Search results for: sediment deposition rate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9028

Search results for: sediment deposition rate

7828 A Description Analysis of Mortality Rate of Human Infection with Avian Influenza A(H7N9) Virus in China

Authors: Lei Zhou, Chao Li, Ruiqi Ren, Dan Li, Yali Wang, Daxin Ni, Zijian Feng, Qun Li

Abstract:

Background: Since the first human infection with avian influenza A(H7N9) case was reported in China on 31 March 2013, five epidemics have been observed in China through February 2013 and September 2017. Though the overall mortality rate of H7N9 has remained as high as around 40% throughout the five epidemics, the specific mortality rate in Mainland China varied by provinces. We conducted a descriptive analysis of mortality rates of H7N9 cases to explore the various severity features of the disease and then to provide clues of further analyses of potential factors associated with the severity of the disease. Methods: The data for analysis originated from the National Notifiable Infectious Disease Report and Surveillance System (NNIDRSS). The surveillance system and identification procedure for H7N9 infection have not changed in China since 2013. The definition of a confirmed H7N9 case is as same as previous reports. Mortality rates of H7N9 cases are described and compared by time and location of reporting, age and sex, and genetic features of H7N9 virus strains. Results: The overall mortality rate, the male and female specific overall rates of H7N9 is 39.6% (608/1533), 40.3% (432/1072) and 38.2% (176/461), respectively. There was no significant difference between the mortality rates of male and female. The age-specific mortality rates are significantly varied by age groups (χ²=38.16, p < 0.001). The mortality of H7N9 cases in the age group between 20 and 60 (33.17%) and age group of over 60 (51.16%) is much higher than that in the age group of under 20 (5.00%). Considering the time of reporting, the mortality rates of cases which were reported in the first (40.57%) and fourth (42.51%) quarters of each year are significantly higher than the mortality of cases which were reported in the second (36.02%) and third (27.27%) quarters (χ²=75.18, p < 0.001). The geographic specific mortality rates vary too. The mortality rates of H7N9 cases reported from the Northeast China (66.67%) and Westeast China (56.52%) are significantly higher than that of H7N9 cases reported from the remained area of mainland China. The mortality rate of H7N9 cases reported from the Central China is the lowest (34.38%). The mortality rates of H7N9 cases reported from rural (37.76%) and urban (38.96%) areas are similar. The mortality rate of H7N9 cases infected with the highly pathogenic avian influenza A(H7N9) virus (48.15%) is higher than the rate of H7N9 cases infected with the low pathogenic avian influenza A(H7N9) virus (37.57%), but the difference is not statistically significant. Preliminary analyses showed that age and some clinical complications such as respiratory failure, heart failure, and septic shock could be potential risk factors associated with the death of H7N9 cases. Conclusions: The mortality rates of H7N9 cases varied by age, sex, time of reporting and geographical location in mainland China. Further in-depth analyses and field investigations of the factors associated with the severity of H7N9 cases need to be considered.

Keywords: H7N9 virus, Avian Influenza, mortality, China

Procedia PDF Downloads 233
7827 Customized Temperature Sensors for Sustainable Home Appliances

Authors: Merve Yünlü, Nihat Kandemir, Aylin Ersoy

Abstract:

Temperature sensors are used in home appliances not only to monitor the basic functions of the machine but also to minimize energy consumption and ensure safe operation. In parallel with the development of smart home applications and IoT algorithms, these sensors produce important data such as the frequency of use of the machine, user preferences, and the compilation of critical data in terms of diagnostic processes for fault detection throughout an appliance's operational lifespan. Commercially available thin-film resistive temperature sensors have a well-established manufacturing procedure that allows them to operate over a wide temperature range. However, these sensors are over-designed for white goods applications. The operating temperature range of these sensors is between -70°C and 850°C, while the temperature range requirement in home appliance applications is between 23°C and 500°C. To ensure the operation of commercial sensors in this wide temperature range, usually, a platinum coating of approximately 1-micron thickness is applied to the wafer. However, the use of platinum in coating and the high coating thickness extends the sensor production process time and therefore increases sensor costs. In this study, an attempt was made to develop a low-cost temperature sensor design and production method that meets the technical requirements of white goods applications. For this purpose, a custom design was made, and design parameters (length, width, trim points, and thin film deposition thickness) were optimized by using statistical methods to achieve the desired resistivity value. To develop thin film resistive temperature sensors, one side polished sapphire wafer was used. To enhance adhesion and insulation 100 nm silicon dioxide was coated by inductively coupled plasma chemical vapor deposition technique. The lithography process was performed by a direct laser writer. The lift-off process was performed after the e-beam evaporation of 10 nm titanium and 280 nm platinum layers. Standard four-point probe sheet resistance measurements were done at room temperature. The annealing process was performed. Resistivity measurements were done with a probe station before and after annealing at 600°C by using a rapid thermal processing machine. Temperature dependence between 25-300 °C was also tested. As a result of this study, a temperature sensor has been developed that has a lower coating thickness than commercial sensors but can produce reliable data in the white goods application temperature range. A relatively simplified but optimized production method has also been developed to produce this sensor.

Keywords: thin film resistive sensor, temperature sensor, household appliance, sustainability, energy efficiency

Procedia PDF Downloads 66
7826 Investigate the Effects of Geometrical Structure and Layer Orientation on Strength of 3D-FDM Rapid Prototyped Samples

Authors: Ahmed A.D. Sarhan, Chong Feng Duan, Mum Wai Yip, M. Sayuti

Abstract:

Rapid Prototyping (RP) technologies enable physical parts to be produced from various materials without depending on the conventional tooling. Fused Deposition Modeling (FDM) is one of the famous RP processes used at present. Tensile strength and compressive strength resistance will be identified for different sample structures and different layer orientations of ABS rapid prototype solid models. The samples will be fabricated by a FDM rapid prototyping machine in different layer orientations with variations in internal geometrical structure. The 0° orientation where layers were deposited along the length of the samples displayed superior strength and impact resistance over all the other orientations. The anisotropic properties were probably caused by weak interlayer bonding and interlayer porosity.

