Search results for: complex viscosity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5609

Search results for: complex viscosity

4379 Vibration Analysis of FGM Sandwich Panel with Cut-Outs Using Refined Higher-Order Shear Deformation Theory (HSDT) Based on Isogeometric Analysis

Authors: Lokanath Barik, Abinash Kumar Swain

Abstract:

This paper presents vibration analysis of FGM sandwich structure with a complex profile governed by refined higher-order shear deformation theory (RHSDT) using isogeometric analysis (IGA). Functionally graded sandwich plates provide a wide range of applications in aerospace, defence, and aircraft industries due to their ability to distribute material functions to influence the thermo-mechanical properties as desired. In practical applications, these structures generally have intrinsic profiles, and their response to loads is significantly affected due to cut-outs. IGA is primarily a NURBS-based technique that is effective in solving higher-order differential equations due to its inherent C1 continuity imposition in solution space for a single patch. Complex structures generally require multiple patches to accurately represent the geometry, and hence, there is a loss of continuity at adjoining patch junctions. Therefore, patch coupling is desired to maintain continuity requirements throughout the domain. In this work, a novel strong coupling approach is provided that generates a well-defined NURBS-based model while achieving continuity. The methodology is validated by free vibration analysis of sandwich plates with present literature. The results are in good agreement with the analytical solution for different plate configurations and power law indexes. Numerical examples of rectangular and annular plates are discussed with variable boundary conditions. Additionally, parametric studies are provided by varying the aspect ratio, porosity ratio and their influence on the natural frequency of the plate.

Keywords: vibration analysis, FGM sandwich structure, multipatch geometry, patch coupling, IGA

Procedia PDF Downloads 56
4378 Application of Response Surface Methodology to Optimize the Factor Influencing the Wax Deposition of Malaysian Crude Oil

Authors: Basem Elarbe, Ibrahim Elganidi, Norida Ridzuan, Norhyati Abdullah

Abstract:

Wax deposition in production pipelines and transportation tubing from offshore to onshore is critical in the oil and gas industry due to low-temperature conditions. It may lead to a reduction in production, shut-in, plugging of pipelines and increased fluid viscosity. The most significant popular approach to solve this issue is by injection of a wax inhibitor into the channel. This research aims to determine the amount of wax deposition of Malaysian crude oil by estimating the effective parameters using (Design-Expert version 7.1.6) by response surface methodology (RSM) method. Important parameters affecting wax deposition such as cold finger temperature, inhibitor concentration and experimental duration were investigated. It can be concluded that SA-co-BA copolymer had a higher capability of reducing wax in different conditions where the minimum point of wax reduction was found at 300 rpm, 14℃, 1h, 1200 ppmThe amount of waxes collected for each parameter were 0.12g. RSM approach was applied using rotatable central composite design (CCD) to minimize the wax deposit amount. The regression model’s variance (ANOVA) results revealed that the R2 value of 0.9906, indicating that the model can be clarified 99.06% of the data variation, and just 0.94% of the total variation were not clarified by the model. Therefore, it indicated that the model is extremely significant, confirming a close agreement between the experimental and the predicted values. In addition, the result has shown that the amount of wax deposit decreased significantly with the increase of temperature and the concentration of poly (stearyl acrylate-co-behenyl acrylate) (SABA), which were set at 14°C and 1200 ppm, respectively. The amount of wax deposit was successfully reduced to the minimum value of 0.01 g after the optimization.

Keywords: wax deposition, SABA inhibitor, RSM, operation factors

Procedia PDF Downloads 267
4377 Agent-Based Modeling Investigating Self-Organization in Open, Non-equilibrium Thermodynamic Systems

Authors: Georgi Y. Georgiev, Matthew Brouillet

Abstract:

This research applies the power of agent-based modeling to a pivotal question at the intersection of biology, computer science, physics, and complex systems theory about the self-organization processes in open, complex, non-equilibrium thermodynamic systems. Central to this investigation is the principle of Maximum Entropy Production (MEP). This principle suggests that such systems evolve toward states that optimize entropy production, leading to the formation of structured environments. It is hypothesized that guided by the least action principle, open thermodynamic systems identify and follow the shortest paths to transmit energy and matter, resulting in maximal entropy production, internal structure formation, and a decrease in internal entropy. Concurrently, it is predicted that there will be an increase in system information as more information is required to describe the developing structure. To test this, an agent-based model is developed simulating an ant colony's formation of a path between a food source and its nest. Utilizing the Netlogo software for modeling and Python for data analysis and visualization, self-organization is quantified by calculating the decrease in system entropy based on the potential states and distribution of the ants within the simulated environment. External entropy production is also evaluated for information increase and efficiency improvements in the system's action. Simulations demonstrated that the system begins at maximal entropy, which decreases as the ants form paths over time. A range of system behaviors contingent upon the number of ants are observed. Notably, no path formation occurred with fewer than five ants, whereas clear paths were established by 200 ants, and saturation of path formation and entropy state was reached at populations exceeding 1000 ants. This analytical approach identified the inflection point marking the transition from disorder to order and computed the slope at this point. Combined with extrapolation to the final path entropy, these parameters yield important insights into the eventual entropy state of the system and the timeframe for its establishment, enabling the estimation of the self-organization rate. This study provides a novel perspective on the exploration of self-organization in thermodynamic systems, establishing a correlation between internal entropy decrease rate and external entropy production rate. Moreover, it presents a flexible framework for assessing the impact of external factors like changes in world size, path obstacles, and friction. Overall, this research offers a robust, replicable model for studying self-organization processes in any open thermodynamic system. As such, it provides a foundation for further in-depth exploration of the complex behaviors of these systems and contributes to the development of more efficient self-organizing systems across various scientific fields.

Keywords: complexity, self-organization, agent based modelling, efficiency

Procedia PDF Downloads 48
4376 The Korean Neo-Confucian Ideal of Pluralism and Han

Authors: Hyeon Sop Baek

Abstract:

This paper will investigate the Korean concept of han and suggest that the feeling of han is essentially inseparable from the central project of the Korean neo-Confucian philosophical tradition. Han is a complex sentiment, but one may characterize it as an internally directed complex of sentiments of frustration, sadness, and anger. In particular, this paper aims to demonstrate that the Korean neo-Confucian project's ultimate objective was to build a pluralistic world – where different people can coexist together in harmony and participate in building the ideal world. Nevertheless, the confrontation between the neo-Confucian idea – that every person has the intrinsic potential to be moral – and the bleakness of reality that made their objective virtually impossible to achieve led to the formation and development of the feeling of han. The paper will first examine the concept of han and what it entails and then investigate the core elements of Korean neo-Confucianism, examining the works of Korean neo-Confucians, including Toegye, Yulgok, and Jeong Dojeon. Furthermore, the concept of plurality will be drawn from the political theory of Hannah Arendt. While the Arendtian and Korean neo-Confucian philosophies are ultimately different, this paper will contend that the two philosophies' broader aims share many resonating points. Specifically, within both philosophies, the human plurality – that all humans are equal but not the same – underlies the foundation of an ideal political realm. From there, an argument that the difficulty faced by the neo-Confucians in Korea in constructing a polity based on the ideal of respect and human moral capacity ultimately contributed to the emergence of the sentiment han will be presented. In conclusion, this paper will demonstrate that the ultimate objectives of Korean Confucianism lie in closing the gap between the ideal and reality in moral cultivation as well as its political project of building an ideal, pluralistic world, and han emerges from the realization of the difficulty of achieving that goal. Finally, this paper will contest that han needs not be perceived negatively, and han can be a driving force for political participation in the contemporary democratic, pluralistic society.

