Search results for: lithium oxygen battery
919 Lifetime Assessment of Highly Efficient Metal-Based Air-Diffuser through Accelerated Degradation Test
Authors: Jinyoung Choi, Tae-Ho Yoon, Sunmook Lee
Abstract:
Degradation of standard oxygen transfer efficiency (SOTE) with time was observed for the assessment of lifetime of metal-based air-diffuser, which displaced a polymer composite-based air-diffuser in order to attain a longer lifetime in the actual field. The degradation of air-diffuser occurred due to the failure of the formation of small and uniform air bubbles since the patterns formed on the disc of air-diffuser deteriorated and/or changed from their initial shapes while they were continuously exposed to the air blowing condition during the operation in the field. Therefore, the lifetime assessment of metal-based air-diffuser was carried out through an accelerated degradation test by accelerating the air-blowing conditions in 200 L/min, 300 L/min, and 400 L/min and the lifetime of normal operating condition at 120 L/min was predicted. It was found that Weibull distribution was the most proper one for describing the lifetime distribution of metal-based air-diffuser in the present study. The shape and scale parameters indicated that the accelerated blowing conditions were all within the acceleration domain. The lifetime was predicted by adopting inverse power model for a stress-life relationship and estimated to be B10=94,004 hrs with CL=95%. Acknowledgement: This work was financially supported by the Ministry of Trade, Industry and Energy (Grant number: N0001475).Keywords: accelerated degradation test, air-diffuser, lifetime assessment, SOTE
Procedia PDF Downloads 562918 Bluetooth Communication Protocol Study for Multi-Sensor Applications
Authors: Joao Garretto, R. J. Yarwood, Vamsi Borra, Frank Li
Abstract:
Bluetooth Low Energy (BLE) has emerged as one of the main wireless communication technologies used in low-power electronics, such as wearables, beacons, and Internet of Things (IoT) devices. BLE’s energy efficiency characteristic, smart mobiles interoperability, and Over the Air (OTA) capabilities are essential features for ultralow-power devices, which are usually designed with size and cost constraints. Most current research regarding the power analysis of BLE devices focuses on the theoretical aspects of the advertising and scanning cycles, with most results being presented in the form of mathematical models and computer software simulations. Such computer modeling and simulations are important for the comprehension of the technology, but hardware measurement is essential for the understanding of how BLE devices behave in real operation. In addition, recent literature focuses mostly on the BLE technology, leaving possible applications and its analysis out of scope. In this paper, a coin cell battery-powered BLE Data Acquisition Device, with a 4-in-1 sensor and one accelerometer, is proposed and evaluated with respect to its Power Consumption. First, evaluations of the device in advertising mode with the sensors turned off completely, followed by the power analysis when each of the sensors is individually turned on and data is being transmitted, and concluding with the power consumption evaluation when both sensors are on and respectively broadcasting the data to a mobile phone. The results presented in this paper are real-time measurements of the electrical current consumption of the BLE device, where the energy levels that are demonstrated are matched to the BLE behavior and sensor activity.Keywords: bluetooth low energy, power analysis, BLE advertising cycle, wireless sensor node
Procedia PDF Downloads 90917 Development of Paper Based Analytical Devices for Analysis of Iron (III) in Natural Water Samples
Authors: Sakchai Satienperakul, Manoch Thanomwat, Jutiporn Seedasama
Abstract:
A paper based analytical devices (PADs) for the analysis of Fe (III) ion in natural water samples is developed, using reagent from guava leaf extract. The extraction is simply performed in deionized water pH 7, where tannin extract is obtained and used as an alternative natural reagent. The PADs are fabricated by ink-jet printing using alkenyl ketene dimer (AKD) wax. The quantitation of Fe (III) is carried out using reagent from guava leaf extract prepared in acetate buffer at the ratio of 1:1. A color change to gray-purple is observed by naked eye when dropping sample contained Fe (III) ion on PADs channel. The reflective absorption measurement is performed for creating a standard curve. The linear calibration range is observed over the concentration range of 2-10 mg L-1. Detection limited of Fe (III) is observed at 2 mg L-1. In its optimum form, the PADs is stable for up to 30 days under oxygen free conditions. The small dimensions, low volume requirement and alternative natural reagent make the proposed PADs attractive for on-site environmental monitoring and analysis.Keywords: green chemical analysis, guava leaf extract, lab on a chip, paper based analytical device
Procedia PDF Downloads 239916 Luminescent Si Nanocrystals Synthesized by Si Ion Implantation and Reactive Pulsed Laser Deposition: The Effects of RTA, Excimer-Uv and E-Beam Irradiation
Authors: Tsutomu Iwayama, Takayuki Hama
Abstract:
Si ion implantation was widely used to synthesize specimens of SiO2 containing supersaturated Si and subsequent high temperature annealing induces the formation of embedded luminescent Si nanocrystals. In this work, the potentialities of excimer UV-light (172 nm, 7.2 eV) irradiation and rapid thermal annealing (RTA) to enhance the photoluminescence and to achieve low temperature formation of Si nanocrystals have been investigated. The Si ions were introduced at acceleration energy of 180 keV to fluence of 7.5 x 1016 ions/cm2. The implanted samples were subsequently irradiated with an excimer-UV lamp. After the process, the samples were rapidly thermal annealed before furnace annealing (FA). Photoluminescence spectra were measured at various stages at the process. We found that the luminescence intensity is strongly enhanced with excimer-UV irradiation and RTA. Moreover, effective visible photoluminescence is found to be observed even after FA at 900 oC, only for specimens treated with excimer-UV lamp and RTA. We also prepared specimens of Si nanocrystals embedded in a SiO2 by reactive pulsed laser deposition (PLD) in an oxygen atmosphere. We will make clear the similarities and differences with the way of preparation.Keywords: Ion implantation, photoluminescence, pulsed laser deposition, rapid thermal anneal, Si nanocrystals