Keywords: building orientation, compression strength, rapid prototyping, tensile strength

Procedia PDF Downloads 691
7825 The Effects of Siltation in Seagrass along Claver Surigao Del Norte

Authors: Dawn Rosarie M. Fajardo

Abstract:

Seagrass plays a crucial role in sustaining marine ecosystem. In this investigation two areas (Panyug and Kinalablaban) were studied to assess the effect of siltation in seagrass condition. The size of the sediment was also examined. Data analysis showed that Panyug had higher level of silt compared to Kinalablaban. The results indicate that seagrass is vulnerable to environmental disturbances. The results also indicate that plants grown in undisturbed natural sediments were more successful than plants in sediments which were disturbed. In addition to that, there are total of seven species of seagrass that are found tolerant with siltation it includes Enhalus acoroides, Cymodocea rotundata, Halophila minor, Halodule pinifolia, Halodule uninervis, Syringodium isoetifolium, and Thalassia hemprichii. The results were given emphasis especially for the five representative quadrats in each area. Among these species of seagrass Cymodocea rotundata is the most tolerant to siltation. There is also no significant relationships between silt and seagrass percent cover which had r² = 0.192, Panyug and r² = 0.145, at Kinalablaban at P> 0.05. The data showed that Panyug (area 1) was characterized with high level of silt compared to that of Kinalablaban that contains more granulated sediments.

Keywords: seagrass, siltation, cymodocea rotundata, sediments, environmental issues

Procedia PDF Downloads 527
7824 Combustion Analysis of Suspended Sodium Droplet

Authors: T. Watanabe

Abstract:

Combustion analysis of suspended sodium droplet is performed by solving numerically the Navier-Stokes equations and the energy conservation equations. The combustion model consists of the pre-ignition and post-ignition models. The reaction rate for the pre-ignition model is based on the chemical kinetics, while that for the post-ignition model is based on the mass transfer rate of oxygen. The calculated droplet temperature is shown to be in good agreement with the existing experimental data. The temperature field in and around the droplet is obtained as well as the droplet shape variation, and the present numerical model is confirmed to be effective for the combustion analysis.

Keywords: analysis, combustion, droplet, sodium

Procedia PDF Downloads 205
7823 Additive Friction Stir Manufacturing Process: Interest in Understanding Thermal Phenomena and Numerical Modeling of the Temperature Rise Phase

Authors: Antoine Lauvray, Fabien Poulhaon, Pierre Michaud, Pierre Joyot, Emmanuel Duc

Abstract:

Additive Friction Stir Manufacturing (AFSM) is a new industrial process that follows the emergence of friction-based processes. The AFSM process is a solid-state additive process using the energy produced by the friction at the interface between a rotating non-consumable tool and a substrate. Friction depends on various parameters like axial force, rotation speed or friction coefficient. The feeder material is a metallic rod that flows through a hole in the tool. Unlike in Friction Stir Welding (FSW) where abundant literature exists and addresses many aspects going from process implementation to characterization and modeling, there are still few research works focusing on AFSM. Therefore, there is still a lack of understanding of the physical phenomena taking place during the process. This research work aims at a better AFSM process understanding and implementation, thanks to numerical simulation and experimental validation performed on a prototype effector. Such an approach is considered a promising way for studying the influence of the process parameters and to finally identify a process window that seems relevant. The deposition of material through the AFSM process takes place in several phases. In chronological order these phases are the docking phase, the dwell time phase, the deposition phase, and the removal phase. The present work focuses on the dwell time phase that enables the temperature rise of the system composed of the tool, the filler material, and the substrate and due to pure friction. Analytic modeling of heat generation based on friction considers as main parameters the rotational speed and the contact pressure. Another parameter considered influential is the friction coefficient assumed to be variable due to the self-lubrication of the system with the rise in temperature or the materials in contact roughness smoothing over time. This study proposes, through numerical modeling followed by experimental validation, to question the influence of the various input parameters on the dwell time phase. Rotation speed, temperature, spindle torque, and axial force are the main monitored parameters during experimentations and serve as reference data for the calibration of the numerical model. This research shows that the geometry of the tool as well as fluctuations of the input parameters like axial force and rotational speed are very influential on the temperature reached and/or the time required to reach the targeted temperature. The main outcome is the prediction of a process window which is a key result for a more efficient process implementation.

Keywords: numerical model, additive manufacturing, friction, process

Procedia PDF Downloads 141
7822 Intelligent Prediction System for Diagnosis of Heart Attack

Authors: Oluwaponmile David Alao

Abstract:

Due to an increase in the death rate as a result of heart attack. There is need to develop a system that can be useful in the diagnosis of the disease at the medical centre. This system will help in preventing misdiagnosis that may occur from the medical practitioner or the physicians. In this research work, heart disease dataset obtained from UCI repository has been used to develop an intelligent prediction diagnosis system. The system is modeled on a feedforwad neural network and trained with back propagation neural network. A recognition rate of 86% is obtained from the testing of the network.

Keywords: heart disease, artificial neural network, diagnosis, prediction system

Procedia PDF Downloads 441
7821 Implication of Fractal Kinetics and Diffusion Limited Reaction on Biomass Hydrolysis

Authors: Sibashish Baksi, Ujjaini Sarkar, Sudeshna Saha

Abstract:

In the present study, hydrolysis of Pinus roxburghi wood powder was carried out with Viscozyme, and kinetics of the hydrolysis has been investigated. Finely ground sawdust is submerged into 2% aqueous peroxide solution (pH=11.5) and pretreated through autoclaving, probe sonication, and alkaline peroxide pretreatment. Afterward, the pretreated material is subjected to hydrolysis. A chain of experiments was executed with delignified biomass (50 g/l) and varying enzyme concentrations (24.2–60.5 g/l). In the present study, 14.32 g/l of glucose, along with 7.35 g/l of xylose, have been recovered with a viscozyme concentration of 48.8 g/l and the same condition was treated as optimum condition. Additionally, thermal deactivation of viscozyme has been investigated and found to be gradually decreasing with escalated enzyme loading from 48.4 g/l (dissociation constant= 0.05 h⁻¹) to 60.5 g/l (dissociation constant= 0.02 h⁻¹). The hydrolysis reaction is a pseudo first-order reaction, and therefore, the rate of the hydrolysis can be expressed as a fractal-like kinetic equation that communicates between the product concentration and hydrolytic time t. It is seen that the value of rate constant (K) increases from 0.008 to 0.017 with augmented enzyme concentration from 24.2 g/l to 60.5 g/l. Greater value of K is associated with stronger enzyme binding capacity of the substrate mass. However, escalated concentration of supplied enzyme ensures improved interaction with more substrate molecules resulting in an enhanced de-polymerization of the polymeric sugar chains per unit time which eventually modifies the physiochemical structure of biomass. All fractal dimensions are in between 0 and 1. Lower the value of fractal dimension, more easily the biomass get hydrolyzed. It can be seen that with increased enzyme concentration from 24.2 g/l to 48.4 g/l, the values of fractal dimension go down from 0.1 to 0.044. This indicates that the presence of more enzyme molecules can more easily hydrolyze the substrate. However, an increased value has been observed with a further increment of enzyme concentration to 60.5g/l because of diffusional limitation. It is evident that the hydrolysis reaction system is a heterogeneous organization, and the product formation rate depends strongly on the enzyme diffusion resistances caused by the rate-limiting structures of the substrate-enzyme complex. Value of the rate constant increases from 1.061 to 2.610 with escalated enzyme concentration from 24.2 to 48.4 g/l. As the rate constant is proportional to Fick’s diffusion coefficient, it can be assumed that with a higher concentration of enzyme, a larger amount of enzyme mass dM diffuses into the substrate through the surface dF per unit time dt. Therefore, a higher rate constant value is associated with a faster diffusion of enzyme into the substrate. Regression analysis of time curves with various enzyme concentrations shows that diffusion resistant constant increases from 0.3 to 0.51 for the first two enzyme concentrations and again decreases with enzyme concentration of 60.5 g/l. During diffusion in a differential scale, the enzyme also experiences a greater resistance during diffusion of larger dM through dF in dt.

Keywords: viscozyme, glucose, fractal kinetics, thermal deactivation

Procedia PDF Downloads 107
7820 Positivity Rate of Person under Surveillance among Institut Jantung Negara’s Patients with Various Vaccination Statuses in the First Quarter of 2022, Malaysia

Authors: Mohd Izzat Md. Nor, Norfazlina Jaffar, Noor Zaitulakma Md. Zain, Nur Izyanti Mohd Suppian, Subhashini Balakrishnan, Geetha Kandavello

Abstract:

During the Coronavirus (COVID-19) pandemic, Malaysia has been focusing on building herd immunity by introducing vaccination programs into the community. Hospital Standard Operating Procedures (SOP) were developed to prevent inpatient transmission. Objective: In this study, we focus on the positivity rate of inpatient Person Under Surveillance (PUS) becoming COVID-19 positive and compare this to the National rate in order to see the outcomes of the patient who becomes COVID-19 positive in relation to their vaccination status. Methodology: This is a retrospective observational study carried out from 1 January until 30 March 2022 in Institut Jantung Negara (IJN). There were 5,255 patients admitted during the time of this study. Pre-admission Polymerase Chain Reaction (PCR) swab was done for all patients. Patients with positive PCR on pre-admission screening were excluded. The patient who had exposure to COVID-19-positive staff or patients during hospitalization was defined as PUS and were quarantined and monitored for potential COVID-19 infection. Their frequency and risk of exposure (WHO definition) were recorded. A repeat PCR swab was done for PUS patients that have clinical deterioration with or without COVID symptoms and on their last day of quarantine. The severity of COVID-19 infection was defined as category 1-5A. All patients' vaccination status was recorded, and they were divided into three groups: fully immunised, partially immunised, and unvaccinated. We analyzed the positivity rate of PUS patients becoming COVID-positive, outcomes, and correlation with the vaccination status. Result: Total inpatient PUS to patients and staff was 492; only 13 became positive, giving a positivity rate of 2.6%. Eight (62%) had multiple exposures. The majority, 8/13(72.7%), had a high-risk exposure, and the remaining 5 had medium-risk exposure. Four (30.8%) were boostered, 7(53.8%) were fully vaccinated, and 2(15.4%) were partial/unvaccinated. Eight patients were in categories 1-2, whilst 38% were in categories 3-5. Vaccination status did not correlate with COVID-19 Category (P=0.641). One (7.7%) patient died due to COVID-19 complications and sepsis. Conclusion: Within the first quarter of 2022, our institution's positivity rate (2.6%) is significantly lower than the country's (14.4%). High-risk exposure and multiple exposures to positive COVID-19 cases increased the risk of PUS becoming COVID-19 positive despite their underlying vaccination status.

Keywords: COVID-19, boostered, high risk, Malaysia, quarantine, vaccination status

Procedia PDF Downloads 84
7819 Nasopharyngeal Carriage of Streptococcus pneumoniae in Children under 5 Years of Age before Introduction of Pneumococcal Vaccine (PCV 10) in Urban and Rural Sindh

Authors: Muhammad Imran Nisar, Fyezah Jehan, Tauseef Akhund, Sadia Shakoor, Kanwal Nayani, Furqan Kabir, Asad Ali, Anita Zaidi

Abstract:

Pneumococcal Vaccine -10 (PCV 10) was included in the Expanded Program of immunization (EPI) in Sindh, Pakistan in February 2013. This study was carried out immediately before the introduction of PCV 10 to establish baseline pneumococcal carriage and prevalent serotypes in naso-pharynx of children 3-11 months of age in an urban and rural community in Sindh, Pakistan. An additional sample of children aged 12 to 59 months was drawn from the urban community. Nasopharyngeal specimens were collected from a random sample of children. Samples were processed in a central laboratory in Karachi. Pneumococci were cultured on 5% Sheep Blood Agar and serotyping was performed using CDC standardized sequential multiplex PCR assay on bacterial colonies. Serotypes were then categorized into vaccine (PCV-10 and PCV-13) type and non-vaccine types. A total of 670 children were enrolled. Carriage rate for pneumococcus based on culture positivity was 74% and 79.5 % in the infant group in Karachi and Matiari respectively. Carriage rate was 78.2% for children aged 12 to 59 months in Karachi. Proportion of PCV 10 serotypes in infants was 38.8% and 33.5% in Karachi and Matiari respectively. In the older age group in Karachi, the proportion was 30.6%. Most common serotypes were 6A, 6B, 23F, 19A and 18C. This survey establishes vaccine and non-vaccine serotype carriage rate in a vaccine-naïve pediatric population among rural and urban communities in Sindh province. Annually planned surveys in the same communities will inform change in carriage rate after the introduction and uptake of PCV 10 in these communities.