Keywords: Korea, Confucianism, neo-Confucianism, philosophy, han, Korean philosophy

Procedia PDF Downloads 120
4375 Numerical Investigation of the Needle Opening Process in a High Pressure Gas Injector

Authors: Matthias Banholzer, Hagen Müller, Michael Pfitzner

Abstract:

Gas internal combustion engines are widely used as propulsion systems or in power plants to generate heat and electricity. While there are different types of injection methods including the manifold port fuel injection and the direct injection, the latter has more potential to increase the specific power by avoiding air displacement in the intake and to reduce combustion anomalies such as backfire or pre-ignition. During the opening process of the injector, multiple flow regimes occur: subsonic, transonic and supersonic. To cover the wide range of Mach numbers a compressible pressure-based solver is used. While the standard Pressure Implicit with Splitting of Operators (PISO) method is used for the coupling between velocity and pressure, a high-resolution non-oscillatory central scheme established by Kurganov and Tadmor calculates the convective fluxes. A blending function based on the local Mach- and CFL-number switches between the compressible and incompressible regimes of the developed model. As the considered operating points are well above the critical state of the used fluids, the ideal gas assumption is not valid anymore. For the real gas thermodynamics, the models based on the Soave-Redlich-Kwong equation of state were implemented. The caloric properties are corrected using a departure formalism, for the viscosity and the thermal conductivity the empirical correlation of Chung is used. For the injector geometry, the dimensions of a diesel injector were adapted. Simulations were performed using different nozzle and needle geometries and opening curves. It can be clearly seen that there is a significant influence of all three parameters.

Keywords: high pressure gas injection, hybrid solver, hydrogen injection, needle opening process, real-gas thermodynamics

Procedia PDF Downloads 444
4374 Initiation of Paraptosis-Like PCD Pathway in Hepatocellular Carcinoma Cell Line by Hep88 mAb through the Binding of Mortalin (HSPA9) and Alpha-Enolase

Authors: Panadda Rojpibulstit, Suthathip Kittisenachai, Songchan Puthong, Sirikul Manochantr, Pornpen Gamnarai, Sasichai Kangsadalampai, Sittiruk Roytrakul

Abstract:

Hepatocellular carcinoma (HCC) is the most primary hepatic cancer worldwide. Nowadays a targeted therapy via monoclonal antibodies (mAbs) specific to tumor-associated antigen is continually developed in HCC treatment. In this regard, after establishing and consequently exploring Hep88 mAb’s tumoricidal effect on hepatocellular carcinoma cell line (HepG2 cell line), the Hep88 mAb’s specific Ag from both membrane and cytoplasmic fractions of HepG2 cell line was identified by 2-D gel electrophoresis and western blot analysis. After in-gel digestion and subsequent analysis by liquid chromatography-mass spectrometry (LC-MS), mortalin (HSPA9) and alpha-enolase were identified. The recombinant proteins specific to Hep88 mAb were cloned and expressed in E.coli BL21 (DE3). Moreover, alteration of HepG2 and Chang liver cell line after being induced by Hep88 mAb for 1-3 days was investigated using a transmission electron microscope. The result demonstrated that Hep88 mAb can bind to the recombinant mortalin (HSPA9) andalpha-enolase. In addition, gradual appearance of mitochondria vacuolization and endoplasmic reticulum dilatation were observed. Taken together, paraptosis-like programmed cell death (PCD) of HepG2 is induced by binding of mortalin (HSPA9) and alpha-enolase to Hep88 mAb. Mortalin depletion by formation of Hep88 mAb-mortalin (HSPA9) complex might initiate transcription-independent of p53-mediated apoptosis. Additionally, Hep88 mAb-alpha-enolase complex might initiate HepG2 cells energy exhaustion by glycolysis pathway obstruction. These results imply that Hep88 mAb might be a promising tool for development of an effective treatment of HCC in the next decade.

Keywords: Hepatocellular carcinoma, Monoclonal antibody, Paraptosis-like program cell death, Transmission electron microscopy, mortalin (HSPA9), alpha-enolase

Procedia PDF Downloads 346
4373 Analytical Model of Multiphase Machines Under Electrical Faults: Application on Dual Stator Asynchronous Machine

Authors: Nacera Yassa, Abdelmalek Saidoune, Ghania Ouadfel, Hamza Houassine

Abstract:

The rapid advancement in electrical technologies has underscored the increasing importance of multiphase machines across various industrial sectors. These machines offer significant advantages in terms of efficiency, compactness, and reliability compared to their single-phase counterparts. However, early detection and diagnosis of electrical faults remain critical challenges to ensure the durability and safety of these complex systems. This paper presents an advanced analytical model for multiphase machines, with a particular focus on dual stator asynchronous machines. The primary objective is to develop a robust diagnostic tool capable of effectively detecting and locating electrical faults in these machines, including short circuits, winding faults, and voltage imbalances. The proposed methodology relies on an analytical approach combining electrical machine theory, modeling of magnetic and electrical circuits, and advanced signal analysis techniques. By employing detailed analytical equations, the developed model accurately simulates the behavior of multiphase machines in the presence of electrical faults. The effectiveness of the proposed model is demonstrated through a series of case studies and numerical simulations. In particular, special attention is given to analyzing the dynamic behavior of machines under different types of faults, as well as optimizing diagnostic and recovery strategies. The obtained results pave the way for new advancements in the field of multiphase machine diagnostics, with potential applications in various sectors such as automotive, aerospace, and renewable energies. By providing precise and reliable tools for early fault detection, this research contributes to improving the reliability and durability of complex electrical systems while reducing maintenance and operation costs.

Keywords: faults, diagnosis, modelling, multiphase machine

Procedia PDF Downloads 36
4372 Fractionation of Biosynthetic Mixture of Gentamicins by Reactive Extraction

Authors: L. Kloetzer, M. Poştaru, A. I. Galaction, D. Caşcaval

Abstract:

Gentamicin is an aminoglycoside antibiotic industrially obtained by biosynthesis of Micromonospora purpurea or echinospora, the product being a complex mixture of components with very similar structures. Among them, three exhibit the most important biological activity: gentamicins C1, C1a, C2, and C2a. The separation of gentamicin from the fermentation broths at industrial scale is rather difficult and it does not allow the fractionation of the complex mixture of gentamicins in order to increase the therapeutic activity of the product. The aim of our experiments is to analyze the possibility to selectively separate the less active gentamicin, namely gentamicin C1, from the biosynthetic mixture by reactive extraction with di-(2-ethylhexyl) phosphoric acid (D2EHPA) dissolved in dichloromethane, followed selective re-extraction of the most active gentamicins C1a, C2, and C2a. The experiments on the reactive extraction of gentamicins indicated the possibility to separate selectively the gentamicin C1 from the mixture obtained by biosynthesis. The extraction selectivity is positively influenced by increasing the pH-value of an aqueous solution and by using a D2EHPA concentration in organic phase closer to the value needed for an equimolecular ratio between the extractant and this gentamicin. For quantifying the selectivity of separation, the selectivity factor, calculated as the ratio between the degree of reactive extraction of gentamicin C1 and the overall extraction degree of gentamicins were used. The possibility to remove the gentamicin C1 at an extractant concentration of 10 g l-1 and pH = 8 is presented. In these conditions, it was obtained the maximum value of the selectivity factor of 2.14, which corresponds to the modification of the gentamicin C1 concentration from 31.92% in the biosynthetic mixture to 72% in the extract. The re-extraction of gentamicins C1, C1a, C2, and C2a with sulfuric acid from the extract previously obtained by reactive extraction (mixture A – extract obtained by non-selective reactive extraction; mixture B – extract obtained by selective reactive extraction) allows for separating selectively the most active gentamicins C1a, C2, and C2a. For recovering only the active gentamicins C1a, C2, and C2a, the re-extraction must be carried out at very low acid concentrations, far below those corresponding to the stoichiometry of its chemical reactions with these gentamicins. Therefore, the mixture resulted by re-extraction contained 92.6% gentamicins C1a, C2, and C2a. By bringing together the aqueous solutions obtained by reactive extraction and re-extraction, the overall content of the active gentamicins in the final product becomes 89%, their loss reaching 0.3% related to the initial biosynthetic product.

