluted by the effluents coming from the sewage waste water plant of the city. In the light of these data, we can deduce that the consumption of this water from S1 does not conform the standards of drinking waters, and could affect the human health.Keywords: physico-chemical parameters, ground water wells, infiltration, leaching, pollution, leachate discharge effluent SWWP, human health.
Procedia PDF Downloads 40732964 Bimetallic MOFs Based Membrane for the Removal of Heavy Metal Ions from the Industrial Wastewater
Authors: Muhammad Umar Mushtaq, Muhammad Bilal Khan Niazi, Nouman Ahmad, Dooa Arif
Abstract:
Apart from organic dyes, heavy metals such as Pb, Ni, Cr, and Cu are present in textile effluent and pose a threat to humans and the environment. Many studies on removing heavy metallic ions from textile wastewater have been conducted in recent decades using metal-organic frameworks (MOFs). In this study new polyether sulfone ultrafiltration membrane, modified with Cu/Co and Cu/Zn-based bimetal-organic frameworks (MOFs), was produced. Phase inversion was used to produce the membrane, and atomic force microscopy (AFM), scanning electron microscopy (SEM) were used to characterize it. The bimetallic MOFs-based membrane structure is complex and can be comprehended using characterization techniques. The bimetallic MOF-based filtration membranes are designed to selectively adsorb specific contaminants while allowing the passage of water molecules, improving the ultrafiltration efficiency. MOFs' adsorption capacity and selectivity are enhanced by functionalizing them with particular chemical groups or incorporating them into composite membranes with other materials, such as polymers. The morphology and performance of the bimetallic MOF-based membrane were investigated regarding pure water flux and metal ion rejection. The advantages of developed bimetallic MOFs based membranes for wastewater treatment include enhanced adsorption capacity because of the presence of two metals in their structure, which provides additional binding sites for contaminants, leading to a higher adsorption capacity and more efficient removal of pollutants from wastewater. Based on the experimental findings, bimetallic MOF-based membranes are more capable of rejecting metal ions from industrial wastewater than conventional membranes that have already been developed. Furthermore, the difficulties associated with operational parameters, including pressure gradients and velocity profiles, are simulated using Ansys Fluent software. The simulation results obtained for the operating parameters are in complete agreement with the experimental results.Keywords: bimetallic MOFs, heavy metal ions, industrial wastewater treatment, ultrafiltration.
Procedia PDF Downloads 9032963 Electrochemical Inactivation of Toxic Cyanobacteria and Degradation of Cyanotoxins
Authors: Belal Bakheet, John Beardall, Xiwang Zhang, David McCarthy
Abstract:
The potential risks associated with toxic cyanobacteria have raised growing environmental and public health concerns leading to an increasing effort into researching ways to bring about their removal from water, together with destruction of their associated cyanotoxins. A variety of toxins are synthesized by cyanobacteria and include hepatotoxins, neurotoxins, and cytotoxins which can cause a range of symptoms in humans from skin irritation to serious liver and nerve damage. Therefore drinking water treatment processes should ensure the consumers’ safety by removing both cyanobacterial cells, and cyanotoxins from the water. Cyanobacterial cells and cyanotoxins presented challenges to the conventional water treatment systems; their accumulation within drinking water treatment plants has been reported leading to plants shut down. Thus, innovative and effective water purification systems to tackle cyanobacterial pollution are required. In recent years there has been increasing attention to the electrochemical oxidation process as a feasible alternative disinfection method which is able to generate in situ a variety of oxidants that would achieve synergistic effects in the water disinfection process and toxin degradation. By utilizing only electric current, the electrochemical process through electrolysis can produce reactive oxygen species such as hydroxyl radicals from the water, or other oxidants such as chlorine from chloride ions present in the water. From extensive physiological and morphological investigation of cyanobacterial cells during electrolysis, our results show that these oxidants have significant impact on cell inactivation, simultaneously with cyanotoxins removal without the need for chemicals addition. Our research aimed to optimize existing electrochemical oxidation systems and develop new systems to treat water containing toxic cyanobacteria and cyanotoxins. The research covers detailed mechanism study on oxidants production and cell inactivation in the treatment under environmental conditions. Overall, our study suggests that the electrochemical treatment process e is an effective method for removal of toxic cyanobacteria and cyanotoxins.Keywords: toxic cyanobacteria, cyanotoxins, electrochemical process, oxidants