Keywords: Naso-Pharyngeal carriage, Pakistan, PCV10, Pneumococcus

Procedia PDF Downloads 292
7818 Measurement of Acoustic Loss in Nano-Layered Coating Developed for Thermal Noise Reduction

Authors: E. Cesarini, M. Lorenzini, R. Cardarelli, S. Chao, E. Coccia, V. Fafone, Y. Minenkow, I. Nardecchia, I. M. Pinto, A. Rocchi, V. Sequino, C. Taranto

Abstract:

Structural relaxation processes in optical coatings represent a fundamental limit to the sensitivity of gravitational waves detectors, MEMS, optical metrology and entangled state experiments. To face this problem, many research lines are now active, in particular the characterization of new materials and novel solutions to be employed as coatings in future gravitational wave detectors. Nano-layered coating deposition is among the most promising techniques. We report on the measurement of acoustic loss of nm-layered composites (Ti2O/SiO2), performed with the GeNS nodal suspension, compared with sputtered λ/4 thin films nowadays employed.

Keywords: mechanical measurement, nanomaterials, optical coating, thermal noise

Procedia PDF Downloads 416
7817 Environmental Degradation and Biodiversity Loss in Bangladesh

Authors: Mohammad Atiqur Rahman

Abstract:

The study aimed at inventorying the threatened biodiversity of Bangladesh and assessing the rate of loss of biodiversity caused due to environmental degradation for conservation management. The impact assessment of environmental depletion and rate of biodiversity loss determination have been made by a long term field investigation, examination of preserved herbarium specimens and survey of relevant floristic literature following the IUCN’s threatened criteria of assessing Red List Plants under the Flora Bangladesh Project. Biodiversity of Bangladesh, as evaluated, has been affected to a large extent during the last four and half decades due to spontaneous environmental degradation caused by frequent occurrence of cyclonic storms and tidal bores since 1970 and flooding, draught, unilateral diversion of trans-boundary waters by operating Farakka Barrage since 1975, indiscriminate destruction and over exploitation of natural resources, unplanned development and industrialization, overpopulation etc. Depletion of world’s largest mangrove biodiversity in Sundarbans, coastal and island biodiversity in southern part, agro-biodiversity and agro-fisheries all over the country, Haor and wetland biodiversity of plain lands, terrestrial and forest biodiversity in central and eastern hilly part of Bangladesh, as assessed, have greatly been occurred at a higher rate due to environmental degradation which in turn affect directly or indirectly the economy, food security and environmental health of the country. Complete inventory of 30 plant families resulted in the recognition of 45.18% species of Bangladesh as threatened environmentally and 13.23% species as possibly extinct from the flora since these have neither been reported or could be traced in the field for more than 100 years. The rate of extinction is determined to be 2.65% per 20 years. Hence the study indicates that the loss of biodiversity and environmental degradation in Bangladesh occurring at an alarming rate. The study focuses on the issues of environment, the extent of loss of different plant biodiversities in Bangladesh, prioritizing and implementing national conservation strategies for sustainable management of the environment.

Keywords: Bangladesh, biodiversity, conservation, environmental management

Procedia PDF Downloads 244
7816 Preceptor Program: A Way to Reduce Absconding Rate and Increase Patient Satisfaction

Authors: Akanksha Dicholkar, Celin Jacob, Omkar More

Abstract:

Work force instability, as demonstrated by high rates of staff turnover and lingering vacancy rates, continues to be a major challenge faced by health care organizations. The impact is manifested in workflow inefficiencies, delays in delivering patient care, and dissatisfaction among patients and staff, all of which can have significant negative effects on quality of care and patient safety. In addition, the staggering administrative costs created by a transient work force threaten health care organizations financial viability. One nurse retention strategy is to have newly hired nurses partake in Preceptorship. Precepting is a way to enculturate new employees into their role. Also good professional, collegial relationship between an experienced nurse and a newly hired nurse relations was evidenced. This study demonstrates impact of preceptor program on absconding rate, employee satisfaction & Patient satisfaction. Purpose of study: To decrease absconding rate. Objective: 1. To reduce the high absconding rate among nurses in Aster Medcity (AMC). 2. To facilitate the acclimatization of the newly hired nurse into their role, focusing on professional growth, inter-professional relationships and clinical skills required for the job. Methodology: Descriptive study by Convenience sampling method and collect data by direct observation, questionnaire, interviews. Sample size as per Sample size statistical table at 95 % CI. We conducted a pre and post intervention analysis to assess the impact of Preceptorship at AMC, with a daily occupancy of approx. 300 patients. Result: Preceptor program has had a significant improvement positive impact on all measured parameters. Absconding rate came down from 20% to 0% (P= 0.001). Patient satisfaction scores rose from 85% to 95%. Employee satisfaction rose form 65% to 85%. Conclusion: The project proved that Preceptor Development Programme and the steps taken in hand holding of the new joinees were effective in reducing the absconding rate among nurses and improved the overall satisfaction of new nurses. Preceptee satisfaction with the preceptorship experience was correlated with favorable evaluation of the relationship between the preceptee and preceptor. These findings indicate that when preceptors and preceptees have the benefit of formal preceptorship programs that are well supported, and when the preceptors’ efforts are rewarded, satisfaction is enhanced for both participants, preceptor commitment to the role is reinforced.

