Search results for: resistant microbial strains
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2562

Search results for: resistant microbial strains

1362 Glucose Uptake Rate of Insulin-Resistant Human Liver Carcinoma Cells (IR/HepG2) by Flavonoids from Enicostema littorale via IR/IRS1/AKT Pathway

Authors: Priyanka Mokashi, Aparna Khanna, Nancy Pandita

Abstract:

Diabetes mellitus is a chronic metabolic disorder which will be the 7th leading cause of death by 2030. The current line of treatment for the diabetes mellitus is oral antidiabetic drugs (biguanides, sulfonylureas, meglitinides, thiazolidinediones and alpha-glycosidase inhibitors) and insulin therapy depending upon the type 1 or type 2 diabetes mellitus. But, these treatments have their disadvantages, ranging from the developing of resistance to the drugs and adverse effects caused by them. Alternative to these synthetic agents, natural products provides a new insight for the development of more efficient and safe drugs due to their therapeutic values. Enicostema littorale blume (A. Raynal) is a traditional Indian plant belongs to the Gentianaceae family. It is widely distributed in Asia, Africa, and South America. There are few reports on Swrtiamarin, major component of this plant for its antidiabetic activity. However, the antidiabetic activity of flavonoids from E. littorale and their mechanism of action have not yet been elucidated. Flavonoids have a positive relationship with disease prevention and can act on various molecular targets and regulate different signaling pathways in pancreatic β-cells, adipocytes, hepatocytes and skeletal myofibers. They may exert beneficial effects in diabetes by (i) improving hyperglycemia through regulation of glucose metabolism in hepatocytes; (ii) enhancing insulin secretion and reducing apoptosis and promoting proliferation of pancreatic β-cells; (iii) increasing glucose uptake in hepatocytes, skeletal muscle and white adipose tissue (iv) reducing insulin resistance, inflammation and oxidative stress. Therefore, we have isolated four flavonoid rich fractions, Fraction A (FA), Fraction B (FB), Fraction C (FC), Fraction D (FD) from crude alcoholic hot (AH) extract from E. littorale, identified by LC/MS. Total eight flavonoids were identified on the basis of fragmentation pattern. Flavonoid FA showed the presence of swertisin, isovitexin, and saponarin; FB showed genkwanin, quercetin, isovitexin, FC showed apigenin, swertisin, quercetin, 5-O-glucosylswertisin and 5-O-glucosylisoswertisin whereas FD showed the presence of swertisin. Further, these fractions were assessed for their antidiabetic activity on stimulating glucose uptake in insulin-resistant HepG2 cell line model (IR/HepG2). The results showed that FD containing C-glycoside Swertisin has significantly increased the glucose uptake rate of IR/HepG2 cells at the concentration of 10 µg/ml as compared to positive control Metformin (0.5mM) which was determined by glucose oxidase- peroxidase method. It has been reported that enhancement of glucose uptake of cells occurs due the translocation of Glut4 vesicles to cell membrane through IR/IRS1/AKT pathway. Therefore, we have studied expressions of three genes IRS1, AKT and Glut4 by real-time PCR to evaluate whether they follow the same pathway or not. It was seen that the glucose uptake rate has increased in FD treated IR/HepG2 cells due to the activation of insulin receptor substrate-1 (IRS1) followed by protein kinase B (AKT) through phosphoinositide 3-kinase (PI3K) leading to translocation of Glut 4 vesicles to cell membrane, thereby enhancing glucose uptake and insulin sensitivity of insulin resistant HepG2 cells. Hence, the up-regulation indicated the mechanism of action through which FD (Swertisin) acts as antidiabetic candidate in the treatment of type 2 diabetes mellitus.

Keywords: E. littorale, glucose transporter, glucose uptake rate, insulin resistance

Procedia PDF Downloads 299
1361 Supplementation of Yeast Cell Wall on Growth Performance in Broiler Reared under High Ambient Temperature

Authors: Muhammad Shahzad Hussain

Abstract:

Two major problems are facing generally by conventional poultry farming that is disease outbreaks and poor performance, which results due to improper management. To enhance the growth performance and efficiency of feed and reduce disease outbreaks, antibiotic growth promoters (AGPs) which are antibiotics at sub-therapeutic levels, are extensively used in the poultry industry. European Union has banned the use of antibiotics due to their presence in poultry products, development of antibiotic-resistant pathogens, and disturbance of normal gut microbial ecology. These residues cause serious health concerns and produce antibiotic resistance in pathogenic microbes in human beings. These issues strengthen the need for the withdrawal of AGPs from poultry feed. Nowadays, global warming is a major issue, and it is more critical in tropical areas like Pakistan, where heat stress is already a major problem. Heat stress leads to poor production performance, high mortality, immuno-suppression, and concomitant diseases outbreak. The poultry feed industry in Pakistan, like other countries of the world, has been facing shortages and high prices of local as well as imported feed ingredients. Prebiotics are potential replacer for AGP as prebiotics has properties to enhance the production potential and reduce the growth of harmful bacteria as well as stimulate the growth/activity of beneficial bacteria. The most commonly used prebiotics in poultry includes mannan oligosaccharide (MOS). MOS is an essential component of the yeast cell wall (YCW) (Saccharomyces cerevisiae); therefore, the YCW wall possesses prebiotic properties. The use of distillery yeast wall (YCW) has the potential to replace conventional AGPs and to reduce mortality due to heat stress as well as to bind toxins in the feed. The dietary addition of YCW has not only positive effects on production performance in poultry during normal conditions but during stressful conditions. A total of 168-day-old broilers were divided into 6 groups, each of which has 28 birds with 4 replicates (n=7).Yeast cell wall (YCW) supplementation @ 0%, 1%, 1.5%, 2%, 2.5%, 3% from day 0 to 35. Heat stress was exposed from day 21 to 35 at 30±1.1ᵒC with relative humidity 65±5%. Zootechnical parameters like body weight, FCR, Organ development, and histomorphometric parameters were studied. A significant weight gain was observed at group C supplemented @ 1.5% YCW during the fifth week. Significant organ weight gain of Gizzard, spleen, small intestine, and cecum was observed at group C supplemented @ 1.5% YCW. According to morphometric indices Duodenum, Jejunum, and Ileum has significant villus height, while Jejunum and Ileum have also significant villus surface area in the group supplemented with 1.5% YCW. IEL count was only decreased in 1.5% YCW-fed group in jejunum and ileum, not in duodenum, that was less in 2% YCW-supplemented group. Dietary yeast cell wall of saccharomyces cerevisiae partially reduced the effects of high ambient temperature in terms of better growth and modified gut histology and components of mucosal immune response to better withstand heat stress in broilers.

Keywords: antibiotics, AGPs, broilers, MOS, prebiotics, YCW

Procedia PDF Downloads 84
1360 Antimicrobial Activity of Oil Extracted from the Almonds of the Fruits of Argania spinosa in the West of Algeria (Mostaganem)

Authors: Nassima Behidj-Benyounes, Nadjiba Chebouti, Thoraya Dahmane, Amina Henni

Abstract:

This work examines the study of the antimicrobrial effect of oil extracted from the seeds of Argania spinosa L. (Sapotaceae) in the area of Stida (Mostaganem). This natural substance is extracted by using the Soxhlet. The antimicrobial activity of this oil is evaluated on several microorganisms. It has been tested on five bacterial strains; Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Bacillus subtilis and Staphylococcus aureus. The extract has been studied by using Candida albicans. It should be noted that these agents are characterized by a high frequency of contamination and pathogenicity. Through this study, we note that these microorganisms are moderately sensitive to the argan oil.