Procedia PDF Downloads 24032962 Evaluating the Factors Controlling the Hydrochemistry of Gaza Coastal Aquifer Using Hydrochemical and Multivariate Statistical Analysis
Authors: Madhat Abu Al-Naeem, Ismail Yusoff, Ng Tham Fatt, Yatimah Alias
Abstract:
Groundwater in Gaza strip is increasingly being exposed to anthropic and natural factors that seriously impacted the groundwater quality. Physiochemical data of groundwater can offer important information on changes in groundwater quality that can be useful in improving water management tactics. An integrative hydrochemical and statistical techniques (Hierarchical cluster analysis (HCA) and factor analysis (FA)) have been applied on the existence ten physiochemical data of 84 samples collected in (2000/2001) using STATA, AquaChem, and Surfer softwares to: 1) Provide valuable insight into the salinization sources and the hydrochemical processes controlling the chemistry of groundwater. 2) Differentiate the influence of natural processes and man-made activities. The recorded large diversity in water facies with dominance Na-Cl type that reveals a highly saline aquifer impacted by multiple complex hydrochemical processes. Based on WHO standards, only (15.5%) of the wells were suitable for drinking. HCA yielded three clusters. Cluster 1 is the highest in salinity, mainly due to the impact of Eocene saline water invasion mixed with human inputs. Cluster 2 is the lowest in salinity also due to Eocene saline water invasion but mixed with recent rainfall recharge and limited carbonate dissolution and nitrate pollution. Cluster 3 is similar in salinity to Cluster 2, but with a high diversity of facies due to the impact of many sources of salinity as sea water invasion, carbonate dissolution and human inputs. Factor analysis yielded two factors accounting for 88% of the total variance. Factor 1 (59%) is a salinization factor demonstrating the mixing contribution of natural saline water with human inputs. Factor 2 measure the hardness and pollution which explained 29% of the total variance. The negative relationship between the NO3- and pH may reveal a denitrification process in a heavy polluted aquifer recharged by a limited oxygenated rainfall. Multivariate statistical analysis combined with hydrochemical analysis indicate that the main factors controlling groundwater chemistry were Eocene saline invasion, seawater invasion, sewage invasion and rainfall recharge and the main hydrochemical processes were base ion and reverse ion exchange processes with clay minerals (water rock interactions), nitrification, carbonate dissolution and a limited denitrification process.Keywords: dendrogram and cluster analysis, water facies, Eocene saline invasion and sea water invasion, nitrification and denitrification
Procedia PDF Downloads 36532961 Biopolymers: A Solution for Replacing Polyethylene in Food Packaging
Authors: Sonia Amariei, Ionut Avramia, Florin Ursachi, Ancuta Chetrariu, Ancuta Petraru
Abstract:
The food industry is one of the major generators of plastic waste derived from conventional synthetic petroleum-based polymers, which are non-biodegradable, used especially for packaging. These packaging materials, after the food is consumed, accumulate serious environmental concerns due to the materials but also to the organic residues that adhere to them. It is the concern of specialists, researchers to eliminate problems related to conventional materials that are not biodegradable or unnecessary plastic and replace them with biodegradable and edible materials, supporting the common effort to protect the environment. Even though environmental and health concerns will cause more consumers to switch to a plant-based diet, most people will continue to add more meat to their diet. The paper presents the possibility of replacing the polyethylene packaging from the surface of the trays for meat preparations with biodegradable packaging obtained from biopolymers. During the storage of meat products may occur deterioration by lipids oxidation and microbial spoilage, as well as the modification of the organoleptic characteristics. For this reason, different compositions of polymer mixtures and film conditions for obtaining must be studied to choose the best packaging material to achieve food safety. The compositions proposed for packaging are obtained from alginate, agar, starch, and glycerol as plasticizers. The tensile strength, elasticity, modulus of elasticity, thickness, density, microscopic images of the samples, roughness, opacity, humidity, water activity, the amount of water transferred as well as the speed of water transfer through these packaging materials were analyzed. A number of 28 samples with various compositions were analyzed, and the results showed that the sample with the highest values for hardness, density, and opacity, as well as the smallest water vapor permeability, of 1.2903E-4 ± 4.79E-6, has the ratio of components as alginate: agar: glycerol (3:1.25:0.75). The water activity of the analyzed films varied between 0.2886 and 0.3428 (aw< 0.6), demonstrating that all the compositions ensure the preservation of the products in the absence of microorganisms. All the determined parameters allow the appreciation of the quality of the packaging films in terms of mechanical resistance, its protection against the influence of light, the transfer of water through the packaging. Acknowledgments: This work was supported by a grant of the Ministry of Research, Innovation, and Digitization, CNCS/CCCDI – UEFISCDI, project number PN-III-P2-2.1-PED-2019-3863, within PNCDI III.Keywords: meat products, alginate, agar, starch, glycerol