Keywords: absconding rate, preceptor, employee satisfaction index, satisfaction index

Procedia PDF Downloads 295
7815 Growth and Biochemical Composition of Tetraselmis sp. and Chlorella sp. under Varied Growth Conditions

Authors: M. Alsull

Abstract:

In this study, Tetraselmis sp. and Chlorella sp. isolated from Penang National Park coastal waters, Malaysia, and cultivated under combined various laboratory conditions (temperature, light and nitrogen limitation and starvation). Growth rate, dry weight, chlorophyll a content, total lipids content and total carbohydrates content were estimated at mid-exponential growth phase. Tetraselmis sp. and Chlorella sp. showed remarkably decrease in growth rate, chlorophyll a content and dry weight when maintained under nitrogen limitation and starvation conditions, as well as when grown under 12:12 h light, dark regime conditions. Chlorella sp. showed ability to counter the fluctuation in temperature with no significant effects on the measured parameters; in contrast, Tetraselmis sp. showed a decrease in growth rate, chlorophyll a content and dry weight when grown under 15±1˚C temperature. Cultures maintained under nitrogen full concentration, and 24 h light regime showed decrease in total lipids content, compared with 12:12 h light, dark cycle regime, in the two tested species.

Keywords: microalgae, biochemical composition, temperature, light, nitrogen limitation

Procedia PDF Downloads 289
7814 Electrochemical Study of Copper–Tin Alloy Nucleation Mechanisms onto Different Substrates

Authors: Meriem Hamla, Mohamed Benaicha, Sabrine Derbal

Abstract:

In the present work, several materials such as M/glass (M = Pt, Mo) were investigated to test their suitability for studying the early nucleation stages and growth of copper-tin clusters. It was found that most of these materials stand as good substrates to be used in the study of the nucleation and growth of electrodeposited Cu-Sn alloys from aqueous solution containing CuCl2, SnCl2 as electroactive species and Na3C6H5O7 as complexing agent. Among these substrates, Pt shows instantaneous models followed by 3D diffusion-limited growth. On the other hand, the electrodeposited copper-tin thin films onto Mo substrate followed progressive nucleation. The deposition mechanism of the Cu-Sn films has been studied using stationary electrochemical techniques (cyclic voltammetery (CV) and chronoamperometry (CA). The structural, morphological and compositional of characterization have been studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) and EDAX techniques respectively.

Keywords: electrodeposition, CuSn, nucleation, mechanism

Procedia PDF Downloads 392
7813 Effect of Temperatures on Growth and Development Time of Aphis fabae Scopoli (Homoptera: Aphididae): On Bean (Phaseolus vulgaris L.)

Authors: Rochelyn Dona, Serdar Satar

Abstract:

The aim of this study was to evaluate the biological parameters of A. fabae Scopoli (Hemiptera: Aphididae). Developmental, survival, and reproductive data were collected for Aphis fabae reared on detached bean leaves (Phaseolus vulgaris L.) ‘pinto beans’ at five temperature regimes (12, 16, 20, 24, and 28 °C), 65% relative humidity (RH), relative and a photoperiod of 16:8 (LD) h. The developmental times of immature stages ranged from 16, 65 days at 12°C to 5.70 days at 24°C, but a slight increase again at 28°C (6.62 days). At 24°C from this study presented the developmental threshold for A. fabae slightly to 24°C. The average longevity of mature females significantly decreased from 42.32 days at 12°C to 16.12 days at 28°C. The reproduction rate per female was 62.27 at 16°C and 12.72 at 28°C. The mean generation period of the population ranged from 29.24 at 12°C to 11.50 at 28°C. The highest intrinsic rate of increase (rm = 0.41) were recorded at 24°C, the lowest at 12°C (rm = 0.15). It was evident that temperatures over 28°C augmented the development time, accelerated the death ratio of the nymphal stages, Shrunk Adult longevity, and reduced fecundity. The optimal range of temperature for the population growth of A. fabae on the bean was 16°C-24°C, according to this study.

Keywords: developmental time, intrinsic rate, reproduction period, temperature dependence

Procedia PDF Downloads 219
7812 Influence of Thickness on Optical Properties of ZnO Thin Films Prepared by Radio Frequency (RF) Sputtering Technique

Authors: S. Abdullahi, M. Momoh, K. U. Isah

Abstract:

Zinc oxide (ZnO) thin films of 75.5 nm and 130.5 nm were deposited at room temperature onto chemically and ultrasonically cleaned corning glass substrate by radio frequency technique and annealed at 150°C under nitrogen atmosphere for 60 minutes. The optical properties of the films were ascertained by UV-VIS-NIR spectrophotometry. Influence of the thickness of the films on the optical properties was studied keeping other deposition parameters constant. The optical transmittance spectra reveal a maximum transmittance of 81.49% and 84.26% respectively. The band gap of the films is found to be direct allowed transition and decreases with the increase in thickness of the films. The band gap energy (Eg) is in the range of 3.28 eV to 3.31 eV, respectively. These thin films are suitable for solar cell applications.

Keywords: optical constants, RF sputtering, Urbach energy, zinc oxide thin film

Procedia PDF Downloads 451
7811 Recovery of Cd (II) and Pb (II) under the Effect of Temperature with the Synthetic Zeolite NaA

Authors: Karima Menad, Ahmed Feddag

Abstract:

In this study, large crystals of the zeolite NaA were synthesized by hydrothermal way. By following this zeolite was used to recover two heavy metals that are allowing the most dangerous toxic, lead and cadmium. The synthesized zeolite was analyzed by XRD and SEM aims to verify its purity and its good morphology; after it was undergoing ion exchange operations by aqueous solution with lead and cadmium in two salts Pb(CH3COOH)2 and CdCl2 at different concentrations. The exchange was carried out under the effect of two temperatures (25 °C and 60 °C). The contents of Pb++, Cd++ and Na+ were analyzed by atomic absorption and the results are given in the form of exchange rates. At the end the samples are analyzed by XRD exchanged to confirm their conservation of their zeolite framework. It is found that the exchange rate increases with the increase of initial concentration and the best results are found for the temperature of 60 °C.