Procedia PDF Downloads 324915 In vivo Therapeutic Potential of Biologically Synthesized Silver Nanoparticles
Authors: Kalakotla Shanker, G. Krishna Mohan
Abstract:
Nowadays, nanoparticles are being used in pharmacological studies for their exclusive properties such as small size, more surface area, biocompatibility and enhanced solubility. In view of this, the present study aimed to evaluate the antihyperglycemic potential of biologically synthesized silver nanoparticles (BSSNPs) and Gymnema sylvestre (GS) extract. The SEM and SEM analysis divulges that the BSSNPs were spherical in shape. EDAX spectrum exhibits peaks for the presence of silver, carbon, and oxygen atoms in the range of 1.0-3.1 keV. FT-IR reveals the binding properties of active bio-constituents responsible for capping and stabilizing BSSNPs. The results showed increased blood glucose, huge loss in body weight and downturn in plasma insulin. The GS extract (200 mg/kg, 400 mg/kg), BSSNPs (100 mg/kg, 200 mg/kg) and metformin 50 mg/kg were administered to the diabetic rats. BSSNPs at a dose level of 200 mg/kg (b.wt.p.o.) showed significant inhibition of (p<0.001) blood glucose levels as compared with GS extract treated group. The results obtained from study indicate that the BSSNP shows potent anti-diabetic activity.Keywords: biological silver nanoparticles, G. sylvetre, gymnemic acid, streptozotocin, Wistar rats, antihyperglycemic activity, anti-hyperlipidemic activity
Procedia PDF Downloads 301914 Hydrogen Production Using an Anion-Exchange Membrane Water Electrolyzer: Mathematical and Bond Graph Modeling
Authors: Hugo Daneluzzo, Christelle Rabbat, Alan Jean-Marie
Abstract:
Water electrolysis is one of the most advanced technologies for producing hydrogen and can be easily combined with electricity from different sources. Under the influence of electric current, water molecules can be split into oxygen and hydrogen. The production of hydrogen by water electrolysis favors the integration of renewable energy sources into the energy mix by compensating for their intermittence through the storage of the energy produced when production exceeds demand and its release during off-peak production periods. Among the various electrolysis technologies, anion exchange membrane (AEM) electrolyser cells are emerging as a reliable technology for water electrolysis. Modeling and simulation are effective tools to save time, money, and effort during the optimization of operating conditions and the investigation of the design. The modeling and simulation become even more important when dealing with multiphysics dynamic systems. One of those systems is the AEM electrolysis cell involving complex physico-chemical reactions. Once developed, models may be utilized to comprehend the mechanisms to control and detect flaws in the systems. Several modeling methods have been initiated by scientists. These methods can be separated into two main approaches, namely equation-based modeling and graph-based modeling. The former approach is less user-friendly and difficult to update as it is based on ordinary or partial differential equations to represent the systems. However, the latter approach is more user-friendly and allows a clear representation of physical phenomena. In this case, the system is depicted by connecting subsystems, so-called blocks, through ports based on their physical interactions, hence being suitable for multiphysics systems. Among the graphical modelling methods, the bond graph is receiving increasing attention as being domain-independent and relying on the energy exchange between the components of the system. At present, few studies have investigated the modelling of AEM systems. A mathematical model and a bond graph model were used in previous studies to model the electrolysis cell performance. In this study, experimental data from literature were simulated using OpenModelica using bond graphs and mathematical approaches. The polarization curves at different operating conditions obtained by both approaches were compared with experimental ones. It was stated that both models predicted satisfactorily the polarization curves with error margins lower than 2% for equation-based models and lower than 5% for the bond graph model. The activation polarization of hydrogen evolution reactions (HER) and oxygen evolution reactions (OER) were behind the voltage loss in the AEM electrolyzer, whereas ion conduction through the membrane resulted in the ohmic loss. Therefore, highly active electro-catalysts are required for both HER and OER while high-conductivity AEMs are needed for effectively lowering the ohmic losses. The bond graph simulation of the polarisation curve for operating conditions at various temperatures has illustrated that voltage increases with temperature owing to the technology of the membrane. Simulation of the polarisation curve can be tested virtually, hence resulting in reduced cost and time involved due to experimental testing and improved design optimization. Further improvements can be made by implementing the bond graph model in a real power-to-gas-to-power scenario.Keywords: hydrogen production, anion-exchange membrane, electrolyzer, mathematical modeling, multiphysics modeling
Procedia PDF Downloads 89913 The Differences and Similarities in Neurocognitive Deficits in Mild Traumatic Brain Injury and Depression
Authors: Boris Ershov
Abstract:
Depression is the most common mood disorder experienced by patients who have sustained a traumatic brain injury (TBI) and is associated with poorer cognitive functional outcomes. However, in some cases, similar cognitive impairments can also be observed in depression. There is not enough information about the features of the cognitive deficit in patients with TBI in relation to patients with depression. TBI patients without depressive symptoms (TBInD, n25), TBI patients with depressive symptoms (TBID, n31), and 28 patients with bipolar II disorder (BP) were included in the study. There were no significant differences in participants in respect to age, handedness and educational level. The patients clinical status was determined by using Montgomery–Asberg Depression Rating Scale (MADRS). All participants completed a cognitive battery (The Brief Assessment of Cognition in Affective Disorders (BAC-A)). Additionally, the Rey–Osterrieth Complex Figure (ROCF) was used to assess visuospatial construction abilities and visual memory, as well as planning and organizational skills. Compared to BP, TBInD and TBID showed a significant impairments in visuomotor abilities, verbal and visual memory. There were no significant differences between BP and TBID groups in working memory, speed of information processing, problem solving. Interference effect (cognitive inhibition) was significantly greater in TBInD and TBID compared to BP. Memory bias towards mood-related information in BP and TBID was greater in comparison with TBInD. These results suggest that depressive symptoms are associated with impairments some executive functions in combination at decrease of speed of information processing.Keywords: bipolar II disorder, depression, neurocognitive deficits, traumatic brain injury