Keywords: di-(2-ethylhexyl) phosphoric acid, gentamicin, reactive extraction, selectivity factor

Procedia PDF Downloads 302
4371 Biomass Production Improvement of Beauveria bassiana at Laboratory Scale for a Biopesticide Development

Authors: G. Quiroga-Cubides, M. Cruz, E. Grijalba, J. Sanabria, A. Ceballos, L. García, M. Gómez

Abstract:

Beauveria sp. has been used as an entomopathogenic microorganism for biological control of various plant pests such as whitefly, thrips, aphids and chrysomelidaes (including Cerotoma tingomariana species), which affect soybean crops in Colombia´s Altillanura region. Therefore, a biopesticide prototype based on B. bassiana strain Bv060 was developed at Corpoica laboratories. For the production of B. bassiana conidia, a baseline fermentation was performed at laboratory in a solid medium using broken rice as a substrate, a temperature of 25±2 °C and a relative humidity of 60±10%. The experimental design was completely randomized, with a three-time repetition. These culture conditions resulted in an average conidial concentration of 1.48x10^10 conidia/g, a yield of 13.07 g/kg dry substrate and a productivity of 8.83x10^7 conidia/g*h were achieved. Consequently, the objective of this study was to evaluate the influence of the particle size reduction of rice (<1 mm) and the addition of a complex nitrogen source over conidia production and efficiency parameters in a solid-state fermentation, in a completely randomized experiment with a three-time repetition. For this aim, baseline fermentation conditions of temperature and humidity were employed in a semisolid culture medium with powdered rice (10%) and a complex nitrogen source (8%). As a result, it was possible to increase conidial concentration until 9.87x10^10 conidia/g, yield to 87.07 g/g dry substrate and productivity to 3.43x10^8 conidia/g*h. This suggested that conidial concentration and yield in semisolid fermentation increased almost 7 times compared with baseline while the productivity increased 4 times. Finally, the designed system for semisolid-state fermentation allowed to achieve an easy conidia recovery, which means reduction in time and costs of the production process.

Keywords: Beauveria bassiana, biopesticide, solid state fermentation, semisolid medium culture

Procedia PDF Downloads 290
4370 A Proposed Inclusive Motor Skill Intervention Programme for Pre-schoolers in Low Resources Areas in Preparation of School Readiness

Authors: J. Van der Walt, N. A. Plastow, M. Unger

Abstract:

Gross and fine motor skill difficulties among children affect their ability to learn and progress in school. Research indicates that children in low socio-economic areas are at a higher risk of motor skill difficulties, while therapy resources are limited. The Hopscotch motor skill programme is a well-researched accessible in-school intervention developed by occupational and physiotherapists through complex intervention development. The development stage of the complex intervention development model firstly included a prevalence study in a low-resourced area in the West Coast of South Africa, indicating a high prevalence with significant motor skill difficulties among pre-school children at 14.5% with fine motor skill difficulties at 24.6%. A scoping review identifies motor skill interventions for pre-school children and a proposed a framework of fundamental concepts to consider when developing a motor skill intervention. a Delphi-study considered the framework and encouraged collaboration between therapists and educators to make the programme accessible, resource and cost effective, specifically geared towards a rural, low resourced area. The results from the Delphi study, together with the proposed framework from the scoping review was used to develop the Hopscotch programme, adopting a task-shifting approach. The eight-week small-group programme is facilitated by teachers with the support of therapists. The programme aims to improve the motor skills of pre-school aged children with motor skill difficulties to promote academic readiness through obstacle courses, ball skill games and fine motor games and crafts. A randomised controlled trial is planned as a next stage to determine the preliminary effect of the programme on the motor and early academic skills of pre-school children.

Keywords: accesible learning, motor skill intervention, school readiness, task shifting

Procedia PDF Downloads 173
4369 Alterations of Molecular Characteristics of Polyethylene under the Influence of External Effects

Authors: Vigen Barkhudaryan

Abstract:

The influence of external effects (γ-, UV–radiations, high temperature) in presence of air oxygen on structural transformations of low-density polyethylene (LDPE) have been investigated dependent on the polymers’ thickness, the intensity and the dose of external actions. The methods of viscosimetry, light scattering, turbidimetry and gelation measuring were used for this purpose. The comparison of influence of external effects on LDPE shows, that the destruction and cross-linking processes of macromolecules proceed simultaneously with all kinds of external effects. A remarkable growth of average molecular mass of LDPE along with the irradiation doses and heat treatment exposure growth was established. It was linear for the mass average molecular mass and at the initial doses is mainly the result of the increase of the macromolecular branching. As a result, the macromolecular hydrodynamic volumes have been changed, and therefore the dependence of viscosity average molecular mass on the doses was going through the minimum at initial doses. A significant change of molecular mass, sizes and shape of macromolecules of LDPE occurs under the influence of external effects. The influence is limited only by diffusion of oxygen during -irradiation and heat treatment. At UV–irradiation the influence is limited both by diffusion of oxygen and penetration of radiation. Consequently, the molecular transformations are deeper and evident in case of -irradiation, as soon as the polymer is transformed in a whole volume. It was also established, that the mechanism of molecular transformations in polymers from the surface layer distinctly differs from those of the sample deeper layer. A comparison of the results of these investigations allows us to conclude, that the mechanisms of influence of investigated external effects on polyethylene are similar.

Keywords: cross-linking, destruction, high temperature, LDPE, γ-radiations, UV-radiations

Procedia PDF Downloads 301
4368 Mathematical Modelling of Blood Flow with Magnetic Nanoparticles as Carrier for Targeted Drug Delivery in a Stenosed Artery

Authors: Sreeparna Majee, G. C. Shit

Abstract:

A study on targeted drug delivery is carried out in an unsteady flow of blood infused with magnetic NPs (nanoparticles) with an aim to understand the flow pattern and nanoparticle aggregation in a diseased arterial segment having stenosis. The magnetic NPs are supervised by the magnetic field which is significant for therapeutic treatment of arterial diseases, tumor and cancer cells and removing blood clots. Coupled thermal energy have also been analyzed by considering dissipation of energy because of the application of the magnetic field and the viscosity of blood. Simulation technique used to solve the mathematical model is vorticity-stream function formulations in the diseased artery. An elevation in SLP (Specific loss power) is noted in the aortic bloodstream when the agglomeration of nanoparticles is higher. This phenomenon has potential application in the treatment of hyperthermia. The study focuses on the lowering of WSS (Wall Shear Stress) with increasing particle concentration at the downstream of the stenosis which depicts the vigorous flow circulation zone. These low shear stress regions prolong the residing time of the nanoparticles carrying drugs which soaks up the LDL (Low Density Lipoprotein) deposition. Moreover, an increase in NP concentration enhances the Nusselt number which marks the increase of heat transfer from the arterial wall to the surrounding tissues to destroy tumor and cancer cells without affecting the healthy cells. The results have a significant influence in the study of medicine, to treat arterial diseases such as atherosclerosis without the need for surgery which can minimize the expenditures on cardiovascular treatments.