Keywords: Argania spinosa, oil, several microorganisms, almonds, antimicrobial activity

Procedia PDF Downloads 407
1359 The Effect of Heat Stress on the Gastro-Intestinal Microbiota of Pigs

Authors: Yadnyavalkya Patil, Ravi Gooneratne, Xiang-Hong Ju

Abstract:

Heat stress (HS) negatively affects the physiology of pigs. In this study, 6 pigs will be subjected to temperatures of 35 ± 2℃ for 12 hrs/day for a duration of 21 days. The changes in the gastrointestinal tract (GIT) microbiota will be observed by analyzing the freshly collected faeces on days 1, 3, 7, 14 and 21. The changes will be compared to faeces from a set of 6 control pigs kept simultaneously at temperatures of 26 ± 2℃ for the same duration of 21 days. Different types of stresses such a weaning have a detrimental effect on GIT microflora. Similarly, HS is expected to have a harmful effect on the microbial diversity of the GIT. How these changes affect the immune system of the pigs will be studied and therapeutics to reduce the negative effects of HS will be developed.

Keywords: GIT microbiota, heat stress, immune system, therapeutics

Procedia PDF Downloads 194
1358 Population Pharmacokinetics of Levofloxacin and Moxifloxacin, and the Probability of Target Attainment in Ethiopian Patients with Multi-Drug Resistant Tuberculosis

Authors: Temesgen Sidamo, Prakruti S. Rao, Eleni Akllilu, Workineh Shibeshi, Yumi Park, Yong-Soon Cho, Jae-Gook Shin, Scott K. Heysell, Stellah G. Mpagama, Ephrem Engidawork

Abstract:

The fluoroquinolones (FQs) are used off-label for the treatment of multidrug-resistant tuberculosis (MDR-TB), and for evaluation in shortening the duration of drug-susceptible TB in recently prioritized regimens. Within the class, levofloxacin (LFX) and moxifloxacin (MXF) play a substantial role in ensuring success in treatment outcomes. However, sub-therapeutic plasma concentrations of either LFX or MXF may drive unfavorable treatment outcomes. To the best of our knowledge, the pharmacokinetics of LFX and MXF in Ethiopian patients with MDR-TB have not yet been investigated. Therefore, the aim of this study was to develop a population pharmacokinetic (PopPK) model of levofloxacin (LFX) and moxifloxacin (MXF) and assess the percent probability of target attainment (PTA) as defined by the ratio of the area under the plasma concentration-time curve over 24-h (AUC0-24) and the in vitro minimum inhibitory concentration (MIC) (AUC0-24/MIC) in Ethiopian MDR-TB patients. Steady-state plasma was collected from 39 MDR-TB patients enrolled in the programmatic treatment course and the drug concentrations were determined using optimized liquid chromatography-tandem mass spectrometry. In addition, the in vitro MIC of the patients' pretreatment clinical isolates was determined. PopPK and simulations were run at various doses, and PK parameters were estimated. The effect of covariates on the PK parameters and the PTA for maximum mycobacterial kill and resistance prevention was also investigated. LFX and MXF both fit in a one-compartment model with adjustments. The apparent volume of distribution (V) and clearance (CL) of LFX were influenced by serum creatinine (Scr), whereas the absorption constant (Ka) and V of MXF were influenced by Scr and BMI, respectively. The PTA for LFX maximal mycobacterial kill at the critical MIC of 0.5 mg/L was 29%, 62%, and 95% with the simulated 750 mg, 1000 mg, and 1500 mg doses, respectively, whereas the PTA for resistance prevention at 1500 mg was only 4.8%, with none of the lower doses achieving this target. At the critical MIC of 0.25 mg/L, there was no difference in the PTA (94.4%) for maximum bacterial kill among the simulated doses of MXF (600 mg, 800 mg, and 1000 mg), but the PTA for resistance prevention improved proportionately with dose. Standard LFX and MXF doses may not provide adequate drug exposure. LFX PopPK is more predictable for maximum mycobacterial kill, whereas MXF's resistance prevention target increases with dose. Scr and BMI are likely to be important covariates in dose optimization or therapeutic drug monitoring (TDM) studies in Ethiopian patients.

Keywords: population PK, PTA, moxifloxacin, levofloxacin, MDR-TB patients, ethiopia

Procedia PDF Downloads 108
1357 The Efficacy of Salicylic Acid and Puccinia Triticina Isolates Priming Wheat Plant to Diuraphis Noxia Damage

Authors: Huzaifa Bilal

Abstract:

Russian wheat aphid (Diuraphis noxia, Kurdjumov) is considered an economically important wheat (Triticum aestivum L.) pest worldwide and in South Africa. The RWA damages wheat plants and reduces annual yields by more than 10%. Even though pest management by pesticides and resistance breeding is an attractive option, chemicals can cause harm to the environment. Furthermore, the evolution of resistance-breaking aphid biotypes has out-paced the release of resistant cultivars. An alternative strategy to reduce the impact of aphid damage on plants, such as priming, which sensitizes plants to respond effectively to subsequent attacks, is necessary. In this study, wheat plants at the seedling and flag leaf stages were primed by salicylic acid and isolate representative of two races of the leaf rust pathogen Puccinia triticina Eriks. (Pt), before RWA (South African RWA biotypes 1 and 4) infestation. Randomized complete block design experiments were conducted in the greenhouse to study plant-pest interaction in primed and non-primed plants. Analysis of induced aphid damage indicated salicylic acid differentially primed wheat cultivars for increased resistance to the RWASA biotypes. At the seedling stage, all cultivars were primed for enhanced resistance to RWASA1, while at the flag leaf stage, only PAN 3111, SST 356 and Makalote were primed for increased resistance. The Puccinia triticina efficaciously primed wheat cultivars for excellent resistance to RWASA1 at the seedling and flag leaf stages. However, Pt failed to enhance the four Lesotho cultivars' resistance to RWASA4 at the seedling stage and PAN 3118 at the flag leaf stage. The induced responses at the seedling and flag leaf stages were positively correlated in all the treatments. Primed plants induced high activity of antioxidant enzymes like peroxidase, ascorbate peroxidase and superoxide dismutase. High antioxidant activity indicates activation of resistant responses in primed plants (primed by salicylic acid and Puccina triticina). Isolates of avirulent Pt races can be a worthy priming agent for improved resistance to RWA infestation. Further confirmation of the priming effects needs to be evaluated at the field trials to investigate its application efficiency.