Procedia PDF Downloads 346912 Grain Refinement of Al-7Si-0.4Mg Alloy by Combination of Al-Ti-B and Mg-Al2Ca Mater Alloys and Their Effects on Tensile Property
Authors: Young-Ok Yoon, Su-Yeon Lee, Seong-Ho Ha, Gil-Yong Yeom, Bong-Hwan Kim, Hyun-Kyu Lim, Shae K. Kim
Abstract:
Al-7Si-0.4Mg alloy (designated A356) is widely used in the automotive and aerospace industries as structural components due to an excellent combination of castability and mechanical properties. Grain refinement has a significant effect on the mechanical properties of castings, mainly since the distribution of secondary phase is changed. As a grain refiner, the Al-Ti-B master alloys containing TiAl3 and TiB2 particles have been widely used in Al foundries. The Mg loss and Mg based inclusion formation by the strong affinity of Mg to oxygen in the melting process of Mg contained alloys have been an issue. This can be significantly improved only by Mg+Al2Ca master alloy as an alloying element instead of pure Mg. Moreover, the eutectic Si modification and grain refinement is simultaneously obtained because Al2Ca behaves as Ca, a typical Si modifier. The present study is focused on the combined effects of Mg+Al2Ca and Al-Ti-B master alloys on the grain refiment of Al-7Si-0.4Mg alloy and their proper ratio for the optimum effect. The aim of this study, therefore, is to investigate the change of the microstructure in Al-7Si-0.4Mg alloy with different ratios of Ti and Al2Ca (detected Ca content) and their effects on the tensile property. The distribution and morphology of the secondary phases by the grain refinement will be discussed.Keywords: Al-7Si-0.4Mg alloy, Al2Ca, Al-Ti-B alloy, grain refinement
Procedia PDF Downloads 433911 The Impact of a Sustainable Solar Heating System on the Growth of Strawberry Plants in an Agricultural Greenhouse
Authors: Ilham Ihoume, Rachid Tadili, Nora Arbaoui
Abstract:
The use of solar energy is a crucial tactic in the agricultural industry's plan to decrease greenhouse gas emissions. This clean source of energy can greatly lower the sector's carbon footprint and make a significant impact in the fight against climate change. In this regard, this study examines the effects of a solar-based heating system, in a north-south oriented agricultural greenhouse on the development of strawberry plants during winter. This system relies on the circulation of water as a heat transfer fluid in a closed circuit installed on the greenhouse roof to store heat during the day and release it inside at night. A comparative experimental study was conducted in two greenhouses, one experimental with the solar heating system and the other for control without any heating system. Both greenhouses are located on the terrace of the Solar Energy and Environment Laboratory of the Mohammed V University in Rabat, Morocco. The developed heating system consists of a copper coil inserted in double glazing and placed on the roof of the greenhouse, a water pump circulator, a battery, and a photovoltaic solar panel to power the electrical components. This inexpensive and environmentally friendly system allows the greenhouse to be heated during the winter and improves its microclimate system. This improvement resulted in an increase in the air temperature inside the experimental greenhouse by 6 °C and 8 °C, and a reduction in its relative humidity by 23% and 35% compared to the control greenhouse and the ambient air, respectively, throughout the winter. For the agronomic performance, it was observed that the production was 17 days earlier than in the control greenhouse.Keywords: sustainability, thermal energy storage, solar energy, agriculture greenhouse
Procedia PDF Downloads 85910 CFD Simulation Approach for Developing New Powder Dispensing Device
Authors: Revanth Rallapalli
Abstract:
Manually dispensing powders can be difficult as it requires gradually pouring and checking the amount on the scale to be dispensed. Current systems are manual and non-continuous in nature and are user-dependent and difficult to control powder dispensation. Recurrent dosing of powdered medicines in precise amounts quickly and accurately has been an all-time challenge. Various new powder dispensing mechanisms are being designed to overcome these challenges. A battery-operated screw conveyor mechanism is being innovated to overcome the above problems faced. These inventions are numerically evaluated at the concept development level by employing Computational Fluid Dynamics (CFD) of gas-solids multiphase flow systems. CFD has been very helpful in the development of such devices saving time and money by reducing the number of prototypes and testing. This paper describes a simulation of powder dispensation from the trocar’s end by considering the powder as secondary flow in the air, is simulated by using the technique called Dense Discrete Phase Model incorporated with Kinetic Theory of Granular Flow (DDPM-KTGF). By considering the volume fraction of powder as 50%, the transportation of powder from the inlet side to the trocar’s end side is done by rotation of the screw conveyor. The performance is calculated for a 1-sec time frame in an unsteady computation manner. This methodology will help designers in developing design concepts to improve the dispensation and the effective area within a quick turnaround time frame.Keywords: multiphase flow, screw conveyor, transient, dense discrete phase model (DDPM), kinetic theory of granular flow (KTGF)
Procedia PDF Downloads 145909 Differentially Response of Superoxide Dismutase in Wheat Susceptible and Resistant Cultivars against FHB