Keywords: magnetic nanoparticles, blood flow, atherosclerosis, hyperthermia

Procedia PDF Downloads 120
4367 Machine Learning and Internet of Thing for Smart-Hydrology of the Mantaro River Basin

Authors: Julio Jesus Salazar, Julio Jesus De Lama

Abstract:

the fundamental objective of hydrological studies applied to the engineering field is to determine the statistically consistent volumes or water flows that, in each case, allow us to size or design a series of elements or structures to effectively manage and develop a river basin. To determine these values, there are several ways of working within the framework of traditional hydrology: (1) Study each of the factors that influence the hydrological cycle, (2) Study the historical behavior of the hydrology of the area, (3) Study the historical behavior of hydrologically similar zones, and (4) Other studies (rain simulators or experimental basins). Of course, this range of studies in a certain basin is very varied and complex and presents the difficulty of collecting the data in real time. In this complex space, the study of variables can only be overcome by collecting and transmitting data to decision centers through the Internet of things and artificial intelligence. Thus, this research work implemented the learning project of the sub-basin of the Shullcas river in the Andean basin of the Mantaro river in Peru. The sensor firmware to collect and communicate hydrological parameter data was programmed and tested in similar basins of the European Union. The Machine Learning applications was programmed to choose the algorithms that direct the best solution to the determination of the rainfall-runoff relationship captured in the different polygons of the sub-basin. Tests were carried out in the mountains of Europe, and in the sub-basins of the Shullcas river (Huancayo) and the Yauli river (Jauja) with heights close to 5000 m.a.s.l., giving the following conclusions: to guarantee a correct communication, the distance between devices should not pass the 15 km. It is advisable to minimize the energy consumption of the devices and avoid collisions between packages, the distances oscillate between 5 and 10 km, in this way the transmission power can be reduced and a higher bitrate can be used. In case the communication elements of the devices of the network (internet of things) installed in the basin do not have good visibility between them, the distance should be reduced to the range of 1-3 km. The energy efficiency of the Atmel microcontrollers present in Arduino is not adequate to meet the requirements of system autonomy. To increase the autonomy of the system, it is recommended to use low consumption systems, such as the Ashton Raggatt McDougall or ARM Cortex L (Ultra Low Power) microcontrollers or even the Cortex M; and high-performance direct current (DC) to direct current (DC) converters. The Machine Learning System has initiated the learning of the Shullcas system to generate the best hydrology of the sub-basin. This will improve as machine learning and the data entered in the big data coincide every second. This will provide services to each of the applications of the complex system to return the best data of determined flows.

Keywords: hydrology, internet of things, machine learning, river basin

Procedia PDF Downloads 143
4366 A Deep Learning Approach to Real Time and Robust Vehicular Traffic Prediction

Authors: Bikis Muhammed, Sehra Sedigh Sarvestani, Ali R. Hurson, Lasanthi Gamage

Abstract:

Vehicular traffic events have overly complex spatial correlations and temporal interdependencies and are also influenced by environmental events such as weather conditions. To capture these spatial and temporal interdependencies and make more realistic vehicular traffic predictions, graph neural networks (GNN) based traffic prediction models have been extensively utilized due to their capability of capturing non-Euclidean spatial correlation very effectively. However, most of the already existing GNN-based traffic prediction models have some limitations during learning complex and dynamic spatial and temporal patterns due to the following missing factors. First, most GNN-based traffic prediction models have used static distance or sometimes haversine distance mechanisms between spatially separated traffic observations to estimate spatial correlation. Secondly, most GNN-based traffic prediction models have not incorporated environmental events that have a major impact on the normal traffic states. Finally, most of the GNN-based models did not use an attention mechanism to focus on only important traffic observations. The objective of this paper is to study and make real-time vehicular traffic predictions while incorporating the effect of weather conditions. To fill the previously mentioned gaps, our prediction model uses a real-time driving distance between sensors to build a distance matrix or spatial adjacency matrix and capture spatial correlation. In addition, our prediction model considers the effect of six types of weather conditions and has an attention mechanism in both spatial and temporal data aggregation. Our prediction model efficiently captures the spatial and temporal correlation between traffic events, and it relies on the graph attention network (GAT) and Bidirectional bidirectional long short-term memory (Bi-LSTM) plus attention layers and is called GAT-BILSTMA.

Keywords: deep learning, real time prediction, GAT, Bi-LSTM, attention

Procedia PDF Downloads 56
4365 Research Project on Learning Rationality in Strategic Behaviors: Interdisciplinary Educational Activities in Italian High Schools

Authors: Giovanna Bimonte, Luigi Senatore, Francesco Saverio Tortoriello, Ilaria Veronesi

Abstract:

The education process considers capabilities not only to be seen as a means to a certain end but rather as an effective purpose. Sen's capability approach challenges human capital theory, which sees education as an ordinary investment undertaken by individuals. A complex reality requires complex thinking capable of interpreting the dynamics of society's changes to be able to make decisions that can be rational for private, ethical and social contexts. Education is not something removed from the cultural and social context; it exists and is structured within it. In Italy, the "Mathematical High School Project" is a didactic research project is based on additional laboratory courses in extracurricular hours where mathematics intends to bring itself in a dialectical relationship with other disciplines as a cultural bridge between the two cultures, the humanistic and the scientific ones, with interdisciplinary educational modules on themes of strong impact in younger life. This interdisciplinary mathematics presents topics related to the most advanced technologies and contemporary socio-economic frameworks to demonstrate how mathematics is not only a key to reading but also a key to resolving complex problems. The recent developments in mathematics provide the potential for profound and highly beneficial changes in mathematics education at all levels, such as in socio-economic decisions. The research project is built to investigate whether repeated interactions can successfully promote cooperation among students as rational choice and if the skill, the context and the school background can influence the strategies choice and the rationality. A Laboratory on Game Theory as mathematical theory was conducted in the 4th year of the Mathematical High Schools and in an ordinary scientific high school of the Scientific degree program. Students played two simultaneous games of repeated Prisoner's Dilemma with an indefinite horizon, with two different competitors in each round; even though the competitors in each round will remain the same for the duration of the game. The results highlight that most of the students in the two classes used the two games with an immunization strategy against the risk of losing: in one of the games, they started by playing Cooperate, and in the other by the strategy of Compete. In the literature, theoretical models and experiments show that in the case of repeated interactions with the same adversary, the optimal cooperation strategy can be achieved by tit-for-tat mechanisms. In higher education, individual capacities cannot be examined independently, as conceptual framework presupposes a social construction of individuals interacting and competing, making individual and collective choices. The paper will outline all the results of the experimentation and the future development of the research.