Keywords: Russian wheat aphis, salicylic acid, puccina triticina, priming

Procedia PDF Downloads 199
1356 High Physical Properties of Biochar Issued from Cashew Nut Shell to Adsorb Mycotoxins (Aflatoxins and Ochratoxine A) and Its Effects on Toxigenic Molds

Authors: Abderahim Ahmadou, Alfredo Napoli, Noel Durand, Didier Montet

Abstract:

Biochar is a microporous and adsorbent solid carbon product obtained from the pyrolysis of various organic materials (biomass, agricultural waste). Biochar is distinguished from vegetable charcoal by its manufacture methods. Biochar is used as the amendment in soils to give them favorable characteristics under certain conditions, i.e., absorption of water and its release at low speed. Cashew nuts shell from Mali is usually discarded on land by local processors or burnt as a mean for waste management. The burning of this biomass poses serious socio-environmental problems including greenhouse gas emission and accumulation of tars and soot on houses closed to factories, leading to neighbor complaints. Some mycotoxins as aflatoxins are carcinogenic compounds resulting from the secondary metabolism of molds that develop on plants in the field and during their conservation. They are found at high level on some seeds and nuts in Africa. Ochratoxin A, member of mycotoxins, is produced by various species of Aspergillus and Penicillium. Human exposure to Ochratoxin A can occur through consumption of contaminated food products, particularly contaminated grain, as well as coffee, wine grapes. We showed that cashew shell biochars produced at 400, 600 and 800°C adsorbed aflatoxins (B1, B2, G1, G2) at 100% by filtration (rapid contact) as well as by stirring (long contact). The average percentage of adsorption of Ochratoxin A was 35% by filtration and 80% by stirring. The duration of the biochar-mycotoxin contact was a significant parameter. The effect of biochar was also tested on two strains of toxigenic molds: Aspergillus parasiticus (producers of Aflatoxins) and Aspergillus carbonarius (producers of Ochratoxins). The growth of the strain Aspergillus carbonarius was inhibited at up to 60% by the biochar at 600°C. An opposite effect to the inhibition was observed on Aspergillus parasiticus using the same biochar. In conclusion, we observed that biochar adsorbs mycotoxins: Aflatoxins and Ochratoxin A to different degrees; 100% adsorption of aflatoxins under all conditions (filtration and stirring) and adsorption of Ochratoxin A varied depending on the type of biochar and the experiment conditions (35% by filtration and 85% by stirring). The effects of biochar at 600 °C on the toxigenic molds: Aspergillus parasiticus and Aspergillus carbonarius, varied according to the experimental conditions and the strains. We observed an opposite effect on the growth with an inhibition of Aspergillus carbonarius up to 60% and a stimulated growth of Aspergillus parasiticus.

Keywords: biochar, cashew nut shell, mycotoxins, toxicogenic molds

Procedia PDF Downloads 170
1355 Evaluation of Microbial Accumulation of Household Wastewater Purified by Advanced Oxidation Process

Authors: Nazlı Çetindağ, Pelin Yılmaz Çetiner, Metin Mert İlgün, Emine Birci, Gizemnur Yıldız Uysal, Özcan Hatipoğlu, Ehsan Tuzcuoğlu, Gökhan Sır

Abstract:

Water scarcity is an unavoidable issue impacting an increasing number of individuals daily, representing a global crisis stemming from swift population growth, urbanization, and excessive resource exploitation. Consequently, solutions that involve the reclamation of wastewater are considered essential. In this context, household wastewater, categorized as greywater, plays a significant role in freshwater used for residential purposes and is attributed to washing. This type of wastewater comprises diverse elements, including organic substances, soaps, detergents, solvents, biological components, and inorganic elements such as certain metal ions and particles. The physical characteristics of wastewater vary depending on its source, whether commercial, domestic, or from a hospital setting. Consequently, the treatment strategy for this wastewater type necessitates comprehensive investigation and appropriate handling. The advanced oxidation process (AOP) emerges as a promising technique associated with the generation of reactive hydroxyl radicals highly effective in oxidizing organic pollutants. This method takes precedence over others like coagulation, flocculation, sedimentation, and filtration due to its avoidance of undesirable by-products. In the current study, the focus was on exploring the feasibility of the AOP for treating actual household wastewater. To achieve this, a laboratory-scale device was designed to effectively target the formed radicals toward organic pollutants, resulting in lower organic compounds in wastewater. Then, the number of microorganisms present in treated wastewater, in addition to the chemical content of the water, was analyzed to determine whether the lab-scale device eliminates microbial accumulation with AOP. This was also an important parameter since microbes can indirectly affect human health and machine hygiene. To do this, water samples were taken from treated and untreated conditions and then inoculated on general purpose agar to track down the total plate count. Analysis showed that AOP might be an option to treat household wastewater and lower microorganism growth.

Keywords: usage of household water, advanced oxidation process, water reuse, modelling

Procedia PDF Downloads 40
1354 Development of Technologies for Biotransformation of Aquatic Biological Resources for the Production of Functional, Specialized, Therapeutic, Preventive, and Microbiological Products

Authors: Kira Rysakova, Vitaly Novikov

Abstract:

An improved method of obtaining enzymatic collagen hydrolysate from the tissues of marine hydrobionts is proposed, which allows to obtain hydrolysate without pre-isolation of pure collagen. The method can be used to isolate enzymatic collagen hydrolysate from the waste of industrial processing of Red King crab and non-traditional objects - marine holothurias. Comparative analysis of collagen hydrolysates has shown the possibility of their use in a number of nutrient media, but this requires additional optimization of their composition and biological tests on wide sets of test strains of microorganisms.

Keywords: collagen hydrolysate, marine hydrobionts, red king crab, marine holothurias, enzymes, exclusive HPLC

Procedia PDF Downloads 160
1353 Detection and Identification of Antibiotic Resistant Bacteria Using Infra-Red-Microscopy and Advanced Multivariate Analysis

Authors: Uraib Sharaha, Ahmad Salman, Eladio Rodriguez-Diaz, Elad Shufan, Klaris Riesenberg, Irving J. Bigio, Mahmoud Huleihel

Abstract:

Antimicrobial drugs have an important role in controlling illness associated with infectious diseases in animals and humans. However, the increasing resistance of bacteria to a broad spectrum of commonly used antibiotics has become a global health-care problem. Rapid determination of antimicrobial susceptibility of a clinical isolate is often crucial for the optimal antimicrobial therapy of infected patients and in many cases can save lives. The conventional methods for susceptibility testing like disk diffusion are time-consuming and other method including E-test, genotyping are relatively expensive. Fourier transform infrared (FTIR) microscopy is rapid, safe, and low cost method that was widely and successfully used in different studies for the identification of various biological samples including bacteria. The new modern infrared (IR) spectrometers with high spectral resolution enable measuring unprecedented biochemical information from cells at the molecular level. Moreover, the development of new bioinformatics analyses combined with IR spectroscopy becomes a powerful technique, which enables the detection of structural changes associated with resistivity. The main goal of this study is to evaluate the potential of the FTIR microscopy in tandem with machine learning algorithms for rapid and reliable identification of bacterial susceptibility to antibiotics in time span of few minutes. The bacterial samples, which were identified at the species level by MALDI-TOF and examined for their susceptibility by the routine assay (micro-diffusion discs), are obtained from the bacteriology laboratories in Soroka University Medical Center (SUMC). These samples were examined by FTIR microscopy and analyzed by advanced statistical methods. Our results, based on 550 E.coli samples, were promising and showed that by using infrared spectroscopic technique together with multivariate analysis, it is possible to classify the tested bacteria into sensitive and resistant with success rate higher than 85% for eight different antibiotics. Based on these preliminary results, it is worthwhile to continue developing the FTIR microscopy technique as a rapid and reliable method for identification antibiotic susceptibility.