Keywords: exchange rate, ion exchange, LTA zeolite, zeolite NaA

Procedia PDF Downloads 404
7810 Clouds Influence on Atmospheric Ozone from GOME-2 Satellite Measurements

Authors: S. M. Samkeyat Shohan

Abstract:

This study is mainly focused on the determination and analysis of the photolysis rate of atmospheric, specifically tropospheric, ozone as function of cloud properties through-out the year 2007. The observational basis for ozone concentrations and cloud properties are the measurement data set of the Global Ozone Monitoring Experiment-2 (GOME-2) sensor on board the polar orbiting Metop-A satellite. Two different spectral ranges are used; ozone total column are calculated from the wavelength window 325 – 335 nm, while cloud properties, such as cloud top height (CTH) and cloud optical thick-ness (COT) are derived from the absorption band of molecular oxygen centered at 761 nm. Cloud fraction (CF) is derived from measurements in the ultraviolet, visible and near-infrared range of GOME-2. First, ozone concentrations above clouds are derived from ozone total columns, subtracting the contribution of stratospheric ozone and filtering those satellite measurements which have thin and low clouds. Then, the values of ozone photolysis derived from observations are compared with theoretical modeled results, in the latitudinal belt 5˚N-5˚S and 20˚N - 20˚S, as function of CF and COT. In general, good agreement is found between the data and the model, proving both the quality of the space-borne ozone and cloud properties as well as the modeling theory of ozone photolysis rate. The found discrepancies can, however, amount to approximately 15%. Latitudinal seasonal changes of photolysis rate of ozone are found to be negatively correlated to changes in upper-tropospheric ozone concentrations only in the autumn and summer months within the northern and southern tropical belts, respectively. This fact points to the entangled roles of temperature and nitrogen oxides in the ozone production, which are superimposed on its sole photolysis induced by thick and high clouds in the tropics.

Keywords: cloud properties, photolysis rate, stratospheric ozone, tropospheric ozone

Procedia PDF Downloads 206
7809 Status Report of the Express Delivery Industry in China

Authors: Ying Bo Xie, Hisa Yuki Kurokawa

Abstract:

Due to the fast development, China's express delivery industry has involved in a dilemma that the service quality are keeping decreasing while the construction rate of delivery network cannot meet the customers’ demand. In order to get out of this dilemma and enjoy a succession development rate, it is necessary to understand the current situation of China's express delivery industry. Firstly, the evolution of China's express delivery industry was systematical presented. Secondly, according to the number of companies and the amount of parcels they has dealt each year, the merits and faults of tow kind of operating pattern was analyzed. Finally, based on the characteristics of these express companies, the problems of China's express delivery industry was divided into several types and the countermeasures were given out respectively.

Keywords: China, express delivery industry, status, problem

Procedia PDF Downloads 353
7808 A Comparison of the Adsorption Mechanism of Arsenic on Iron-Modified Nanoclays

Authors: Michael Leo L. Dela Cruz, Khryslyn G. Arano, Eden May B. Dela Pena, Leslie Joy Diaz

Abstract:

Arsenic adsorbents were continuously being researched to ease the detrimental impact of arsenic to human health. A comparative study on the adsorption mechanism of arsenic on iron modified nanoclays was undertaken. Iron intercalated montmorillonite (Fe-MMT) and montmorillonite supported zero-valent iron (ZVI-MMT) were the adsorbents investigated in this study. Fe-MMT was produced through ion-exchange by replacing the sodium intercalated ions in montmorillonite with iron (III) ions. The iron (III) in Fe-MMT was later reduced to zero valent iron producing ZVI-MMT. Adsorption study was performed by batch technique. Obtained data were fitted to intra-particle diffusion, pseudo-first order, and pseudo-second-order models and the Elovich equation to determine the kinetics of adsorption. The adsorption of arsenic on Fe-MMT followed the intra-particle diffusion model with intra-particle rate constant of 0.27 mg/g-min0.5. Arsenic was found to be chemically bound on ZVI-MMT as suggested by the pseudo-second order and Elovich equation. The derived pseudo-second order rate constant was 0.0027 g/mg-min with initial adsorption rate computed from the Elovich equation was 113 mg/g-min.

Keywords: adsorption mechanism, arsenic, montmorillonite, zero valent iron

Procedia PDF Downloads 407
7807 Investigation of Success Rate and Growth Parameters of Five Pistachio Cultivars Transplanted in March and November

Authors: H. Mohammadi Aliabadi, M. S. Mansouri

Abstract:

The effect of two different transplanting date (March and November) in five pistachio cultivars ('Ahmad Aghaei', 'Akbri', Momtaz', 'Ghazvini', and 'Ohadi') were evaluated in Rafsanjan Azad University, Iran. Seeds were planted in plastic bags in March 2012. The seedlings were transplanted to a field in November 2012 and March 2013. Vegetative growing factors such as plant length, stem diameter, number of leaves and fresh and dry weight were measured in date. The results obtained from collected data indicated that no significant differences were found for the traits of interest. Therefore, growers should not be concerned regarding these two transplanting dates.

Keywords: pistachio, seedling, success rate, transplanting date

Procedia PDF Downloads 428
7806 Battery State of Charge Management Algorithm for Photovoltaic Ramp Rate Control

Authors: Nam Kyu Kim, Hee Jun Cha, Jae Jin Seo, Dong Jun Won

Abstract:

Output power of a photovoltaic (PV) generator depends on incident solar irradiance. If the clouds pass or the climate condition is bad, the PV output fluctuates frequently. When PV generator is connected to the grid, these fluctuations adversely affect power quality. Thus, ramp rate control with battery energy storage system (BESS) is needed to reduce PV output fluctuations. At the same time, for effective BESS operation and sizing the optimal BESS capacity, managing state of charge (SOC) is the most important part. In addition, managing SOC helps to avoid violating the SOC operating range of BESS when performing renewable integration (RI) continuously. As PV and BESS increase, the SOC management of BESS will become more important in the future. This paper presents the SOC management algorithm which helps to operate effectively BESS, and has focused on method to manage SOC while reducing PV output fluctuations. A simulation model is developed in PSCAD/EMTDC software. The simulation results show that the SOC is maintained within the operating range by adjusting the output distribution according to the SOC of the BESS.