Keywords: game theory, interdisciplinarity, mathematics education, mathematical high school

Procedia PDF Downloads 55
4364 Effect of Multi-Enzyme Supplementation on Growth Performance of Broiler

Authors: Abdur Rahman, Saima, T. N. Pasha, Muhammad Younus, Yassar Abbas, Shahid Jaleel

Abstract:

Non-starch polysaccharides (NSPs) are not completely digested by broiler endogenous enzymes and consequently the soluble NSPs in feed results in high digesta viscosity and poor retention of nutrients. Supplementation of NSPs digesting enzymes may release the nutrients from feed and reduce the anti-nutritional effects of NSP’s. The present study was conducted to determine the effects of NSPs digesting enzymes (Zympex) in broiler chicks. A total of 120 day old broiler chicks (Hubbard) were categorized into 3 treatments and each treatment was having four replicates with 10 birds in each. Dietary treatments comprised of Basal diet (2740 KCal/Kg) as control-1 (T1), low energy diet (2630 KCal/kg) control-2 (T2) and low energy diet with 0.5 gm/Kg enzyme as T3. Multi-enzymes supplementation showed significant (P < 0.05) positive effect on weight gain (last three weeks), feed intake (last two weeks), FCR (1st, 2nd, 4th and 5th) and nutrient retention in T3 when compared with control-2. Weight gain was lower (P < 0.05) in low caloric feed group C when compared with control-1 in all weeks except last week (P > 0.05), feed consumption was significantly lower (P < 0.05) in 5th week and results showed significantly poor FCR (P < 0.05) in 2nd, 3rd and 4th week but non-significant effect in 1st and 5th week when compared with control-1 group, which revealed the positive effect of enzyme supplementation in low energy diet. These results revealed that enzyme supplementation releases more energy from low energy diets and results in equal performance to normal diet.

Keywords: body weight, FCR, feed intake, enzyme, non-starch polysaccharides

Procedia PDF Downloads 326
4363 Investigation of Electrospun Composites Nanofiber of Poly (Lactic Acid)/Hazelnut Shell Powder/Zinc Oxide

Authors: Ibrahim Sengor, Sumeyye Cesur, Ilyas Kartal, Faik Nuzhet Oktar, Nazmi Ekren, Ahmet Talat Inan, Oguzhan Gunduz

Abstract:

In recent years, many researchers focused on nano-size fiber production. Nanofibers have been studied due to their different and superior physical, chemical and mechanical properties. Poly (lactic acid) (PLA), is a type of biodegradable thermoplastic polyester derived from renewable sources used in biomedical owing to its biocompatibility and biodegradability. In addition, zinc oxide is an antibacterial material and hazelnut shell powder is a filling material. In this study, nanofibers were obtained by adding of different ratio Zinc oxide, (ZnO) and hazelnut shell powder at different concentration into Poly (lactic acid) (PLA) by using electrospinning method which is the most common method to obtain nanofibers. After dissolving the granulated polylactic acids in % 1,% 2,% 3 and% 4 with chloroform solvent, they are homogenized by adding tween and hazelnut shell powder at different ratios and then by electrospinning, nanofibers are obtained. Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimeter (DSC) and physical analysis such as density, electrical conductivity, surface tension, viscosity measurement and antimicrobial test were carried out after production process. The resulting structures of the nanofiber possess antimicrobial and antiseptic properties, which are attractive for biomedical applications. The resulting structures of the nanofiber possess antimicrobial, non toxic, self-cleaning and rigid properties, which are attractive for biomedical applications.

Keywords: electrospinning, hazelnut shell powder, nanofibers, poly (lactic acid), zinc oxide

Procedia PDF Downloads 146
4362 Computer Simulation of Hydrogen Superfluidity through Binary Mixing

Authors: Sea Hoon Lim

Abstract:

A superfluid is a fluid of bosons that flows without resistance. In order to be a superfluid, a substance’s particles must behave like bosons, yet remain mobile enough to be considered a superfluid. Bosons are low-temperature particles that can be in all energy states at the same time. If bosons were to be cooled down, then the particles will all try to be on the lowest energy state, which is called the Bose Einstein condensation. The temperature when bosons start to matter is when the temperature has reached its critical temperature. For example, when Helium reaches its critical temperature of 2.17K, the liquid density drops and becomes a superfluid with zero viscosity. However, most materials will solidify -and thus not remain fluids- at temperatures well above the temperature at which they would otherwise become a superfluid. Only a few substances currently known to man are capable of at once remaining a fluid and manifesting boson statistics. The most well-known of these is helium and its isotopes. Because hydrogen is lighter than helium, and thus expected to manifest Bose statistics at higher temperatures than helium, one might expect hydrogen to also be a superfluid. As of today, however, no one has yet been able to produce a bulk, hydrogen superfluid. The reason why hydrogen did not form a superfluid in the past is its intermolecular interactions. As a result, hydrogen molecules are much more likely to crystallize than their helium counterparts. The key to creating a hydrogen superfluid is therefore finding a way to reduce the effect of the interactions among hydrogen molecules, postponing the solidification to lower temperature. In this work, we attempt via computer simulation to produce bulk superfluid hydrogen through binary mixing. Binary mixture is a technique of mixing two pure substances in order to avoid crystallization and enhance super fluidity. Our mixture here is KALJ H2. We then sample the partition function using this Path Integral Monte Carlo (PIMC), which is well-suited for the equilibrium properties of low-temperature bosons and captures not only the statistics but also the dynamics of Hydrogen. Via this sampling, we will then produce a time evolution of the substance and see if it exhibits superfluid properties.

Keywords: superfluidity, hydrogen, binary mixture, physics

Procedia PDF Downloads 304
4361 Aire-Dependent Transcripts have Shortened 3’UTRs and Show Greater Stability by Evading Microrna-Mediated Repression

Authors: Clotilde Guyon, Nada Jmari, Yen-Chin Li, Jean Denoyel, Noriyuki Fujikado, Christophe Blanchet, David Root, Matthieu Giraud

Abstract:

Aire induces ectopic expression of a large repertoire of tissue-specific antigen (TSA) genes in thymic medullary epithelial cells (MECs), driving immunological self-tolerance in maturing T cells. Although important mechanisms of Aire-induced transcription have recently been disclosed through the identification and the study of Aire’s partners, the fine transcriptional functions underlied by a number of them and conferred to Aire are still unknown. Alternative cleavage and polyadenylation (APA) is an essential mRNA processing step regulated by the termination complex consisting of 85 proteins, 10 of them have been related to Aire. We evaluated APA in MECs in vivo by microarray analysis with mRNA-spanning probes and RNA deep sequencing. We uncovered the preference of Aire-dependent transcripts for short-3’UTR isoforms and for proximal poly(A) site selection marked by the increased binding of the cleavage factor Cstf-64. RNA interference of the 10 Aire-related proteins revealed that Clp1, a member of the core termination complex, exerts a profound effect on short 3’UTR isoform preference. Clp1 is also significantly upregulated in the MECs compared to 25 mouse tissues in which we found that TSA expression is associated with longer 3’UTR isoforms. Aire-dependent transcripts escape a global 3’UTR lengthening associated with MEC differentiation, thereby potentiating the repressive effect of microRNAs that are globally upregulated in mature MECs. Consistent with these findings, RNA deep sequencing of actinomycinD-treated MECs revealed the increased stability of short 3’UTR Aire-induced transcripts, resulting in TSA transcripts accumulation and contributing for their enrichment in the MECs.