Keywords: antibiotics, E. coli, FTIR, multivariate analysis, susceptibility

Procedia PDF Downloads 252
1352 A 3D Eight Nodes Brick Finite Element Based on the Strain Approach

Authors: L. Belounar, K. Gerraiche, C. Rebiai, S. Benmebarek

Abstract:

This paper presents the development of a new three dimensional brick finite element by the use of the strain based approach for the linear analysis of plate bending behavior. The developed element has the three essential external degrees of freedom (U, V and W) at each of the eight corner nodes. The displacements field of the developed element is based on assumed functions for the various strains satisfying the compatibility and the equilibrium equations. The performance of this element is evaluated on several problems related to thick and thin plate bending in linear analysis. The obtained results show the good performances and accuracy of the present element.

Keywords: brick element, strain approach, plate bending, civil engineering

Procedia PDF Downloads 478
1351 Phytochemical Investigation of Berries of the Embelia schimperi Plant

Authors: Tariku Nefo Duke

Abstract:

Embelia is a genus of climbing shrubs in the family Myrsinaceae. Embelia schimperi is as important in traditional medicine as the other species in the genus. The plant has been much known as a local medicine for the treatment of tapeworms. In this project, extraction, phytochemical screening tests, isolation, and characterization of berries of the Embelia schimperi plant have been conducted. The chemical investigations of methanol and ethyl acetate (1:1) ratio extracts of the berries lead to the isolation of three new compounds. The compounds were identified to be alkaloids coded as AD, AN, and AG. Structural elucidations of the isolated compounds were accomplished using spectroscopic methods (IR, UV, ¹H NMR, ¹³C NMR, DEPT and 2D NMR, HPLC, and LC-MS). The alkaloid coded as (AN) has a wide MIC range of 6.31-25.46 mg/mL against all tested bacteria strains.

Keywords: Embelia schimper, HPLC, alkaloids, 2D NMR, MIC

Procedia PDF Downloads 92
1350 Pyrazolylpyrazolines: Design, Synthesis and Biological Evaluation as Dual Acting Antimalarial-Antileishmanial Agents

Authors: Adnan Bekhit, Eskedar Lodebo, Ariaya Hymete, Hanan Ragab, Alaa El-Din Bekhit

Abstract:

Malaria and leishmaniasis have emerged as serious universal health problems throughout history of mankind. According to the WHO 2008 malarial report, half of the world population is at risk of malarial infection with an estimate of 1 million deaths occurring annually mainly in the African region. Furthermore, 12-15 million people are infected with Leishmaniasis worldwide. Despite the continuous introduction of a large number of agents for the treatment of malaria, there is still unmet medical needs due to the emergence of resistance. Resistance has occurred for almost all therapeutic agents approved for the treatment of malaria. Accordingly, it was the aim of this work to design and synthesis a group of antimalarial-antileshmanial agents that would show inhibitory activity against chloroquine-resistant strain of Plasmodium falciparum. The synthesized compounds were designed to contain a pyrazolylpyrazoline moiety having an aromatic group (p-tolyl or p-chlorophenyl) at N1-position of one pyrazoline ring due to the reports of promising activities of such compounds. A formyl or acyl substituent was introduced at the N1-position of the other pyrazoline ring, to investigate the effect of bulkiness of acyl substituents at this position. The synthesized compounds were evaluated for their in-vivo antimalarial activity against Plasmodium berghei infected mice at dose levels of 20 and 30 mg/Kg. the two most active compounds were evaluated for their antimalarial activity against chloroquin-resistant strain (RKL9) of Plasmodium falciparum. In addition, the synthesized compounds were tested for their in-vitro antileshmanial activity against Leishmania aethiopica promastigotes and amastigotes. For both antimalarial and antileishmanial activities, compounds having an N1-p-tolyl group at the first pyrazoline ring did not require bulkiness at the second pyrazoline ring nitrogen where the compound bearing an acetyl group proved to be the most active of the whole series. On the other hand, bulkiness at the N1-position of the second pyazoline ring was necessary in case of compounds carrying the p-chlorophenyl group, where the two derivatives having an N1-butanoyl and an N1-benzoyl moieties at the second pyrazoline showed the best activity. Furthermore, the toxicity of the active compounds were tested and were proved to be non-toxic at 125, 250 and 500 mg/Kg. In addition, docking of the most active compound (having a p-tolyl group at the first pyrazoline-N and an acetyl moiety on the other pyrazoline-N) was performed against dihydrofolate reductase enzyme.

Keywords: pyrazoline derivatives, in-vivo antimalarial activity, docking, dihydrofolate reductase

Procedia PDF Downloads 333
1349 Carbapenem Usage in Medical Wards: An Antibiotic Stewardship Feedback Project

Authors: Choon Seong Ng, P. Petrick, C. L. Lau

Abstract:

Background: Carbapenem-resistant isolates have been increasingly reported recently. Carbapenem stewardship is designed to optimize its usage particularly among medical wards with high prevalence of carbapenem prescriptions to combat such emerging resistance. Carbapenem stewardship programmes (CSP) can reduce antibiotic use but clinical outcome of such measures needs further evaluation. We examined this in a prospective manner using feedback mechanism. Methods: Our single-center prospective cohort study involved all carbapenem prescriptions across the medical wards (including medical patients admitted to intensive care unit) in a tertiary university hospital setting. The impact of such stewardship was analysed according to the accepted and the rejected groups. The primary endpoint was safety. Safety measure applied in this study was the death at 1 month. Secondary endpoints included length of hospitalisation and readmission. Results: Over the 19 months’ period, input from 144 carbapenem prescriptions was analysed on the basis of acceptance of our CSP recommendations on the use of carbapenems. Recommendations made were as follows : de-escalation of carbapenem; stopping the carbapenem; use for a short duration of 5-7 days; required prolonged duration in the case of carbapenem-sensitive Extended Spectrum Beta-Lactamases bacteremia; dose adjustment; and surgical intervention for removal of septic foci. De-escalation, shorten duration of carbapenem and carbapenem cessation comprised 79% of the recommendations. Acceptance rate was 57%. Those who accepted CSP recommendations had no increase in mortality (p = 0.92), had a shorter length of hospital stay (LOS) and had cost-saving. Infection-related deaths were found to be higher among those in the rejected group. Moreover, three rejected cases (6%) among all non-indicated cases (n = 50) were found to have developed carbapenem-resistant isolates. Lastly, Pitt’s bacteremia score appeared to be a key element affecting the carbapenem prescription’s behaviour in this trial. Conclusions: Carbapenem stewardship program in the medical wards not only saves money, but most importantly it is safe and does not harm the patients with added benefits of reducing the length of hospital stay. However, more time is needed to engage the primary clinical teams by formal clinical presentation and immediate personal feedback by senior Infectious Disease (ID) personnel to increase its acceptance.