Procedia PDF Downloads 16732960 Reactive Dyed Superhydrophobic Cotton Fabric Production by Sol-Gel Method
Authors: Kuddis Büyükakıllı
Abstract:
The pretreated and bleached mercerized cotton fabric was dyed with reactive Everzol Brilliant Yellow 4GR (C.I. Yellow 160) dyestuff. Superhydrophobicity is provided to white and reactive dyed fabrics by using a nanotechnological sol-gel method with tetraethoxysilane and fluorcarbon water repellent agents by the two-step method. The effect of coating on color yield, fastness and functional properties of fabric was investigated. It was observed that water drop contact angles were higher in colorless coated fabrics compared to colored coated fabrics, there was no significant color change in colored superhydrophobic fabric and high color fastness values. Although there are no significant color losses in the fabrics after multiple washing and dry cleaning processes, water drop contact angles are greatly reduced.Keywords: fluorcarbon water repellent agent, colored cotton fabric, sol-gel, superhydrophobic
Procedia PDF Downloads 11832959 The Effects of Subsidised Irrigation Service Fees on Irrigation Performance in Vietnam
Authors: Trang Pham
Abstract:
Approximately 70% of the Vietnamese population lives in rural areas where the main livelihood is farming. For many years, the Vietnamese Government has been working towards improving farmers’ quality of life. In 2008, the Government issued the decree 115/2008/ND-CP to subsidize farmers’ water fees. The subsidy covers operation and management costs of major water infrastructure. Water users have only to pay for the operation and management of minor or tertiary canal systems. But the “subsidized water fee” has become contentious; there are two opposing schools of thought. One view is that the subsidy lessens the burden on farmers in terms of reducing their production costs, at the same time generating a sufficient budget for Irrigation Management Companies (IMCs) and Water User Association (WUAs). The alternate point of view is that the subsidy negatively effects irrigation performance, especially in tertiary canals. The aim of this study was to gain clear awareness of the perceptions of farmers, WUA members, and IMC staffs in regard to irrigation performance and management since the introduction of subsidies and local water fees. In order to find out how the government intervention has affected local farming communities, a series of questionnaires and interviews were administered in 2013. Four case studies were chosen which represent four different agricultural areas and four different irrigation systems in Vietnam. Interviews were conducted with IMC staffs and WUA members and questionnaires were used to gather information from farmers. The study compares the difference in operation and management costs across the four case studies both before and after the implementation of the decree. The results disclose factors behind the subsidized water fee that either allow or hinder improved irrigation performance and better irrigation management.Keywords: water fee, irrigation performance, local farming, tertiary canal systems
Procedia PDF Downloads 32332958 Recovery of Iodide Ion from TFT-LCD Wastewater by Forward Osmosis
Authors: Yu-Ting Chen, Shiao-Shing Chen, Hung-Te Hsu, Saikat Sinha Ray
Abstract:
Forward osmosis (FO) is a crucial technology with low operating pressure and cost for water reuse and reclamation. In Taiwan, with the advance of science and technology, thin film transistor liquid crystal displays (TFT-LCD) based industries are growing exponentially. In the optoelectronic industry wastewater, the iodide is one of the valuable element; it is also used in the medical industry. In this study, it was intended to concentrate iodide by utilizing FO system and can be reused for TFT-LCD production. Cellulose triacetate (CTA) membranes were used for all these FO experiments, and potassium iodide solution was used as the feed solution. It has been found that EDTA-2Na as draw solution at pH 8 produced high water flux and minimized salt leakage. The result also demonstrated that EDTA-2Na of concentration 0.6M could achieve the highest water flux (6.69L/m2 h). Additionally, from the recovered iodide ion from pH 3-8, the I- species was found to be more than 99%, whereas I2 was measured to be less than 1%. When potassium iodide solution was used from low to high concentration (1000 ppm to 10000 ppm), the iodide rejection was found to be than more 90%. Since, CTA membrane is negatively charged and I- is anionic in nature, so it will from electrostatic repulsion and hence there will be higher rejection. The overall performance demonstrates that recovery of concentrated iodide using FO system is a promising technology.Keywords: draw solution, EDTA-2Na, forward osmosis, potassium iodide