Keywords: Aire, central tolerance, miRNAs, transcription termination

Procedia PDF Downloads 365
4360 Sensor and Sensor System Design, Selection and Data Fusion Using Non-Deterministic Multi-Attribute Tradespace Exploration

Authors: Matthew Yeager, Christopher Willy, John Bischoff

Abstract:

The conceptualization and design phases of a system lifecycle consume a significant amount of the lifecycle budget in the form of direct tasking and capital, as well as the implicit costs associated with unforeseeable design errors that are only realized during downstream phases. Ad hoc or iterative approaches to generating system requirements oftentimes fail to consider the full array of feasible systems or product designs for a variety of reasons, including, but not limited to: initial conceptualization that oftentimes incorporates a priori or legacy features; the inability to capture, communicate and accommodate stakeholder preferences; inadequate technical designs and/or feasibility studies; and locally-, but not globally-, optimized subsystems and components. These design pitfalls can beget unanticipated developmental or system alterations with added costs, risks and support activities, heightening the risk for suboptimal system performance, premature obsolescence or forgone development. Supported by rapid advances in learning algorithms and hardware technology, sensors and sensor systems have become commonplace in both commercial and industrial products. The evolving array of hardware components (i.e. sensors, CPUs, modular / auxiliary access, etc…) as well as recognition, data fusion and communication protocols have all become increasingly complex and critical for design engineers during both concpetualization and implementation. This work seeks to develop and utilize a non-deterministic approach for sensor system design within the multi-attribute tradespace exploration (MATE) paradigm, a technique that incorporates decision theory into model-based techniques in order to explore complex design environments and discover better system designs. Developed to address the inherent design constraints in complex aerospace systems, MATE techniques enable project engineers to examine all viable system designs, assess attribute utility and system performance, and better align with stakeholder requirements. Whereas such previous work has been focused on aerospace systems and conducted in a deterministic fashion, this study addresses a wider array of system design elements by incorporating both traditional tradespace elements (e.g. hardware components) as well as popular multi-sensor data fusion models and techniques. Furthermore, statistical performance features to this model-based MATE approach will enable non-deterministic techniques for various commercial systems that range in application, complexity and system behavior, demonstrating a significant utility within the realm of formal systems decision-making.

Keywords: multi-attribute tradespace exploration, data fusion, sensors, systems engineering, system design

Procedia PDF Downloads 164
4359 Influence of Psychosocial Factors on Physical Activity Level among Individuals with Asthma

Authors: Awotidebe Taofeek, Oyinsuyi Oluwafunmbi

Abstract:

Psychosocial factors play a significant role in physical activity participation in diseased conditions and the general population. However, little is known about the role of exercise self-efficacy (ESE), exercise perceived barriers (EPB), and social support (SOS) in patients with asthma. This study investigated the influence of psychosocial factors on physical activity participation in patients with asthma in ile-ife. This cross-sectional study involved 130 patients with asthma. They were recruited from the Chest Clinic of the Obafemi Awolowo University Teaching Hospitals Complex, Ile-ife using purposive sampling technique. Ethical approval was obtained from the Ethics and Research Committee of the Obafemi Awolowo University Teaching Hospitals Complex, Ile-ife, Nigeria. Socio-demographic characteristics of respondents were recorded. Information on ESE, EPB, and SOS were obtained using Exercise Self-Efficacy, Exercise Benefit, and Barrier and Medical Outcome Social Support Scales respectively. Physical activity level was assessed in the last 7 days using international physical activity questionnaire. Descriptive and inferential statistics were used to analyze the data. Alpha level was set at p<0.5. The mean age of the respondents was 25.15 ± 9.38, and a majority, 110 (84.60%), engaged in low physical activity, 69(53%) had low exercise self-efficacy. However, less than two-third 80 (62.20%) reported high social support, with the majority of 95 (73.10%) reported high exercise perceived barriers. The means of ESE for male and femalerespondents were 29.01 ± 20.62 and 24.35 ± 17.36, respectively. The means of SOS formale and female respondents were 49.52 ± 22.22 and 61.87 ± 22.66, respectively. Themeans of EPB for male and female respondents were 53.37 ± 10.23 and 57.43 ± 9.65, respectively. The respondents were comparable in exercise self-efficacy and physicalactivity level (p>0.05). However, there were significant differences in social support (t=-2.791; p=0.006) and exercise perceived barriers (t=-2.108, p=0.037).Theresultsshowthattherewasasignificantrelationshipbetweenexerciseperceivedbarriersandlowphysicalactivitylevel(r=-0.216;p=0.023).TherewasasignificantassociationbetweenExerciseself-efficacyandmarried individuals(OR=0.967;95%CI=0.936-0.998;p= 0.037). Similarly, However,thereweresignificantassociationsbetweensocialsupport Andagegroup35-54years(OR=1.036;95%CI=1.007-1.067;p=0.014),females(OR= 1.024;95%CI=1.006;p=0.009)andmarriedindividuals(OR=1.049;95%CI=1.020-1.079. p=0.001).Therewasasignificantassociationbetweenexerciseperceivedbarriersand females(OR=1.043;95%CI=1.002-1.085;p=0.040).However, thereweresignificant associationsbetweenexerciseperceivedbarriersandoccupationgroup;civilservants (OR=1.092;95%CI=1.009-1.182;p=0.028),retiree(OR=1.092;95%CI=1.040-1.469;p= 0.016)andstudents(OR=1.110;95%CI=1.040;p=0.002). Inconclusion,agreaterpercentageofpatientswithasthmahadlowphysicalactivityleveland it was associatedwithhighexerciseperceivedbarriers,whileexerciseself-efficacyandsocialsupportwerenot.

Keywords: asthma, psychosocial factors, physical activity, physical fitness

Procedia PDF Downloads 113
4358 Recovery of Chromium(III) from Tannery Wastewater by Nanoparticles and Whiskers of Chitosan

Authors: El Montassir Dahmane, Nadia Eladlani, Aziz Ouahrouch, Mohammed Rhazi, Moha Taourirte

Abstract:

The present study was aimed to approximate the optimal conditions to chromium recovery from wastewater by nanoparticles and whiskers of chitosan. Chitosan with an average molecular weight of 63 kDa and a 96% deacetylation degree was prepared according to our previous study. Chromium recovery is influenced by different parameters. In our search, we determined the appropriate range of pH to form chitosan–Cr(III), nanoparticles Cr(III), and whiskers– Cr(III) complex. We studied also the influence of chromium concentration and the nature of chitosan-based materials on the complexation process. Our main aim is to approximate the optimal conditions to remove chromium(III) from the tanning bath, recuperated from tannery wastewater of Marrakech in Morocco. A Perkin Elmer optima 2000 Inductively Coupled Plasma- Optical Emission Spectrometer (ICP-OES), was used to determine the quantity of chromium persistent in tannery wastewater after complexation phenomenon. To the best of our knowledge, this is the first report interested in the optimal conditions for chromium recovery from wastewater by nanoparticles and whiskers of chitosan. From our research, we found that in chromium solution, the appropriate range of pH to form complex is between 5.6 and 6.7. Also, the complexation of Cr(III) is depending on the nature of complexing ligand and chromium concentration. The obtained results reveal that nanoparticles present an excellent adsorption capacity regardless of chromium concentration. In addition, after a critical chromium concentration (250 mg/l), our ligand becomes saturated, that requires an increase of ligand mass for increasing chromium concentration in order to have a better adsorption capacity. Hence, in the same conditions, we used chitosan, its nanoparticles, whiskers, and chitosan based films to remove Cr(III) from tannery wastewater. The pH of this effluent was around 6, and its chromium concentration was 300 mg/l. The results expose that the sequence of complexing ligand in the effluent is the same in chromium solution, determined via our previous study. However, the adsorbed quantity is less due to the presence of other metallic ions in tannery wastewater. We conclude that the best complexing ligand-based chitosan is chitosan nanoaprticles whether it’s in chromium solution or in tannery wastewater. Nanoparticles are the best complexing ligand after 24 h of contact nanoparticles can remove 70% of chromium from this tannery wastewater.