Keywords: audit and feedback, carbapenem stewardship, medical wards, university hospital

Procedia PDF Downloads 199
1348 Decreased Tricarboxylic Acid (TCA) Cycle Staphylococcus aureus Increases Survival to Innate Immunity

Authors: Trenten Theis, Trevor Daubert, Kennedy Kluthe, Austin Nuxoll

Abstract:

Staphylococcus aureus is a gram-positive bacterium responsible for an estimated 23,000 deaths in the United States and 25,000 deaths in the European Union annually. Recurring S. aureus bacteremia is associated with biofilm-mediated infections and can occur in 5 - 20% of cases, even with the use of antibiotics. Despite these infections being caused by drug-susceptible pathogens, they are surprisingly difficult to eradicate. One potential explanation for this is the presence of persister cells—a dormant type of cell that shows a high tolerance to antibiotic treatment. Recent studies have shown a connection between low intracellular ATP and persister cell formation. Specifically, this decrease in ATP, and therefore increase in persister cell formation, is due to an interrupted tricarboxylic acid (TCA) cycle. However, S. aureus persister cells’ role in pathogenesis remains unclear. Initial studies have shown that a fumC (TCA cycle gene) knockout survives challenge from aspects of the innate immune system better than wild-type S. aureus. Specifically, challenges from two antimicrobial peptides--LL-37 and hBD-3—show a log increase in survival of the fumC::N∑ strain compared to wild type S. aureus after 18 hours. Furthermore, preliminary studies show that the fumC knockout has a log more survival within a macrophage. These data lead us to hypothesize that the fumC knockout is better suited to other aspects of the innate immune system compared to wild-type S. aureus. To further investigate the mechanism for increased survival of fumC::N∑ within a macrophage, we tested bacterial growth in the presence of reactive oxygen species (ROS), reactive nitrogen species (RNS), and a low pH. Preliminary results suggest that the fumC knockout has increased growth compared to wild-type S. aureus in the presence of all three antimicrobial factors; however, no difference was observed in any single factor alone. To investigate survival within a host, a nine-day biofilm-associated catheter infection was performed on 6–8-week-old male and female C57Bl/6 mice. Although both sexes struggled to clear the infection, female mice were trending toward more frequently clearing the HG003 wild-type infection compared to the fumC::N∑ infection. One possible reason for the inability to reduce the bacterial burden is that biofilms are largely composed of persister cells. To test this hypothesis further, flow cytometry in conjunction with a persister cell marker was used to measure persister cells within a biofilm. Cap5A (a known persister cell marker) expression was found to be increased in a maturing biofilm, with the lowest levels of expression seen in immature biofilms and the highest expression exhibited by the 48-hour biofilm. Additionally, bacterial cells in a biofilm state closely resemble persister cells and exhibit reduced membrane potential compared to cells in planktonic culture, further suggesting biofilms are largely made up of persister cells. These data may provide an explanation as to why infections caused by antibiotic-susceptible strains remain difficult to treat.

Keywords: antibiotic tolerance, Staphylococcus aureus, host-pathogen interactions, microbial pathogenesis

Procedia PDF Downloads 175
1347 Lentiviral-Based Novel Bicistronic Therapeutic Vaccine against Chronic Hepatitis B Induces Robust Immune Response

Authors: Mohamad F. Jamiluddin, Emeline Sarry, Ana Bejanariu, Cécile Bauche

Abstract:

Introduction: Over 360 million people are chronically infected with hepatitis B virus (HBV), of whom 1 million die each year from HBV-associated liver cirrhosis or hepatocellular carcinoma. Current treatment options for chronic hepatitis B depend on interferon-α (IFNα) or nucleos(t)ide analogs, which control virus replication but rarely eliminate the virus. Treatment with PEG-IFNα leads to a sustained antiviral response in only one third of patients. After withdrawal of the drugs, the rebound of viremia is observed in the majority of patients. Furthermore, the long-term treatment is subsequently associated with the appearance of drug resistant HBV strains that is often the cause of the therapy failure. Among the new therapeutic avenues being developed, therapeutic vaccine aimed at inducing immune responses similar to those found in resolvers is of growing interest. The high prevalence of chronic hepatitis B necessitates the design of better vaccination strategies capable of eliciting broad-spectrum of cell-mediated immunity(CMI) and humoral immune response that can control chronic hepatitis B. Induction of HBV-specific T cells and B cells by therapeutic vaccination may be an innovative strategy to overcome virus persistence. Lentiviral vectors developed and optimized by THERAVECTYS, due to their ability to transduce non-dividing cells, including dendritic cells, and induce CMI response, have demonstrated their effectiveness as vaccination tools. Method: To develop a HBV therapeutic vaccine that can induce a broad but specific immune response, we generated recombinant lentiviral vector carrying IRES(Internal Ribosome Entry Site)-containing bicistronic constructs which allow the coexpression of two vaccine products, namely HBV T- cell epitope vaccine and HBV virus like particle (VLP) vaccine. HBV T-cell epitope vaccine consists of immunodominant cluster of CD4 and CD8 epitopes with spacer in between them and epitopes are derived from HBV surface protein, HBV core, HBV X and polymerase. While HBV VLP vaccine is a HBV core protein based chimeric VLP with surface protein B-cell epitopes displayed. In order to evaluate the immunogenicity, mice were immunized with lentiviral constructs by intramuscular injection. The T cell and antibody immune responses of the two vaccine products were analyzed using IFN-γ ELISpot assay and ELISA respectively to quantify the adaptive response to HBV antigens. Results: Following a single administration in mice, lentiviral construct elicited robust antigen-specific IFN-γ responses to the encoded antigens. The HBV T- cell epitope vaccine demonstrated significantly higher T cell immunogenicity than HBV VLP vaccine. Importantly, we demonstrated by ELISA that antibodies are induced against both HBV surface protein and HBV core protein when mice injected with vaccine construct (p < 0.05). Conclusion: Our results highlight that THERAVECTYS lentiviral vectors may represent a powerful platform for immunization strategy against chronic hepatitis B. Our data suggests the likely importance of Lentiviral vector based novel bicistronic construct for further study, in combination with drugs or as standalone antigens, as a therapeutic lentiviral based HBV vaccines. THERAVECTYS bicistronic HBV vaccine will be further evaluated in animal efficacy studies.

Keywords: chronic hepatitis B, lentiviral vectors, therapeutic vaccine, virus-like particle

Procedia PDF Downloads 329
1346 Civil Engineering Education at the University of the West Indies: An International Perspective

Authors: Gyan Shrivastava

Abstract:

Civil Engineering education, at undergraduate and graduate levels, commenced at the University of the West Indies (UWI) in 1961, in collaboration with Imperial College in London. From its inception, it has concentrated on natural hazard resistant design of structures, given the occurrence of earthquakes, hurricanes and volcanic eruption in the Commonwealth Caribbean Islands. Against this background, a number of international students, from Botswana, Canada, Germany, India, Nigeria and South Africa, have studied Civil Engineering at UWI over the years. This paper outlines the author’s experience in teaching Fluid Mechanics and Engineering design to the said students, and in so doing highlights their strengths and weaknesses.