Procedia PDF Downloads 36732957 Comparative Assessment of Rainwater Management Alternatives for Dhaka City: Case Study of North South University
Authors: S. M. Islam, Wasi Uddin, Nazmun Nahar
Abstract:
Dhaka, the capital of Bangladesh, faces two contrasting problems; excess of water during monsoon season and scarcity of water during dry season. The first problem occurs due to rapid urbanization and mismanagement of rainwater whereas the second problem is related to climate change and increasing urban population. Inadequate drainage system also worsens the overall water management scenario in Dhaka city. Dhaka has a population density of 115,000 people per square miles. This results in a 2.5 billion liter water demand every day, 87% of which is fulfilled by groundwater. Over dependency on groundwater has resulted in more than 200 feet drop in the last 50 years and continues to decline at a rate of 9 feet per year. Considering the gravity of the problem, it is high time that practitioners, academicians and policymakers consider different water management practices and look into their cumulative impacts at different scales. The present study assesses different rainwater management options for North South University of Bangladesh and recommends the most feasible and sustainable rainwater management measure. North South University currently accommodates over 20,000 students, faculty members, and administrative staffs. To fulfill the water demand, there are two deep tube wells, which bring up approximately 150,000 liter of water every hour. The annual water demand is approximately 103 million liters. Dhaka receives approximately 1800 mm of rainfall every year. For the current study, two academic buildings and one administrative building consist of 4924 square meters of rooftop area was selected as catchment area. Both rainwater harvesting and groundwater recharge options were analyzed separately. It was estimated that by rainwater harvesting, annually a total of 7.2 million liters of water can be reused which is approximately 7% of the total annual water usage. In the monsoon, rainwater harvesting fulfills 12.2% of the monthly water demand. The approximate cost of the rainwater harvesting system is estimated to be 940975 bdt (USD 11500). For direct groundwater recharge, a system comprises of one de-siltation tank, two recharge tanks and one siltation tank were designed that requires approximately 532788 bdt (USD 6500). The payback period is approximately 7 years and 4 months for the groundwater recharge system whereas the payback period for rainwater harvesting option is approximately 12 years and 4 months. Based on the cost-benefit analysis, the present study finds the groundwater recharge system to be most suitable for North South University. The present study also demonstrates that if only one institution like North South University can add up a substantial amount of water to the aquifer, bringing other institutions in the network has the potential to create significant cumulative impact on replenishing the declining groundwater level of Dhaka city. As an additional benefit, it also prevents large amount of water being discharged into the storm sewers which results in severe flooding in Dhaka city during monsoon.Keywords: Dhaka, groundwater, harvesting, rainwater, recharge
Procedia PDF Downloads 12432956 Waste Recovery: A Sustainable Way for Application of Solid Waste from WTP's in Building Materials
Authors: Flavio Araujo, Livia Dias, Fabiolla Lima, Paulo Scalize, Antonio Albuquerque
Abstract:
Water treatment residues (WTR) are solid waste produced during drinking water treatment and have recently been seen as a reusable material. The aim of this research was show how to use the residue generated in a Water Treatment Plant, located in Goiania, Brazil, following the considerations of the law of solid waste to obtain normative parameters and consider sustainable alternatives for reincorporation of the residues in the productive chain for manufacturing various materials construction. In order to reduce the environmental liabilities generated by sanitation companies and discontinue unsustainable forms of disposal. The analyzes performed: Granulometry, Scanning Electron Microscopy and X-Ray Diffraction demonstrated the potential application of residues to replace the soil and sand, because it has characteristics compatible with small aggregate and can be used as feedstock for the manufacture of materials as ceramic and soil-cement bricks, mortars, interlocking floors and concrete artifacts.Keywords: residue, sustainable, water treatment plants, WTR, WTP
Procedia PDF Downloads 49432955 Remote Sensing and Geographic Information Systems for Identifying Water Catchments Areas in the Northwest Coast of Egypt for Sustainable Agricultural Development
Authors: Mohamed Aboelghar, Ayman Abou Hadid, Usama Albehairy, Asmaa Khater
Abstract:
Sustainable agricultural development of the desert areas of Egypt under the pressure of irrigation water scarcity is a significant national challenge. Existing water harvesting techniques on the northwest coast of Egypt do not ensure the optimal use of rainfall for agricultural purposes. Basin-scale hydrology potentialities were studied to investigate how available annual rainfall could be used to increase agricultural production. All data related to agricultural production included in the form of geospatial layers. Thematic classification of Sentinal-2 imagery was carried out to produce the land cover and crop maps following the (FAO) system of land cover classification. Contour lines and spot height points were used to create a digital elevation model (DEM). Then, DEM was used to delineate basins, sub-basins, and water outlet points using the Soil and Water Assessment Tool (Arc SWAT). Main soil units of the study area identified from Land Master Plan maps. Climatic data collected from existing official sources. The amount of precipitation, surface water runoff, potential, and actual evapotranspiration for the years (2004 to 2017) shown as results of (Arc SWAT). The land cover map showed that the two tree crops (olive and fig) cover 195.8 km2 when herbaceous crops (barley and wheat) cover 154 km2. The maximum elevation was 250 meters above sea level when the lowest one was 3 meters below sea level. The study area receives a massive variable amount of precipitation; however, water harvesting methods are inappropriate to store water for purposes.Keywords: water catchements, remote sensing, GIS, sustainable agricultural development
Procedia PDF Downloads 11432954 Performance of Osmotic Microbial Fuel Cell in Wastewater Treatment and Electricity Generation: A Critical Review
Authors: Shubhangi R. Deshmukh, Anupam B. Soni
Abstract:
Clean water and electricity are vital services needed in all communities. Bio-degradation of wastewater contaminants and desalination technologies are the best possible alternatives for the global shortage of fresh water supply. Osmotic microbial fuel cell (OMFC) is a versatile technology that uses microorganism (used for biodegradation of organic waste) and membrane technology (used for water purification) for wastewater treatment and energy generation simultaneously. This technology is the combination of microbial fuel cell (MFC) and forward osmosis (FO) processes. OMFC can give more electricity and clean water than the MFC which has a regular proton exchange membrane. FO gives many improvements such as high contamination removal, lower operating energy, raising high proton flux than other pressure-driven membrane technology. Lower concentration polarization lowers the membrane fouling by giving osmotic water recovery without extra cost. In this review paper, we have discussed the principle, mechanism, limitation, and application of OMFC technology reported to date. Also, we have interpreted the experimental data from various literature on the water recovery and electricity generation assessed by a different component of OMFC. The area of producing electricity using OMFC has further scope for research and seems like a promising route to wastewater treatment.Keywords: forward osmosis, microbial fuel cell, osmotic microbial fuel cell, wastewater treatment
Procedia PDF Downloads 18232953 Application of Computational Fluid Dynamics in the Analysis of Water Flow in Rice Leaves
Authors: Marcio Mesquita, Diogo Henrique Morato de Moraes, Henrique Fonseca Elias de Oliveira, Rilner Alves Flores, Mateus Rodrigues Ferreira, Dalva Graciano Ribeiro
Abstract:
This study aimed to analyze the movement of water in irrigated and non-irrigated rice (Oryza sativa L.) leaves, from the xylem to the stomata, through numerical simulations. Through three-dimensional modeling, it was possible to determine how the spacing of parenchyma cells and the permeability of these cells influence the apoplastic flow and the opening of the stomata. The thickness of the cuticle and the number of vascular bundles are greater in plants subjected to water stress, indicating an adaptive response of plants to environments with water deficit. In addition, numerical simulations revealed that the opening of the stomata, the permeability of the parenchyma cells and the cell spacing have significant impacts on the energy loss and the speed of water movement. It was observed that a more open stoma facilitates water flow, decreasing the resistance and energy required for transport, while higher levels of permeability reduce energy loss, indicating that a more permeable tissue allows for more efficient water transport. Furthermore, it was possible to note that stomatal aperture, parenchyma permeability and cell spacing are crucial factors in the efficient water management of plants, especially under water stress conditions. These insights are essential for the development of more effective agricultural management strategies and for the breeding of plant varieties that are more resistant to adverse growing conditions. Computed fluid dynamics has allowed us to overcome the limitations of conventional techniques by providing a means to visualize and understand the complex hydrodynamic processes within the vascular system of plants.Keywords: numerical modeling, vascular anatomy, vascular hydrodynamics, xylem, Oryza sativa L.