Keywords: battery energy storage system, ramp rate control, renewable integration, SOC management

Procedia PDF Downloads 174
7805 Modelling Suspended Solids Transport in Dammam (Saudi Arabia) Coastal Areas

Authors: Hussam Alrabaiah

Abstract:

Some new projects (new proposed harbor, recreational projects) are considered in the eastern coasts of Dammam city, Saudi Arabia. Dredging operations would significantly alter coast hydrological and sediment transport processes. It is important that the project areas must keep flushing the fresh sea water in and out with good water quality parameters, which are currently facing increased pressure from urbanization and navigation requirements in conjunction with industrial developments. A suspended solids or sediments are expected to affect the flora and fauna in that area. Governing advection-diffusion equations are considered to understand the consequences of such projects. A numerical modeling study is developed to study the effect of dredging and, in particular, the suspended sediments concentrations (mg/L) changed in the region. The results were obtained using finite element method using an in-house or commercial software. Results show some consistency with data observed in that region. Recommendations based on results could be formulated for decision makers to protect the environment in the long term.

Keywords: finite element, method, suspended solids transport, advection-diffusion

Procedia PDF Downloads 278
7804 Electro-Winning of Dilute Solution of Copper Metal from Sepon Mine, Lao PDR

Authors: S. Vasailor, C. Rattanakawin

Abstract:

Electro-winning of copper metal from dilute sulfate solution (13.7 g/L) was performed in a lab electrolytic cell with stainless-steel cathode and lead-alloy anode. The effects of various parameters including cell voltage, electro-winning temperature and time were studied in order to acquire an appropriate current efficiency of copper deposition. The highest efficiency is about 95% obtaining from electro-winning condition of 3V, 55°C and 3,600 s correspondingly. The cathode copper with 95.5% Cu analyzed using atomic absorption spectrometry can be obtained from this single-winning condition. In order to increase the copper grade, solvent extraction should be used to increase the sulfate concentration, say 50 g/L, prior to winning the cathode copper effectively.

Keywords: copper metal, current efficiency, dilute sulfate solution, electro-winning

Procedia PDF Downloads 132
7803 Restoring Total Form and Function in Patients with Lower Limb Bony Defects Utilizing Patient-Specific Fused Deposition Modelling- A Neoteric Multidisciplinary Reconstructive Approach

Authors: Divya SY. Ang, Mark B. Tan, Nicholas EM. Yeo, Siti RB. Sudirman, Khong Yik Chew

Abstract:

Introduction: The importance of the amalgamation of technological and engineering advances with surgical principles of reconstruction cannot be overemphasized. With earlier detection of cancer, consequences of high-speed living and neglect, like traumatic injuries and infection, resulting in increasingly younger patients with bone defects. This may result in malformations and suboptimal function that is more noticeable and palpable in the younger, active demographic. Our team proposes a technique that encapsulates a mesh of multidisciplinary effort, tissue engineering and reconstructive principles. Methods/Materials: Our patient was a young competitive footballer in his early 30s who was diagnosed with submandibular adenoid cystic carcinoma with bony involvement. He was thus counselled for a right hemi mandibulectomy, the floor of mouth resection, right selective neck dissection, tracheostomy, and free fibular flap reconstruction of his mandible and required post-operative radiotherapy. Being young and in his prime sportsman years, he was unable to accept the morbidities associated with using his fibula to reconstruct his mandible despite it being the gold standard reconstructive option. The fibula is an ideal vascularized bone flap because it’s reliable and easily shaped with relatively minimal impact on functional outcomes. The fibula contributes to 30% of weightbearing and is the attachment for the lateral compartment muscles; it is stronger in footballers concerning lateral bending. When harvesting the fibula, the distal 6-8cm and up to 10% of the total length is preserved to maintain the ankle’s stability, thus, minimizing the impact on daily activities. There are studies that have noted gait variability post-operatively. Therefore, returning to a premorbid competitive level may be doubtful. To improve his functional outcomes, the decision was made to try and restore the fibula's form and function. Using the concept of Fused Deposition Modelling (FDM), our team comprising of Plastics, Otolaryngology, Orthopedics and Radiology, worked with Osteopore to design a 3D bioresorbable implant to regenerate the fibula defect (14.5cm). Bone marrow was harvested via reaming the contralateral hip prior to the wide resection. 30mls of his blood was obtained for extracting platelet rich plasma. These were packed into the Osteopore 3D-printed bone scaffold. This was then secured into the fibula defect with titanium plates and screws. The flexor hallucis longus and soleus were anchored along the construct and intraosseous membrane, done in a single setting. Results: He was reviewed closely as an outpatient over 10 months post operatively. He reported no discernable loss or difference in ankle function. He is satisfied and back in training and our team has video and photographs that substantiate his progress. Conclusion: FDM allows regeneration of long bone defects. However, we aimed to also restore his eversion and inversion that is imperative for footballers and hence reattached his previously dissected muscles along the length of the Osteopore implant. We believe that the reattachment of the muscle stabilizes not only the construct but allows optimum muscle tensioning when moving his ankle. This is a simple but effective technique in restoring complete function and form in a young patient whose minute muscle control is imperative to life.