Authors: M. Sorahi Nobar, V. Niknam, H. Ebrahimzadeh, H. Soltanloo
Abstract:
Fusarium graminearum is one of the most destructive crop diseases in the world. Infection occurs during the flowering period in warm and humid conditions. It causes reduction in yield. Moreover, harvested grain is often contaminated with mycotoxins and its acetylated derivatives. Fusarium mycotoxines are potent inhibitor of protein synthesis, and thereby presents hazards for both human and animal health. A rapid production of reactive oxygen intermediates, primarily superoxide and hydrogen peroxide at the site of attempted infection considered as key feature underlying successful pathogen recognition. Here, we compared the time course activity of superoxide dismutase (SOD) as a first line of defenses against ROS- induced oxidative burst between FHB- resistant Sumai3 and susceptible Falat at 48, 96 and 144 hours after infection. Our results showed that Sumai3 SOD activity increased with time and reached the highest-level 4 days after infection while in susceptible cultivar Falat, SOD activity decreased during the first 96 h. after infection. Decreased was followed by an increased at 6 days after infection. According to our results rapid induction of SOD activity in resistant cultivar may play an important role in resistance against FHB in wheat.Keywords: Fusarium graminearum, mycotoxins, resistant cultivar, superoxide dismutase
Procedia PDF Downloads 447908 Amelioration of Arsenic and Mercury Induced Vasoconstriction by Eugenol, Linalool and Carvone
Authors: Swati Kundu, Seemi Farhat Basir, Luqman A. Khan
Abstract:
Acute and chronic exposure to arsenic and mercury is known to produce vasoconstriction. Pathways involved in this hypercontraction and their relative contribution are not understood. In this study, we measure agonist-induced contraction of isolated rat aorta exposed to arsenic and mercury aorta and delineate pathways mediating this effect. PE-induced hypercontraction of 37% and 32% was obtained with 25 µM As(III) and 6 nM Hg(II), respectively. Isometric contraction measurements in the presence of apocynin, verapamil and sodium nitroprusside indicates that the major cause of increased contraction is reactive oxygen species and depletion of nitric oxide. Calcium influx plays a minor role in both arsenic and mercury caused hypercontraction. In the unexposed aorta, eugenol causes relaxation by inhibiting ROS and elevating NO, linalool by blocking voltage dependent calcium channel (VDCC) and elevating NO, and carvone by blocking calcium influx through VDDC. Since arsenic and mercury caused hypercontraction is mediated by increased ROS and depletion of nitric oxide, we hypothesize that molecules which neutralize ROS or elevate NO will be better ameliorators. In line with this argument, we find eugenol to be the best ameliorator of arsenic and mercury hypercontraction followed by linalool and carvone.Keywords: carvone, eugenol, linalool, mercury
Procedia PDF Downloads 325907 Heavy Metal Removal by Green Microalgae Biofilms from Industrial Wastewater
Authors: B. N. Makhanya, S. F. Ndulini, M. S. Mthembu
Abstract:
Heavy metals are hazardous pollutants present in both industrial and domestic wastewater. They are usually disposed directly into natural streams, and when left untreated, they are a major cause of natural degradation and diseases. This study aimed to determine the ability of microalgae to remove heavy metals from coal mine wastewater. The green algae were grown and used for heavy metal removal in a laboratory bench. The physicochemical parameters and heavy metal removal were determined at 24 hours intervals for 5 days. The highest removal efficiencies were found to be 85%, 95%, and 99%, for Fe, Zn, and Cd, respectively. Copper and aluminium both had 100%. The results also indicated that the correlation between physicochemical parameters and all heavy metals were ranging from (0.50 ≤ r ≤ 0.85) for temperature, which indicated moderate positive to a strong positive correlation, pH had a very weak negative to a very weak positive correlation (-0.27 ≤ r ≤ 0.11), and chemical oxygen demand had a fair positive to a very strong positive correlation (0.69 ≤ r ≤ 0.98). The paired t-test indicated the removal of heavy metals to be statistically significant (0.007 ≥ p ≥ 0.000). Therefore, results showed that the microalgae used in the study were capable of removing heavy metals from industrial wastewater using possible mechanisms such as binding and absorption. Compared to the currently used technology for wastewater treatment, the microalgae may be the alternative to industrial wastewater treatment.Keywords: heavy metals, industrial wastewater, microalgae, physiochemical parameters
Procedia PDF Downloads 134906 Chemical Stability of Ceramic Crucibles to Molten Titanium
Authors: Jong-Min Park, Hyung-Ki Park, Seok Hong Min, Tae Kwon Ha
Abstract:
Titanium is widely used due to its high specific strength, good biocompatibility, and excellent corrosion resistance. In order to produce titanium powders, it is necessary to melt titanium, and generally it is conducted by an induction heating method using Al₂O₃ ceramic crucible. However, since titanium reacts chemically with Al₂O₃, it is difficult to melt titanium by the induction heating method using Al₂O₃ crucible. To avoid this problem, we studied the chemical stability of the various crucibles such as Al₂O₃, MgO, ZrO₂, and Y₂O₃ crucibles to molten titanium. After titanium lumps (Grade 2, O(oxygen)<0.25wt%) were placed in each crucible, they were heated to 1800℃ with a heating rate of 5 ℃/min, held at 1800℃ for 30 min, and finally cooled to room temperature with a cooling rate of 5 ℃/min. All heat treatments were carried out in high purity Ar atmosphere. To evaluate the chemical stability, thermodynamic data such as Ellingham diagram were utilized, and also Vickers hardness test, microstructure analysis, and EPMA quantitative analysis were performed. As a result, Al₂O₃, MgO and ZrO₂ crucibles chemically reacted with molten titanium, but Y₂O₃ crucible rarely reacted with it.Keywords: titanium, induction melting, crucible, chemical stability
Procedia PDF Downloads 300905 FTIR and AFM Properties of Doubly Doped Tin Oxide Thin Films Prepared by Spin Coating Technique
Authors: Bahattin Duzgun, Adem Kocyigit, Demet Tatar, Ahmet Battal
Abstract:
Tin oxide thin films are semiconductor materials highly transparent and with high mechanical and chemical stability, except for their interactions with oxygen atoms at high temperature. Many dopants, such as antimony (Sb), arsenic (As), fluorine (F), indium (In), molybdenum and (Mo) etc. have been used to improve the electrical properties of tin oxide films. Among these, Sb and F are found to be the most commonly used dopants for solar cell layers. Also Tin oxide tin films investigated and characterized by researchers different film deposition and analysis method. In this study, tin oxide thin films are deposited on glass substrate by spin coating technique and characterized by FTIR and AFM. FTIR spectroscopy revealed that all films have O-Sn-O and Sn-OH vibration bonds not changing with layer effect. AFM analysis indicates that all films are homogeneity and uniform. It can be seen that all films have needle shape structure in their surfaces. Uniformity and homogeneity of the films generally increased for increasing layers. The results found in present study showed that doubly doped SnO2 thin films is a good candidate for solar cells and other optoelectronic and technological applications.Keywords: doubly doped, spin coating, FTIR analysis, AFM analysis
Procedia PDF Downloads 449904 Synthesis and Evaluation of Antioxidant Behavior of Some Indole-Based Melatonin Derivatives
Authors: Eddy Neuhaus, Hanif Shirinzadeh, Cigdem Karaaslan, Elif Ince, Hande Gurer-Orhan, Sibel Suzen
Abstract:
Reactive oxygen species (ROS) and oxidative stress can cause fatal damage to essential cell structures, including DNA. It is known that use of antioxidants could be advantageous in the prevention of various diseases such as cancer, cardiovascular diseases and neurodegenerative disorders. Since antioxidant properties of the indole ring-containing melatonin (MLT) has been described and evaluated, MLT-related compounds such as MLT metabolites and synthetic analogues are under investigation to determine which exhibit the highest activity with the lowest side-effects. Owing to indole and hydrazones appealing physiological properties and are mostly found in numerous biologically active compounds a series of indole-7-carbaldehyde hydrazone derivatives were synthesized, characterized and in vitro antioxidant activity was investigated by evaluating their reducing effect against oxidation of a redox-sensitive fluorescent probe. Cytotoxicity potential of all indole-based MLT analogues was investigated both by lactate dehydrogenase leakage assay and by MTT assay. This work was supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) Research and Development Grant 112S599.Keywords: melatonin, antioxidant activity, indole, hydrazone, oxidative stress
Procedia PDF Downloads 481903 A Novel Bio-ceramic Using Hyperthermia for Bone Cancer Therapy, Ferro-substituted Silicate Calcium Materials
Authors: hassan gheisari
Abstract:
Ferro silicate calcium nano particles are prepared through the sol-gel method using polyvinyl alcohol (PVA) as a chelating agent. The powder, as prepared, is annealed at three different temperatures (900 ºC, 1000 ºC, and 1100 ºC) for 3 h. The XRD patterns of the samples indicate broad peaks, and the full width at half maximum decreased with increasing annealing temperature. FTIR spectra of the samples confirm the presence of metal - oxygen complexes within the structure. The average particle size obtained from PSA curve demonstrates ultrafine particles. SEM micrographs indicate the particles synthesized have spherical morphology. The saturation magnetization (Ms) and remnant magnetization (Mr) of the samples show dependence on particle size and crystallinity of the samples. The highest saturation magnetization is achieved for the sample annealed at 1100 ºC having maximum average particle size. The high saturation magnetization of the samples suggests the present method is suitable for obtaining nano particles magnetic ferro bioceramic, which is desirable for practical applications such as hyperthermia bone cancer therapy.Keywords: hyperthermia, bone cancer, bio ceramic; magnetic materials; sol– gel, silicate calcium
Procedia PDF Downloads 73902 Ferro-Substituted Silicate Calcium Materials, a Novel Bio-Ceramic Using Hyperthermia for Bone Cancer Therapy
Authors: Hassan Gheisari
Abstract:
Ferro silicate calcium nano particles are prepared through the sol-gel method using polyvinyl alcohol (PVA) as a chelating agent. The powder as prepared is annealed at three different temperatures (900 ºC, 1000 ºC and 1100 ºC) for 3 h. The XRD patterns of the samples indicate broad peaks and the full width at half maximum decreased with increasing annealing temperature. FTIR spectra of the samples confirm the presence of metal - oxygen complexes within the structure. The average particle size obtained from PSA curve demonstrates ultrafine particles. SEM micrographs indicate the particles synthesized have spherical morphology. The saturation magnetization (Ms) and remnant magnetization (Mr) of the samples show dependence on particle size and crystallinity of the samples. The highest saturation magnetization is achieved for the sample annealed at 1100 ºC having maximum average particle size. The high saturation magnetization of the samples suggests the present method is suitable for obtaining nano particles magnetic ferro bioceramic which is desirable for practical applications such as hyperthermia bone cancer therapy.Keywords: hyperthermia, bone cancer, bio ceramic, magnetic materials, sol– gel, silicate calcium
Procedia PDF Downloads 308901 Mathematical Modelling of Human Cardiovascular-Respiratory System Response to Exercise in Rwanda
Authors: Jean Marie Ntaganda, Froduald Minani, Wellars Banzi, Lydie Mpinganzima, Japhet Niyobuhungiro, Jean Bosco Gahutu, Vincent Dusabejambo, Immaculate Kambutse
Abstract:
In this paper, we present a nonlinear dynamic model for the interactive mechanism of the cardiovascular and respiratory system. The model is designed and analyzed for human during physical exercises. In order to verify the adequacy of the designed model, data collected in Rwanda are used for validation. We have simulated the impact of heart rate and alveolar ventilation as controls of cardiovascular and respiratory system respectively to steady state response of the main cardiovascular hemodynamic quantities i.e., systemic arterial and venous blood pressures, arterial oxygen partial pressure and arterial carbon dioxide partial pressure, to the stabilised values of controls. We used data collected in Rwanda for both male and female during physical activities. We obtained a good agreement with physiological data in the literature. The model may represent an important tool to improve the understanding of exercise physiology.Keywords: exercise, cardiovascular/respiratory, hemodynamic quantities, numerical simulation, physical activity, sportsmen in Rwanda, system