Keywords: Caribbean, civil engineering, education, natural hazards

Procedia PDF Downloads 224
1345 Geographic Variation in the Baseline Susceptibility of Helicoverpa armigera (Hubner) (Noctuidae: Lepidoptera) Field Populations to Bacillus thuringiensis Cry Toxins for Resistance Monitoring

Authors: Muhammad Arshad, M. Sufian, Muhammad D. Gogi, A. Aslam

Abstract:

The transgenic cotton expressing Bacillus thuringiensis (Bt) provides an effective control of Helicoverpa armigera, a most damaging pest of the cotton crop. However, Bt cotton may not be the optimal solution owing to the selection pressure of Cry toxins. As Bt cotton express the insecticidal proteins throughout the growing seasons, there are the chances of resistance development in the target pests. A regular monitoring and surveillance of target pest’s baseline susceptibility to Bt Cry toxins is crucial for early detection of any resistance development. The present study was conducted to monitor the changes in the baseline susceptibility of the field population of H. armigera to Bt Cry1Ac toxin. The field-collected larval populations were maintained in the laboratory on artificial diet and F1 generation larvae were used for diet incorporated diagnostic studies. The LC₅₀ and MIC₅₀ were calculated to measure the level of resistance of population as a ratio over susceptible population. The monitoring results indicated a significant difference in the susceptibility (LC₅₀) of H. armigera for first, second, third and fourth instar larval populations sampled from different cotton growing areas over the study period 2016-17. The variations in susceptibility among the tested insects depended on the age of the insect and susceptibility decreased with the age of larvae. The overall results show that the average resistant ratio (RR) of all field-collected populations (FSD, SWL, MLT, BWP and DGK) exposed to Bt toxin Cry1Ac ranged from 3.381-fold to 7.381-fold for 1st instar, 2.370-fold to 3.739-fold for 2nd instar, 1.115-fold to 1.762-fold for 3rd instar and 1.141-fold to 2.504-fold for 4th instar, depicting maximum RR from MLT population, whereas minimum RR for FSD and SWL population. The results regarding moult inhibitory concentration of H. armigera larvae (1-4th instars) exposed to different concentrations of Bt Cry1Ac toxin indicated that among all field populations, overall Multan (MLT) and Bahawalpur (BWP) populations showed higher MIC₅₀ values as compared to Faisalabad (FSD) and Sahiwal (SWL), whereas DG Khan (DGK) population showed an intermediate moult inhibitory concentrations. This information is important for the development of more effective resistance monitoring programs. The development of Bt Cry toxins baseline susceptibility data before the widespread commercial release of transgenic Bt cotton cultivars in Pakistan is important for the development of more effective resistance monitoring programs to identify the resistant H. armigera populations.

Keywords: Bt cotton, baseline, Cry1Ac toxins, H. armigera

Procedia PDF Downloads 128
1344 Exploring the Synergistic Effects of Aerobic Exercise and Cinnamon Extract on Metabolic Markers in Insulin-Resistant Rats through Advanced Machine Learning and Deep Learning Techniques

Authors: Masoomeh Alsadat Mirshafaei

Abstract:

The present study aims to explore the effect of an 8-week aerobic training regimen combined with cinnamon extract on serum irisin and leptin levels in insulin-resistant rats. Additionally, this research leverages various machine learning (ML) and deep learning (DL) algorithms to model the complex interdependencies between exercise, nutrition, and metabolic markers, offering a groundbreaking approach to obesity and diabetes research. Forty-eight Wistar rats were selected and randomly divided into four groups: control, training, cinnamon, and training cinnamon. The training protocol was conducted over 8 weeks, with sessions 5 days a week at 75-80% VO2 max. The cinnamon and training-cinnamon groups were injected with 200 ml/kg/day of cinnamon extract. Data analysis included serum data, dietary intake, exercise intensity, and metabolic response variables, with blood samples collected 72 hours after the final training session. The dataset was analyzed using one-way ANOVA (P<0.05) and fed into various ML and DL models, including Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural Networks (CNN). Traditional statistical methods indicated that aerobic training, with and without cinnamon extract, significantly increased serum irisin and decreased leptin levels. Among the algorithms, the CNN model provided superior performance in identifying specific interactions between cinnamon extract concentration and exercise intensity, optimizing the increase in irisin and the decrease in leptin. The CNN model achieved an accuracy of 92%, outperforming the SVM (85%) and RF (88%) models in predicting the optimal conditions for metabolic marker improvements. The study demonstrated that advanced ML and DL techniques could uncover nuanced relationships and potential cellular responses to exercise and dietary supplements, which is not evident through traditional methods. These findings advocate for the integration of advanced analytical techniques in nutritional science and exercise physiology, paving the way for personalized health interventions in managing obesity and diabetes.

Keywords: aerobic training, cinnamon extract, insulin resistance, irisin, leptin, convolutional neural networks, exercise physiology, support vector machines, random forest

Procedia PDF Downloads 18
1343 Application of Free Living Nitrogen Fixing Bacteria to Increase Productivity of Potato in Field

Authors: Govinda Pathak

Abstract:

In modern agriculture, the sustainable enhancement of crop productivity while minimizing environmental impacts remains a paramount challenge. Plant Growth Promoting Rhizobacteria (PGPR) have emerged as a promising solution to address this challenge. The rhizosphere, the dynamic interface between plant roots and soil, hosts intricate microbial interactions crucial for plant health and nutrient acquisition. PGPR, a subset of rhizospheric microorganisms, exhibit multifaceted beneficial effects on plants. Their abilities to stimulate growth, confer stress tolerance, enhance nutrient availability, and suppress pathogens make them invaluable contributors to sustainable agriculture. This work examines the pivotal role of free living nitrogen fixer in optimizing agricultural practices. We delve into the intricate mechanisms underlying PGPR-mediated plant-microbe interactions, encompassing quorum sensing, root exudate modulation, and signaling molecule exchange. Furthermore, we explore the diverse strategies employed by PGPR to enhance plant resilience against abiotic stresses such as drought, salinity, and metal toxicity. Additionally, we highlight the role of PGPR in augmenting nutrient acquisition and soil fertility through mechanisms such as nitrogen fixation, phosphorus solubilization, and mineral mobilization. Furthermore, we discuss the potential of PGPR in minimizing the reliance on chemical fertilizers and pesticides, thereby contributing to environmentally friendly agriculture. However, harnessing the full potential of PGPR requires a comprehensive understanding of their interactions with host plants and the surrounding microbial community. We also address challenges associated with PGPR application, including formulation, compatibility, and field efficacy. As the quest for sustainable agriculture intensifies, harnessing the remarkable attributes of PGPR offers a holistic approach to propel agricultural productivity while maintaining ecological balance. This work underscores the promising prospect of free living nitrogen fixer as a panacea for addressing critical agricultural challenges regarding chemical urea in an era of sustainable and resilient food production.