Keywords: nanoparticles, whiskers, chitosan, chromium

Procedia PDF Downloads 118
4357 Finite Volume Method in Loop Network in Hydraulic Transient

Authors: Hossain Samani, Mohammad Ehteram

Abstract:

In this paper, we consider finite volume method (FVM) in water hammer. We will simulate these techniques on a looped network with complex boundary conditions. After comparing methods, we see the FVM method as the best method. We compare the results of FVM with experimental data. Finite volume using staggered grid is applied for solving water hammer equations.

Keywords: hydraulic transient, water hammer, interpolation, non-liner interpolation

Procedia PDF Downloads 333
4356 Synthesis and Characterization of Cobalt Oxide and Cu-Doped Cobalt Oxide as Photocatalyst for Model Dye Degradation

Authors: Vrinda P. S. Borker

Abstract:

Major water pollutants are dyes from effluents of industries. Different methods have been tried to degrade or treat the effluent before it is left to the environment. In order to understand the degradation process and later apply it to effluents, solar degradation study of methylene blue (MB) and methyl red (MR), the model dyes was carried out in the presence of photo-catalysts, the oxides of cobalt oxide Co₃O₄, and copper doped cobalt oxides (Co₀.₉Cu₀.₁)₃O₄ and (Co₀.₉₅Cu₀.₀₅)₃O₄. They were prepared from oxalate complex and hydrazinated oxalate complex of cobalt as well as mix metals, copper, and cobalt. The complexes were synthesized and characterized by FTIR. Complexes were decomposed to form oxides and were characterized by XRD. They were found to be monophasic. Solar degradation of MR and MB was carried out in presence of these oxides in acidic and basic medium. Degradation was faster in alkaline medium in the presence of Co₃O₄ obtained from hydrazinated oxalate. Doping of nanomaterial oxides modifies their characteristics. Doped cobalt oxides are found to photo-decolourise MR in alkaline media efficiently. In the absence of photocatalyst, solar degradation of alkaline MR does not occur. In acidic medium, MR is minimally decolorized even in the presence of photocatalysts. The industrial textile effluent contains chemicals like NaCl and Na₂CO₃ along with the unabsorbed dye. It is reported that these two chemicals hamper the degradation of dye. The chemicals like K₂S₂O₈ and H₂O₂ are reported to enhance degradation. The solar degradation study of MB in presence of photocatalyst (Co₀.₉Cu₀.₁)₃O₄ and these four chemicals reveals that presence of K₂S₂O₈ and H₂O₂ enhances degradation. It proves that H₂O₂ generates hydroxyl ions required for degradation of dye and the sulphate anion radical being strong oxidant attacks dye molecules leading to its fragmentation rapidly. Thus addition of K₂S₂O₈ and H₂O₂ during solar degradation in presence of (Co₀.₉Cu₀.₁)₃O₄ helps to break the organic moiety efficiently.

Keywords: cobalt oxides, Cu-doped cobalt oxides, H₂O₂ in dye degradation, photo-catalyst, solar dye degradation

Procedia PDF Downloads 155
4355 The Subcellular Localisation of EhRRP6 and Its Involvement in Pre-Ribosomal RNA Processing in Growth-Stressed Entamoeba histolytica

Authors: S. S. Singh, A. Bhattacharya, S. Bhattacharya

Abstract:

The eukaryotic exosome complex plays a pivotal role in RNA biogenesis, maturation, surveillance and differential expression of various RNAs in response to varying environmental signals. The exosome is composed of evolutionary conserved nine core subunits and the associated exonucleases Rrp6 and Rrp44. Rrp6p is crucial for the processing of rRNAs, other non-coding RNAs, regulation of polyA tail length and termination of transcription. Rrp6p, a 3’-5’ exonuclease is required for degradation of 5’-external transcribed spacer (ETS) released from the rRNA precursors during the early steps of pre-rRNA processing. In the parasitic protist Entamoeba histolytica in response to growth stress, there occurs the accumulation of unprocessed pre-rRNA and 5’ ETS sub fragment. To understand the processes leading to this accumulation, we looked for Rrp6 and the exosome subunits in E. histolytica, by in silico approaches. Of the nine core exosomal subunits, seven had high percentage of sequence similarity with the yeast and human. The EhRrp6 homolog contained exoribonuclease and HRDC domains like yeast but its N- terminus lacked the PMC2NT domain. EhRrp6 complemented the temperature sensitive phenotype of yeast rrp6Δ cells suggesting conservation of biological activity. We showed 3’-5’ exoribonuclease activity of EhRrp6p with in vitro-synthesized appropriate RNAs substrates. Like the yeast enzyme, EhRrp6p degraded unstructured RNA, but could degrade the stem-loops slowly. Furthermore, immunolocalization revealed that EhRrp6 was nuclear-localized in normal cells but was diminished from nucleus during serum starvation, which could explain the accumulation of 5’ETS during stress. Our study shows functional conservation of EhRrp6p in E.histolytica, an early-branching eukaryote, and will help to understand the evolution of exosomal components and their regulatory function.

Keywords: entamoeba histolytica, exosome complex, rRNA processing, Rrp6

Procedia PDF Downloads 181
4354 Numerical investigation of Hydrodynamic and Parietal Heat Transfer to Bingham Fluid Agitated in a Vessel by Helical Ribbon Impeller

Authors: Mounir Baccar, Amel Gammoudi, Abdelhak Ayadi

Abstract:

The efficient mixing of highly viscous fluids is required for many industries such as food, polymers or paints production. The homogeneity is a challenging operation for this fluids type since they operate at low Reynolds number to reduce the required power of the used impellers. Particularly, close-clearance impellers, mainly helical ribbons, are chosen for highly viscous fluids agitated in laminar regime which is currently heated through vessel wall. Indeed, they are characterized by high shear strains closer to the vessel wall, which causes a disturbing thermal boundary layer and ensures the homogenization of the bulk volume by axial and radial vortices. The hydrodynamic and thermal behaviors of Newtonian fluids in vessels agitated by helical ribbon impellers, has been mostly studied by many researchers. However, rarely researchers investigated numerically the agitation of yield stress fluid by means of helical ribbon impellers. This paper aims to study the effect of the Double Helical Ribbon (DHR) stirrers on both the hydrodynamic and the thermal behaviors of yield stress fluids treated in a cylindrical vessel by means of numerical simulation approach. For this purpose, continuity, momentum, and thermal equations were solved by means of 3D finite volume technique. The effect of Oldroyd (Od) and Reynolds (Re) numbers on the power (Po) and Nusselt (Nu) numbers for the mentioned stirrer type have been studied. Also, the velocity and thermal fields, the dissipation function and the apparent viscosity have been presented in different (r-z) and (r-θ) planes.