Keywords: fused deposition modelling, functional reconstruction, lower limb bony defects, regenerative surgery, 3D printing, tissue engineering

Procedia PDF Downloads 70
7802 Analysis of Force Convection in Bandung Triga Reactor Core Plate Types Fueled Using Coolod-N2

Authors: K. A. Sudjatmi, Endiah Puji Hastuti, Surip Widodo, Reinaldy Nazar

Abstract:

Any pretensions to stop the production of TRIGA fuel elements by TRIGA reactor fuel elements manufacturer should be anticipated by the operating agency of TRIGA reactor to replace the cylinder type fuel element with plate type fuel element, that available on the market. This away was performed the calculation on U3Si2Al fuel with uranium enrichment of 19.75% and a load level of 2.96 gU/cm3. Maximum power that can be operated on free convection cooling mode at the BANDUNG TRIGA reactor fuel plate was 600 kW. This study has been conducted thermalhydraulic characteristic calculation model of the reactor core power 2MW. BANDUNG TRIGA reactor core fueled plate type is composed of 16 fuel elements, 4 control elements and one irradiation facility which is located right in the middle of the core. The reactor core is cooled using a pump which is already available with flow rate 900 gpm. Analysis on forced convection cooling mode with flow from the top down from 10%, 20%, 30% and so on up to a 100% rate of coolant flow. performed using the COOLOD-N2 code. The calculations result showed that the 2 MW power with inlet coolant temperature at 37 °C and cooling rate percentage of 50%, then the coolant temperature, maximum cladding and meat respectively 64.96 oC, 124.81 oC, and 125.08 oC, DNBR (departure from nucleate boiling ratio)=1.23 and OFIR (onset of flow instability ratio)=1:00. The results are expected to be used as a reference for determining the power and cooling rate level of the BANDUNG TRIGA reactor core plate types fueled.

Keywords: TRIGA, COOLOD-N2, plate type fuel element, force convection, thermal hydraulic characteristic

Procedia PDF Downloads 291
7801 The Polarization on Twitter and COVID-19 Vaccination in Brazil

Authors: Giselda Cristina Ferreira, Carlos Alberto Kamienski, Ana Lígia Scott

Abstract:

The COVID-19 pandemic has enhanced the anti-vaccination movement in Brazil, supported by unscientific theories and false news and the possibility of wide communication through social networks such as Twitter, Facebook, and YouTube. The World Health Organization (WHO) classified the large volume of information on the subject against COVID-19 as an Infodemic. In this paper, we present a protocol to identify polarizing users (called polarizers) and study the profiles of Brazilian polarizers on Twitter (renamed to X some weeks ago). We analyzed polarizing interactions on Twitter (in Portuguese) to identify the main polarizers and how the conflicts they caused influenced the COVID-19 vaccination rate throughout the pandemic. This protocol uses data from this social network, graph theory, Java, and R-studio scripts to model and analyze the data. The information about the vaccination rate was obtained in a public database for the government called OpenDataSus. The results present the profiles of Twitter’s Polarizer (political position, gender, professional activity, immunization opinions). We observed that social and political events influenced the participation of these different profiles in conflicts and the vaccination rate.

Keywords: Twitter, polarization, vaccine, Brazil

Procedia PDF Downloads 71
7800 Modelling the Long Rune of Aggregate Import Demand in Libya

Authors: Said Yousif Khairi

Abstract:

Being a developing economy, imports of capital, raw materials and manufactories goods are vital for sustainable economic growth. In 2006, Libya imported LD 8 billion (US$ 6.25 billion) which composed of mainly machinery and transport equipment (49.3%), raw material (18%), and food products and live animals (13%). This represented about 10% of GDP. Thus, it is pertinent to investigate factors affecting the amount of Libyan imports. An econometric model representing the aggregate import demand for Libya was developed and estimated using the bounds test procedure, which based on an unrestricted error correction model (UECM). The data employed for the estimation was from 1970–2010. The results of the bounds test revealed that the volume of imports and its determinants namely real income, consumer price index and exchange rate are co-integrated. The findings indicate that the demand for imports is inelastic with respect to income, index price level and The exchange rate variable in the short run is statistically significant. In the long run, the income elasticity is elastic while the price elasticity and the exchange rate remains inelastic. This indicates that imports are important elements for Libyan economic growth in the long run.

Keywords: import demand, UECM, bounds test, Libya

Procedia PDF Downloads 353
7799 Room Temperature Sensitive Broadband Terahertz Photo Response Using Platinum Telluride Based Devices

Authors: Alka Jakhar, Harmanpreet Kaur Sandhu, Samaresh Das

Abstract:

The Terahertz (THz) technology-based devices are heightening at an alarming rate on account of the wide range of applications in imaging, security, communication, and spectroscopic field. The various available room operational THz detectors, including Golay cell, pyroelectric detector, field-effect transistors, and photoconductive antennas, have some limitations such as narrow-band response, slow response speed, transit time limits, and complex fabrication process. There is an urgent demand to explore new materials and device structures to accomplish efficient THz detection systems. Recently, TMDs including topological semimetals and topological insulators such as PtSe₂, MoTe₂, WSe₂, and PtTe₂ provide novel feasibility for photonic and optical devices. The peculiar properties of these materials, such as Dirac cone, fermions presence, nonlinear optical response, high conductivity, and ambient stability, make them worthy for the development of the THz devices. Here, the platinum telluride (PtTe₂) based devices have been demonstrated for THz detection in the frequency range of 0.1-1 THz. The PtTe₂ is synthesized by direct selenization of the sputtered platinum film on the high-resistivity silicon substrate by using the chemical vapor deposition (CVD) method. The Raman spectra, XRD, and XPS spectra confirm the formation of the thin PtTe₂ film. The PtTe₂ channel length is 5µm and it is connected with a bow-tie antenna for strong THz electric field confinement in the channel. The characterization of the devices has been carried out in a wide frequency range from 0.1-1 THz. The induced THz photocurrent is measured by using lock-in-amplifier after preamplifier. The maximum responsivity is achieved up to 1 A/W under self-biased mode. Further, this responsivity has been increased by applying biasing voltage. This photo response corresponds to low energy THz photons is mainly due to the photo galvanic effect in PtTe₂. The DC current is induced along the PtTe₂ channel, which is directly proportional to the amplitude of the incident THz electric field. Thus, these new topological semimetal materials provide new pathways for sensitive detection and sensing applications in the THz domain.

Keywords: terahertz, detector, responsivity, topological-semimetals

Procedia PDF Downloads 156