Keywords: PGPR, nitrogen fixer, quorum sensing, Rhizobacteria, pesticides

Procedia PDF Downloads 48
1342 A Practical Approach Towards Disinfection Challenges in Sterile Manufacturing Area

Authors: Doris Lacej, Eni Bushi

Abstract:

Cleaning and disinfection procedures are essential for maintaining the cleanliness status of the pharmaceutical manufacturing environment particularly of the cleanrooms and sterile unit area. The Good Manufacturing Practice (GMP) Annex 1 recommendation highly requires the implementation of the standard and validated cleaning and disinfection protocols. However, environmental monitoring has shown that even a validated cleaning method with certified agents may result in the presence of atypical microorganisms’ colony that exceeds GMP limits for a specific cleanroom area. In response to this issue, this case study aims to arrive at the root cause of the microbial contamination observed in the sterile production environment in Profarma pharmaceutical industry in Albania through applying a problem-solving practical approach that ensures the appropriate sterility grade. The guidelines and literature emphasize the importance of several factors in the prevention of possible microbial contamination occurring in cleanrooms, grade A and C. These factors are integrated into a practical framework, to identify the root cause of the presence of Aspergillus Niger colony in the sterile production environment in Profarma pharmaceutical industry in Albania. In addition, the application of a semi-automatic disinfecting system such as H2O2 FOG into sterile grade A and grade C cleanrooms has been an effective solution in eliminating the atypical colony of Aspergillus Niger. Selecting the appropriate detergents and disinfectants at the right concentration, frequency, and combination; the presence of updated and standardized guidelines for cleaning and disinfection as well as continuous training of operators on these practices in accordance with the updated GMP guidelines are some of the identified factors that influence the success of achieving sterility grade. However, to ensure environmental sustainability it is important to be prepared for identifying the source of contamination and making the appropriate decision. The proposed case-based practical approach may help pharmaceutical companies to achieve sterile production and cleanliness environmental sustainability in challenging situations. Apart from the integration of valid agents and standardized cleaning and disinfection protocols according to GMP Annex 1, pharmaceutical companies must be careful and investigate the source and all the steps that can influence the results of an abnormal situation. Subsequently apart from identifying the root cause it is important to solve the problem with a successful alternative approach.

Keywords: cleanrooms, disinfectants, environmental monitoring, GMP Annex 1

Procedia PDF Downloads 205
1341 Component Test of Martensitic/Ferritic Steels and Nickel-Based Alloys and Their Welded Joints under Creep and Thermo-Mechanical Fatigue Loading

Authors: Daniel Osorio, Andreas Klenk, Stefan Weihe, Andreas Kopp, Frank Rödiger

Abstract:

Future power plants currently face high design requirements due to worsening climate change and environmental restrictions, which demand high operational flexibility, superior thermal performance, minimal emissions, and higher cyclic capability. The aim of the paper is, therefore, to investigate the creep and thermo-mechanical material behavior of improved materials experimentally and welded joints at component scale under near-to-service operating conditions, which are promising for application in highly efficient and flexible future power plants. These materials promise an increase in flexibility and a reduction in manufacturing costs by providing enhanced creep strength and, therefore, the possibility for wall thickness reduction. At the temperature range between 550°C and 625°C, the investigation focuses on the in-phase thermo-mechanical fatigue behavior of dissimilar welded joints of conventional materials (ferritic and martensitic material T24 and T92) to nickel-based alloys (A617B and HR6W) by means of membrane test panels. The temperature and external load are varied in phase during the test, while the internal pressure remains constant. At the temperature range between 650°C and 750°C, it focuses on the creep behavior under multiaxial stress loading of similar and dissimilar welded joints of high temperature resistant nickel-based alloys (A740H, A617B, and HR6W) by means of a thick-walled-component test. In this case, the temperature, the external axial load, and the internal pressure remain constant during testing. Numerical simulations are used for the estimation of the axial component load in order to induce a meaningful damage evolution without causing a total component failure. Metallographic investigations after testing will provide support for understanding the damage mechanism and the influence of the thermo-mechanical load and multiaxiality on the microstructure change and on the creep and TMF- strength.

Keywords: creep, creep-fatigue, component behaviour, weld joints, high temperature material behaviour, nickel-alloys, high temperature resistant steels

Procedia PDF Downloads 110
1340 Selection Effects on the Molecular and Abiotic Evolution of Antibiotic Resistance

Authors: Abishek Rajkumar

Abstract:

Antibiotic resistance can occur naturally given the selective pressure placed on antibiotics. Within a large population of bacteria, there is a significant chance that some of those bacteria can develop resistance via mutations or genetic recombination. However, a growing public health concern has arisen over the fact that antibiotic resistance has increased significantly over the past few decades. This is because humans have been over-consuming and producing antibiotics, which has ultimately accelerated the antibiotic resistance seen in these bacteria. The product of all of this is an ongoing race between scientists and the bacteria as bacteria continue to develop resistance, which creates even more demand for an antibiotic that can still terminate the newly resistant strain of bacteria. This paper will focus on a myriad of aspects of antibiotic resistance in bacteria starting with how it occurs on a molecular level and then focusing on the antibiotic concentrations and how they affect the resistance and fitness seen in bacteria.

Keywords: antibiotic, molecular, mutation, resistance

Procedia PDF Downloads 315
1339 A Review on Concrete Structures in Fire

Authors: S. Iffat, B. Bose

Abstract:

Concrete as a construction material is versatile because it displays high degree of fire-resistance. Concrete’s inherent ability to combat one of the most devastating disaster that a structure can endure in its lifetime, can be attributed to its constituent materials which make it inert and have relatively poor thermal conductivity. However, concrete structures must be designed for fire effects. Structural components should be able to withstand dead and live loads without undergoing collapse. The properties of high-strength concrete must be weighed against concerns about its fire resistance and susceptibility to spalling at elevated temperatures. In this paper, the causes, effects and some remedy of deterioration in concrete due to fire hazard will be discussed. Some cost effective solutions to produce a fire resistant concrete will be conversed through this paper.

Keywords: concrete, fire, spalling, temperature, compressive strength, density

Procedia PDF Downloads 432
1338 Performance of Non-toxic, Corrosion Resistant, and Lubricious Metalworking Fluids under Machining

Authors: Ajay Pratap Singh Lodhi, Deepak Kumar

Abstract:

Vegetable oil-based environmentally friendly metalworking fluids (MWFs) are formulated. The tribological performance, cytotoxicity, and corrosion resistance of the formulated fluids (FFs) are evaluated and benchmarked with commercial mineral oil-based MWFs (CF). Results show that FFs exhibited better machining characteristics (roughness, cutting forces, and surface morphology) during machining than CF. MTT assay and Live dead cell assay confirm the cytocompatibility nature of the FFs relative to the toxic CF. Electrochemical analysis shows that FFs and CF exhibited comparable corrosion current density.

Keywords: corrosion inhibitors, cytotoxicity, machining, MTT assay, Taguchi method, vegetable oil

Procedia PDF Downloads 177
1337 The Effect of Air Entraining Agents on Compressive Strength

Authors: Demet Yavuz

Abstract:

Freeze-thaw cycles are one of the greatest threats to concrete durability. Lately, protection against this threat excites scientists’ attention. Air-entraining admixtures have been widely used to produce freeze-thaw resistant at concretes. The use of air-entraining agents (AEAs) enhances not only freeze-thaw endurance but also the properties of fresh concrete such as segregation, bleeding and flow ability. This paper examines the effects of air-entraining on compressive strength of concrete. Air-entraining is used between 0.05% and 0.4% by weight of cement. One control and four fiber reinforced concrete mixes are prepared and three specimens are tested for each mix. It is concluded from the test results that when air entraining is increased the compressive strength of concrete reduces for all mixes with AEAs.