Procedia PDF Downloads 243900 Carotenoids a Biologically Important Bioactive Compound
Authors: Aarti Singh, Anees Ahmad
Abstract:
Carotenoids comprise a group of isoprenoid pigments. Carotenes, xanthophylls and their derivatives have been found to play an important role in all living beings through foods, neutraceuticals and pharmaceuticals. α-carotene, β-carotene and β-cryptoxanthin play a vital role in humans to provide vitamin A source for the growth, development and proper functioning of immune system and vision. They are very crucial for plants and humans as they protect from photooxidative damage and are excellent antioxidants quenching singlet molecular oxygen and peroxyl radicals. Diet including more intake of carotenoids results in reduced threat of various chronic diseases such as cancer (lung, breast, prostrate, colorectal and ovarian cancers) and coronary heart diseases. The blue light filtering efficiency of the carotenoids in liposomes have been reported to be maximum in lutein followed by zeaxanthin, β-carotene and lycopene. Lycopene plays a vital role for the protection from CVD. Lycopene in serum is directly related to reduced risk of osteoporosis in postmenopausal women. Carotenoids have major role in the treatment of skin disorders. There is need to identify and isolate novel carotenoids from diverse natural sources for human health benefits.Keywords: antioxidants, carotenoids, neutraceuticals, osteoporosis, pharmaceuticals
Procedia PDF Downloads 375899 Electronic Device Robustness against Electrostatic Discharges
Authors: Clara Oliver, Oibar Martinez
Abstract:
This paper is intended to reveal the severity of electrostatic discharge (ESD) effects in electronic and optoelectronic devices by performing sensitivity tests based on Human Body Model (HBM) standard. We explain here the HBM standard in detail together with the typical failure modes associated with electrostatic discharges. In addition, a prototype of electrostatic charge generator has been designed, fabricated, and verified to stress electronic devices, which features a compact high voltage source. This prototype is inexpensive and enables one to do a battery of pre-compliance tests aimed at detecting unexpected weaknesses to static discharges at the component level. Some tests with different devices were performed to illustrate the behavior of the proposed generator. A set of discharges was applied according to the HBM standard to commercially available bipolar transistors, complementary metal-oxide-semiconductor transistors and light emitting diodes. It is observed that high current and voltage ratings in electronic devices not necessarily provide a guarantee that the device will withstand high levels of electrostatic discharges. We have also compared the result obtained by performing the sensitivity tests based on HBM with a real discharge generated by a human. For this purpose, the charge accumulated in the person is monitored, and a direct discharge against the devices is generated by touching them. Every test has been performed under controlled relative humidity conditions. It is believed that this paper can be of interest for research teams involved in the development of electronic and optoelectronic devices which need to verify the reliability of their devices in terms of robustness to electrostatic discharges.Keywords: human body model, electrostatic discharge, sensitivity tests, static charge monitoring
Procedia PDF Downloads 148898 Papaya Leaf in Broiler Chicken Feed Reducing Lipid Peroxidation of Meat
Authors: M. Ebrahimi, E. Maroufyan, M. Shakeri, E. Oskoueian, A. F Soleimani, Y. M. Goh
Abstract:
Lipid peroxidation is a main reason of low quality in meat and meat products. The free radical chain reaction is the major process of lipid peroxidation and reactive oxygen species (ROS) such as hydroxyl radical and hydroperoxyl radical are the main starter of the chain reaction. Papaya leaf contains several secondary metabolites which can be used as a potential antioxidant in broiler feed. Hence, this research was carried out to evaluate the potential of papaya leaf to prevent lipid peroxidation and enhance the antioxidant activity of breast meat of broiler chicken. The results showed that supplementation of papaya leaf at 5%, significantly (p < 0.05) reduced the lipid peroxidation compared to control group. The supplementation of papaya leaf prevented from lipid peroxidation and enhanced the antioxidant activity of the broiler breast meat significantly (p < 0.05) after different storage periods. Papaya leaf reduced the lipid oxidation of meat during storage with strong free radical-scavenging ability. In conclusion, supplementation of papaya leaf in broiler diet to have high quality meat is recommended.Keywords: antioxidant activity, papaya leaf, breast meat, lipid peroxidation
Procedia PDF Downloads 603897 Investigating Methanol Interaction on Hexagonal Ceria-BTC Microrods
Authors: Jamshid Hussain, Kuen Song Lin
Abstract:
For prospective applications, chemists and materials scientists are particularly interested in creating 3D-micro/nanocomposite structures with shapes and unique characteristics. Ceria has recently been produced with a variety of morphologies, including one-dimensional structures (nanoparticles, nanorods, nanowires, and nanotubes). It is anticipated that this material can be used in different fields, such as catalysis, methanol decomposition, carbon monoxide oxidation, optical materials, and environmental protection. Distinct three-dimensional hydrated ceria-BTC (CeO₂-1,3,5-Benzenetricarboxylic-acid) microstructures were successfully synthesized via a hydrothermal route in an aqueous solution. FE-SEM and XRD patterns reveal that a ceria-BTC framework diameter and length are approximately 1.45–2.4 and 5.5–6.5 µm, respectively, at 130 oC and with pH 2 for 72 h. It was demonstrated that the reaction conditions affected the 3D ceria-BTC architecture. The hexagonal ceria-BTC microrod comprises organic linkers, which are transformed into hierarchical ceria microrod in the presences of air at 400 oC was confirmed by Fourier transform infrared spectroscopy. The Ce-O bonding of the hierarchical ceria microrod (HCMs) species has a bond distance and coordination number of 2.44 and 6.89, respectively, which attenuates the EXAFS spectra. Compared to the ceria powder, the HCMs produced more oxygen vacancies and Ce3+ as shown by the XPS and XANES/EXAFS analyses.Keywords: hierarchical ceria microrod, three-dimensional ceria, methanol decomposition, reaction mechanism, XANES/EXAFS