Keywords: Bingham fluid, Hydrodynamic and thermal behavior, helical ribbon, mixing, numerical modelling

Procedia PDF Downloads 288
4353 Assessment Proposal to Establish the First Geo-Park in Egypt at Abu-Roash Area, Cairo

Authors: Kholoud Abdelmaksoud, Mahmoud Emam, Wael Al-Metwaly

Abstract:

Egypt is known as cradle of civilization due to its ancient history and archeological sites, but Egypt possess also a cradle of Geo-sites, which qualify it to be listed as one of the most important Geo-heritage sites all over the country. Geology and landscape in Abu-Roash area is considered as one of the most important geological places (geo-sites) inside Cairo which help us to know and understand geology and geologic processes, so the area is used mainly for geological education purposes, also the area contain an archeological sites; pyramid complex, tombs, and Coptic monastery which give the area unique importance. Abu-Roash area is located inside Cairo 9 km north of the Giza Pyramids, which make the accessibility to the area easy and safe, the geology of Abu-Roash constitutes a complex Cretaceous sedimentary succession mass with showing outstanding tectonic features (Syrian Arc system event), these features are considered as a Geo-heritage, which will be the main designation of ‘Geo-parks’ establishing. The research is dealing with the numerous geo-sites found in the area, and its geologic and archeological importance, the relation between geo-sites and archeology, also the research proposed a detailed maps for these sites depicting Geo-routes and the hazardous places surrounding Abu-Roash area. The research is proposing a new proposal not applied in Egypt before, establishing a Geo-park, to promote this unique geo-heritage from hazardous factors and anthropogenic effects, also it will offer geo-educational opportunities to the general public and to the scientific community, enhancement of Geo-tourism which will be linked easily with the Ancient Egyptian tourism, it will also provide a significant economic benefit to Abu-Roash residential area. Finally, the research recommends that The United Nations Educational, Scientific and Cultural Organizations promote conservation of geological and geo-morphological heritage to list this area for its importance under the umbrella of geo-parks.

Keywords: geo-park, geo-sites, Abu-roash, archaeological sites, geo-tourism

Procedia PDF Downloads 288
4352 Exploring Forest Biomass Changes in Romania in the Last Three Decades

Authors: Remus Pravalie, Georgeta Bandoc

Abstract:

Forests are crucial for humanity and biodiversity, through the various ecosystem services and functions they provide all over the world. Forest ecosystems are vital in Romania as well, through their various benefits, known as provisioning (food, wood, or fresh water), regulating (water purification, soil protection, carbon sequestration or control of climate change, floods, and other hazards), cultural (aesthetic, spiritual, inspirational, recreational or educational benefits) and supporting (primary production, nutrient cycling, and soil formation processes, with direct or indirect importance for human well-being) ecosystem services. These ecological benefits are of great importance in Romania, especially given the fact that forests cover extensive areas countrywide, i.e. ~6.5 million ha or ~27.5% of the national territory. However, the diversity and functionality of these ecosystem services fundamentally depend on certain key attributes of forests, such as biomass, which has so far not been studied nationally in terms of potential changes due to climate change and other driving forces. This study investigates, for the first time, changes in forest biomass in Romania in recent decades, based on a high volume of satellite data (Landsat images at high spatial resolutions), downloaded from the Google Earth Engine platform and processed (using specialized software and methods) across Romanian forestland boundaries from 1987 to 2018. A complex climate database was also investigated across Romanian forests over the same 32-year period, in order to detect potential similarities and statistical relationships between the dynamics of biomass and climate data. The results obtained indicated considerable changes in forest biomass in Romania in recent decades, largely triggered by the climate change that affected the country after 1987. Findings on the complex pattern of recent forest changes in Romania, which will be presented in detail in this study, can be useful to national policymakers in the fields of forestry, climate, and sustainable development.

Keywords: forests, biomass, climate change, trends, romania

Procedia PDF Downloads 139
4351 Multi-Index Performance Investigation of Rubberized Reclaimed Asphalt Mixture

Authors: Ling Xu, Giuseppe Loprencipe, Antonio D'Andrea

Abstract:

Asphalt pavement with recycled and sustainable materials has become the most commonly adopted strategy for road construction, including reclaimed asphalt pavement (RAP) and crumb rubber (CR) from waste tires. However, the adhesion and cohesion characteristics of rubberized reclaimed asphalt pavement were still ambiguous, resulting in deteriorated adhesion behavior and life performance. This research investigated the effect of bonding characteristics on rutting resistance and moisture susceptibility of rubberized reclaimed asphalt pavement in terms of two RAP sources with different oxidation levels and two tire rubber with different particle sizes. Firstly, the binder bond strength (BBS) test and bonding failure distinguishment were conducted to analyze the surface behaviors of binder-aggregate interaction. Then, the compatibility and penetration grade of rubberized RAP binder were evaluated by rotational viscosity test and penetration test, respectively. Hamburg wheel track (HWT) test with high-temperature viscoelastic deformation analysis was adopted, which illustrated the rutting resistance. Additionally, a water boiling test was employed to evaluate the moisture susceptibility of the mixture and the texture features were characterized with the statistical parameters of image colors. Finally, the colloid structure model of rubberized RAP binder with surface interaction was proposed, and statistical analysis was established to release the correlation among various indexes. This study concluded that the gel-phase colloid structure and molecular diffusion of the free light fraction would affect the surface interpretation with aggregate, determining the bonding characteristic of rubberized RAP asphalt.

Keywords: bonding characteristics, reclaimed asphalt pavement, rubberized asphalt, sustainable material

Procedia PDF Downloads 44
4350 Performance Evaluation of Solid Lubricant Characteristics at Different Sliding Conditions

Authors: Suresh Kumar Reddy Narala, Rakesh Kumar Gunda

Abstract:

In modern industry, mechanical parts are subjected to friction and wear, leading to heat generation, which affects the reliability, life and power consumption of machinery. To overcome the tribological losses due to friction and wear, a significant portion of lubricant with high viscous properties allows very smooth relative motion between two sliding surfaces. Advancement in modern tribology has facilitated the use of applying solid lubricants in various industrial applications. Solid lubricant additives with high viscous thin film formation between the sliding surfaces can adequately wet and adhere to a work surface. In the present investigation, an attempt has been made to investigate and evaluate the tribological studies of various solid lubricants like MoS¬2, graphite, and boric acid at different sliding conditions. The base oil used in this study was SAE 40 oil with a viscosity of 220 cSt at 400C. The tribological properties were measured on pin-on-disc tribometer. An experimental set-up has been developed for effective supply of solid lubricants to the pin-disc interface zone. The results obtained from the experiments show that the friction coefficient increases with increase in applied load for all the considered environments. The tribological properties with MoS2 solid lubricant exhibit larger load carrying capacity than that of graphite and boric acid. The present research work also contributes to the understanding of the behavior of film thickness distribution of solid lubricant using potential contact technique under different sliding conditions. The results presented in this research work are expected to form a scientific basis for selecting the best solid lubricant in various industrial applications for possible minimization of friction and wear.

Keywords: friction, wear, temperature, solid lubricant

Procedia PDF Downloads 331