Procedia PDF Downloads 1732952 Desulfurization of Crude Oil Using Bacteria
Authors: Namratha Pai, K. Vasantharaj, K. Haribabu
Abstract:
Our Team is developing an innovative cost effective biological technique to desulfurize crude oil. ’Sulphur’ is found to be present in crude oil samples from .05% - 13.95% and its elimination by industrial methods is expensive currently. Materials required :- Alicyclobacillus acidoterrestrius, potato dextrose agar, oxygen, Pyragallol and inert gas(nitrogen). Method adapted and proposed:- 1) Growth of bacteria studied, energy needs. 2) Compatibility with crude-oil. 3) Reaction rate of bacteria studied and optimized. 4) Reaction development by computer simulation. 5) Simulated work tested by building the reactor. The method being developed requires the use of bacteria Alicyclobacillus acidoterrestrius - an acidothermophilic heterotrophic, soil dwelling aerobic, Sulfur bacteria. The bacteria are fed to crude oil in a unique manner. Its coated onto potato dextrose agar beads, cultured for 24 hours (growth time coincides with time when it begins reacting) and fed into the reactor. The beads are to be replenished with O2 by passing them through a jacket around the reactor which has O2 supply. The O2 can’t be supplied directly as crude oil is inflammable, hence the process. Beads are made to move around based on the concept of fluidized bed reactor. By controlling the velocity of inert gas pumped , the beads are made to settle down when exhausted of O2. It is recycled through the jacket where O2 is re-fed and beads which were inside the ring substitute the exhausted ones. Crude-oil is maintained between 1 atm-270 M Pa pressure and 45°C treated with tartaric acid (Ph reason for bacteria growth) for optimum output. Bacteria being of oxidising type react with Sulphur in crude-oil and liberate out SO4^2- and no gas. SO4^2- is absorbed into H2O. NaOH is fed once reaction is complete and beads separated. Crude-oil is thus separated of SO4^2-, thereby Sulphur, tartaric acid and other acids which are separated out. Bio-corrosion is taken care of by internal wall painting (phenolepoxy paints). Earlier methods used included use of Pseudomonas and Rhodococcus species. They were found to be inefficient, time and energy consuming and reduce the fuel value as they fed on skeleton.Keywords: alicyclobacillus acidoterrestrius, potato dextrose agar, fluidized bed reactor principle, reaction time for bacteria, compatibility with crude oil
Procedia PDF Downloads 31932951 Effect of Environmental Parameters on the Water Solubility of the Polycyclic Aromatic Hydrocarbons and Derivatives using Taguchi Experimental Design Methodology
Authors: Pranudda Pimsee, Caroline Sablayrolles, Pascale De Caro, Julien Guyomarch, Nicolas Lesage, Mireille Montréjaud-Vignoles
Abstract:
The MIGR’HYCAR research project was initiated to provide decisional tools for risks connected to oil spill drifts in continental waters. These tools aim to serve in the decision-making process once oil spill pollution occurs and/or as reference tools to study scenarios of potential impacts of pollutions on a given site. This paper focuses on the study of the distribution of polycyclic aromatic hydrocarbons (PAHs) and derivatives from oil spill in water as function of environmental parameters. Eight petroleum oils covering a representative range of commercially available products were tested. 41 Polycyclic Aromatic Hydrocarbons (PAHs) and derivate, among them 16 EPA priority pollutants were studied by dynamic tests at laboratory scale. The chemical profile of the water soluble fraction was different from the parent oil profile due to the various water solubility of oil components. Semi-volatile compounds (naphtalenes) constitute the major part of the water soluble fraction. A large variation in composition of the water soluble fraction was highlighted depending on oil type. Moreover, four environmental parameters (temperature, suspended solid quantity, salinity, and oil: water surface ratio) were investigated with the Taguchi experimental design methodology. The results showed that oils are divided into three groups: the solubility of Domestic fuel and Jet A1 presented a high sensitivity to parameters studied, meaning they must be taken into account. For gasoline (SP95-E10) and diesel fuel, a medium sensitivity to parameters was observed. In fact, the four others oils have shown low sensitivity to parameters studied. Finally, three parameters were found to be significant towards the water soluble fraction.Keywords: mornitoring, PAHs, water soluble fraction, SBSE, Taguchi experimental design
Procedia PDF Downloads 325