Procedia PDF Downloads 6896 A Review: Carotenoids a Biologically Important Bioactive Compound
Authors: Aarti Singh, Anees Ahmad
Abstract:
Carotenoids comprise a group of isoprenoid pigments. Carotenes, xanthophylls and their derivatives have been found to play an important role in all living beings through foods, neutraceuticals and pharmaceuticals. α-carotene, β-carotene and β-cryptoxanthin play a vital role in humans to provide vitamin A source for the growth, development and proper functioning of immune system and vision. They are very crucial for plants and humans as they protect from photooxidative damage and are excellent antioxidants quenching singlet molecular oxygen and peroxyl radicals. Diet including more intake of carotenoids results in reduced threat of various chronic diseases such as cancer (lung, breast, prostate, colorectal and ovarian cancers) and coronary heart diseases. The blue light filtering efficiency of the carotenoids in liposomes have been reported to be maximum in lutein followed by zeaxanthin, β-carotene and lycopene. Lycopene play a vital role for the protection from CVD. Lycopene in serum is directly related to reduced risk of osteoporosis in postmenopausal women. Carotenoids have the major role in the treatment of skin disorders. There is a need to identify and isolate novel carotenoids from diverse natural sources for human health benefits.Keywords: antioxidants, carotenoids, neutraceuticals, osteoporosis, pharmaceuticals
Procedia PDF Downloads 360895 Development of Method for Recovery of Nickel from Aqueous Solution Using 2-Hydroxy-5-Nonyl- Acetophenone Oxime Impregnated on Activated Charcoal
Authors: A. O. Adebayo, G. A. Idowu, F. Odegbemi
Abstract:
Investigations on the recovery of nickel from aqueous solution using 2-hydroxy-5-nonyl- acetophenone oxime (LIX-84I) impregnated on activated charcoal was carried out. The LIX-84I was impregnated onto the pores of dried activated charcoal by dry method and optimum conditions for different equilibrium parameters (pH, adsorbent dosage, extractant concentration, agitation time and temperature) were determined using a simulated solution of nickel. The kinetics and adsorption isotherm studies were also evaluated. It was observed that the efficiency of recovery with LIX-84I impregnated on charcoal was dependent on the pH of the aqueous solution as there was little or no recovery at pH below 4. However, as the pH was raised, percentage recovery increases and peaked at pH 5.0. The recovery was found to increase with temperature up to 60ºC. Also it was observed that nickel adsorbed onto the loaded charcoal best at a lower concentration (0.1M) of the extractant when compared with higher concentrations. Similarly, a moderately low dosage (1 g) of the adsorbent showed better recovery than larger dosages. These optimum conditions were used to recover nickel from the leachate of Ni-MH batteries dissolved with sulphuric acid, and a 99.6% recovery was attained. Adsorption isotherm studies showed that the equilibrium data fitted best to Temkin model, with a negative value of constant, b (-1.017 J/mol) and a high correlation coefficient, R² of 0.9913. Kinetic studies showed that the adsorption process followed a pseudo-second order model. Thermodynamic parameter values (∆G⁰, ∆H⁰, and ∆S⁰) showed that the adsorption was endothermic and spontaneous. The impregnated charcoal appreciably recovered nickel using a relatively smaller volume of extractant than what is required in solvent extraction. Desorption studies showed that the loaded charcoal is reusable for three times, and so might be economical for nickel recovery from waste battery.Keywords: charcoal, impregnated, LIX-84I, nickel, recovery
Procedia PDF Downloads 147894 Deprivation of Visual Information Affects Differently the Gait Cycle in Children with Different Level of Motor Competence
Authors: Miriam Palomo-Nieto, Adrian Agricola, Rudolf Psotta, Reza Abdollahipour, Ludvik Valtr
Abstract:
The importance of vision and the visual control of movement have been labeled in the literature related to motor control and many studies have demonstrated that children with low motor competence may rely more heavily on vision to perform movements than their typically developing peers. The aim of the study was to highlight the effects of different visual conditions on motor performance during walking in children with different levels of motor coordination. Participants (n = 32, mean age = 8.5 years sd. ± 0.5) were divided into two groups: typical development (TD) and low motor coordination (LMC) based on the scores of the Movement Assessment Battery for Children (MABC-2). They were asked to walk along a 10 meters walkway where the Optojump-Next instrument was installed in a portable laboratory (15 x 3 m), which allows that all participants had the same visual information. They walked in self-selected speed under four visual conditions: full vision (FV), limited vision 100 ms (LV-100), limited vision 150 ms (LV-150) and non-vision (NV). For visual occlusion participants were equipped with Plato Goggles that shut for 100 and 150 ms, respectively, within each 2 sec. Data were analyzed in a two-way mixed-effect ANOVA including 2 (TD vs. LMC) x 4 (FV, LV-100, LV-150 & NV) with repeated-measures on the last factor (p ≤.05). Results indicated that TD children walked faster and with longer normalized steps length and strides than LMC children. For TD children the percentage of the single support and swing time were higher than for low motor competence children. However, the percentage of load response and pre swing was higher in the low motor competence children rather than the TD children. These findings indicated that through walking we could be able to identify different levels of motor coordination in children. Likewise, LMC children showed shorter percentages in those parameters regarding only one leg support, supporting the idea of balance problems.Keywords: visual information, motor performance, walking pattern, optojump
Procedia PDF Downloads 574893 Optimisation of Wastewater Treatment for Yeast Processing Effluent Using Response Surface Methodology
Authors: Shepherd Manhokwe, Sheron Shoko, Cuthbert Zvidzai
Abstract:
In the present study, the interactive effects of temperature and cultured bacteria on the performance of a biological treatment system of yeast processing wastewater were investigated. The main objective of this study was to investigate and optimize the operating parameters that reduce organic load and colour. Experiments were conducted based on a Central Composite Design (CCD) and analysed using Response Surface Methodology (RSM). Three dependent parameters were either directly measured or calculated as response. These parameters were total Chemical Oxygen Demand (COD) removal, colour reduction and total solids. COD removal efficiency of 26 % and decolourization efficiency of 44 % were recorded for the wastewater treatment. The optimized conditions for the biological treatment were found to be at 20 g/l cultured bacteria and 25 °C for COD reduction. For colour reduction optimum conditions were temperature of 30.35°C and bacterial formulation of 20g/l. Biological treatment of baker’s yeast processing effluent is a suitable process for the removal of organic load and colour from wastewater, especially when the operating parameters are optimized.Keywords: COD reduction, optimisation, response surface methodology, yeast processing wastewater
Procedia PDF Downloads 342892 Optimization and Energy Management of Hybrid Standalone Energy System
Authors: T. M. Tawfik, M. A. Badr, E. Y. El-Kady, O. E. Abdellatif
Abstract:
Electric power shortage is a serious problem in remote rural communities in Egypt. Over the past few years, electrification of remote communities including efficient on-site energy resources utilization has achieved high progress. Remote communities usually fed from diesel generator (DG) networks because they need reliable energy and cheap fresh water. The main objective of this paper is to design an optimal economic power supply from hybrid standalone energy system (HSES) as alternative energy source. It covers energy requirements for reverse osmosis desalination unit (DU) located in National Research Centre farm in Noubarya, Egypt. The proposed system consists of PV panels, Wind Turbines (WT), Batteries, and DG as a backup for supplying DU load of 105.6 KWh/day rated power with 6.6 kW peak load operating 16 hours a day. Optimization of HSES objective is selecting the suitable size of each of the system components and control strategy that provide reliable, efficient, and cost-effective system using net present cost (NPC) as a criterion. The harmonization of different energy sources, energy storage, and load requirements are a difficult and challenging task. Thus, the performance of various available configurations is investigated economically and technically using iHOGA software that is based on genetic algorithm (GA). The achieved optimum configuration is further modified through optimizing the energy extracted from renewable sources. Effective minimization of energy charging the battery ensures that most of the generated energy directly supplies the demand, increasing the utilization of the generated energy.Keywords: energy management, hybrid system, renewable energy, remote area, optimization
Procedia PDF Downloads 199891 Hazardous Gas Detection Robot in Coal Mines
Authors: Kanchan J. Kakade, S. A. Annadate
Abstract:
This paper presents design and development of underground coal mine monitoring using mbed arm cortex controller and ZigBee communication. Coal mine is a special type of mine which is dangerous in nature. Safety is the most important feature of a coal industry for proper functioning. It’s not only for employees and workers but also for environment and nation. Many coal producing countries in the world face phenomenal frequently occurred accidents in coal mines viz, gas explosion, flood, and fire breaking out during coal mines exploitation. Thus, such emissions of various gases from coal mines are necessary to detect with the help of robot. Coal is a combustible, sedimentary, organic rock, which is made up of mainly carbon, hydrogen and oxygen. Coal Mine Detection Robot mainly detects mash gas and carbon monoxide. The mash gas is the kind of the mixed gas which mainly make up of methane in the underground of the coal mine shaft, and sometimes it abbreviate to methane. It is formed from vegetation, which has been fused between other rock layers and altered by the combined effects of heat and pressure over millions of years to form coal beds. Coal has many important uses worldwide. The most significant uses of coal are in electricity generation, steel production, cement manufacturing and as a liquid fuel.Keywords: Zigbee communication, various sensors, hazardous gases, mbed arm cortex M3 core controller
Procedia PDF Downloads 466890 Metagenomics Profile during the Bioremediation of Fischer-Tropsch Derived Short-Chain Alcohols and Volatile Fatty Acids Using a Moving Bed Biofilm Reactor
Authors: Mabtho Moreroa-Monyelo, Grace Ijoma, Rosina Nkuna, Tonderayi Matambo
Abstract:
A moving bed biofilm reactor (MBBR) was used for the bioremediation of high strength chemical oxygen demand (COD) Fisher-Tropsch (FT) wastewater. The aerobic MBBR system was operated over 60 days. For metagenomics profile assessment of the targeted 16S sequence of bacteria involved in the bioremediation of the chemical compounds, sludge samples were collected every second day of operation. Parameters such as pH and COD were measured daily to compare the system efficiency as the changedin microbial diversity progressed. The study revealed that pH was a contributing factor to microbial diversity, which further affected the efficiency of the MBBR system. The highest COD removal rate of 86.4% was achieved at pH 8.3. It was observed that when there was more, A higher bacterial diversity led to an improvement in the reduction of COD. Furthermore, an OTUof 4530 was obtained, which were divided into 12 phyla, 27 classes, 44 orders, 74 families, and 138 genera across all sludge samples from the MBBR. A determination of the relative abundance of microorganisms at phyla level indicates that the most abundant phylum on day it was Firmicutes (50%); thereafter, the most abundant phylum changed toProteobacteria.Keywords: biodegradation, fischer-tropsch wastewater, metagenomics, moving bed biofilm reactor
Procedia PDF Downloads 156