Keywords: concrete, air-entraining, compressive strength, mechanical properties

Procedia PDF Downloads 271
1336 Revealing Thermal Degradation Characteristics of Distinctive Oligo-and Polisaccharides of Prebiotic Relevance

Authors: Attila Kiss, Erzsébet Némedi, Zoltán Naár

Abstract:

As natural prebiotic (non-digestible) carbohydrates stimulate the growth of colon microflora and contribute to maintain the health of the host, analytical studies aiming at revealing the chemical behavior of these beneficial food components came to the forefront of interest. Food processing (especially baking) may lead to a significant conversion of the parent compounds, hence it is of utmost importance to characterize the transformation patterns and the plausible decomposition products formed by thermal degradation. The relevance of this work is confirmed by the wide-spread use of these carbohydrates (fructo-oligosaccharides, cyclodextrins, raffinose and resistant starch) in the food industry. More and more functional foodstuffs are being developed based on prebiotics as bioactive components. 12 different types of oligosaccharides have been investigated in order to reveal their thermal degradation characteristics. Different carbohydrate derivatives (D-fructose and D-glucose oligomers and polymers) have been exposed to elevated temperatures (150 °C 170 °C, 190 °C, 210 °C, and 220 °C) for 10 min. An advanced HPLC method was developed and used to identify the decomposition products of carbohydrates formed as a consequence of thermal treatment. Gradient elution was applied with binary solvent elution (acetonitrile, water) through amine based carbohydrate column. Evaporative light scattering (ELS) proved to be suitable for the reliable detection of the UV/VIS inactive carbohydrate degradation products. These experimental conditions and applied advanced techniques made it possible to survey all the formed intermediers. Change in oligomer distribution was established in cases of all studied prebiotics throughout the thermal treatments. The obtained results indicate increased extent of chain degradation of the carbohydrate moiety at elevated temperatures. Prevalence of oligomers with shorter chain length and even the formation of monomer sugars (D-glucose and D-fructose) might be observed at higher temperatures. Unique oligomer distributions, which have not been described previously are revealed in the case of each studied, specific carbohydrate, which might result in various prebiotic activities. Resistant starches exhibited high stability when being thermal treated. The degradation process has been modeled by a plausible reaction mechanism, in which proton catalyzed degradation and chain cleavage take place.

Keywords: prebiotics, thermal degradation, fructo-oligosaccharide, HPLC, ELS detection

Procedia PDF Downloads 298
1335 Synthesis and Pharmacological Evaluation of Substituted Pyrimidine Derivative Containing Thiol Group

Authors: Shradha S. Binani, Pravin S. Bodke, Ravi V. Joat

Abstract:

An efficient method has been described for the synthesis of 6-(substituted aryl)-4-(2'- hydroxy-5'-chlorophenyl)-1, 6-dihydropyrimidine-2-thiol, as a beneficial antibacterial and antifungal agents. The diketones of title compounds were synthesized in four steps and subsequently these diketones were further reacted with thiourea in the presence of DMF, which led to the formation of dihydropyrimidine derivatives 5 (a-f). Compounds 5 (a-f) were screened for their in vitro antibacterial and antifungal activity by agar well method. Compounds 5b, 5c, 5e, and 5f were exhibited significant antimicrobial potential against tested strains at 50ug/ml and 100ug/ml concentrations. Six novel dihydropyrimidine analogues have been synthesized, characterized and found to be promising antibacterial and antifungal agents.

Keywords: diketones, dihyropyrimidine, antimicrobial activity, thiol group

Procedia PDF Downloads 426
1334 Effects of Sacubitril and Valsartan on Gut Microbiome

Authors: Wei-Ju Huang, Hung-Pin Hsu

Abstract:

[Background] In congestive heart failure (CHF), it has always been the principle of clinical treatment to control the water retention mechanism in the body to prevent excessive fluid retention. Early control of sympathetic nerves, Renin-Angiotensin-Aldosterone system (RAA system, RAAS), or strengthening of Atrial Natriuretic Peptide (ANP) was the point. In RAA system, related hormones, such as angiotensin, or enzymes in the pathway, such as ACE-I, can be used with corresponding inhibitors to reduce water content.[Aim] In recent years, clinical studies have pointed out that if different mechanisms are combined, the control effect seems to be better. For example, recent studies showed that ENTRESTO, a combination of Sacubitril and Valsartan, is a good new drug for CHF. Sacubitril is a prodrug. After activation, it can inhibit neprilysin and act as a neprilysin inhibitor (ARNI) to reduce the breakdown of natriuretic peptides(ANP). Valsartan is a kind of angiotensin receptor blocker (ARB), both of which are used to treat heart failure at the same time, have excellent curative effects.[Materials and Methods] Considering the side effects of this drug, coughing and a few cases of diarrhea were observed. However, the effect of this drug on the patient's intestinal tract has not been confirmed. On the other hand, studies have pointed out that ANP supplement can improve the CHF and increase the inhibitory effect on cancer cells. Therefore, the purpose of this study is to use a special microbial detection method to prove that whether oral drugs have an effect on microorganisms.The experimental method uses Nissui Compact Dry to observe the situation in different types of microorganisms. After the drug is dissolved in water, it is implanted in a petri dish, and the presence of different microorganisms is detected through different antibody reactions to confirm whether the drug has some toxicology in the gut.[Results and Discussion]From the above experimental results, it can be known that among the effects of Sacubitril and Valsartan on the basic microbial flora of the human body, low doses had no significant effect on Escherichia coli or intestinal bacteria. If Sacubitril or Valsartan with a high concentration of 3mg/ml is used alone or under the stimulation of a high concentration of the two drugs, it has a significant inhibitory effect on Escherichia coli. However, in terms of the effect on intestinal bacteria, high concentration of Sacubitril has a more significant inhibitory effect on intestinal bacteria, while high concentration of Valsartan has a less significant inhibitory effect on intestinal bacteria. The inhibitory effect of the combination of the two drugs on intestinal bacteria is also less significant.[Conclusion]The results of this study can be used as a further reference for the possible side effects of the clinical use of Sacubitril and Valsartan on the intestinal tract of patients,

Keywords: sacubitril, valsartan, entresto, congestive heart failure (CHF)

Procedia PDF Downloads 60
1333 The Challenges of Well Integrity on Plug and Abandoned Wells for Offshore Co₂ Storage Site Containment

Authors: Siti Noor Syahirah Mohd Sabri

Abstract:

The oil and gas industry is committed to net zero carbon emissions because the consequences of climate change could be catastrophic unless responded to very soon. One way of reducing CO₂ emissions is to inject it into a depleted reservoir buried underground. This greenhouse gas reduction technique significantly reduces CO₂ released into the atmosphere. In general, depleted oil and gas reservoirs provide readily available sites for the storage of CO₂ in offshore areas. This is mainly due to the hydrocarbons have been optimally produced and the existence of voids for effective CO₂ storage. Hence, make it a good candidate for a CO₂ well injector location. Geological storage sites are often evaluated in terms of capacity, injectivity and containment. Leakage through the cap rock or existing well is the main concern in the depleted fields. In order to develop these fields as CO₂ storage sites, the long-term integrity of wells drilled in these oil & gas fields must be ascertained to ensure good CO₂ containment. Well, integrity is often defined as the ability to contain fluids without significant leakage through the project lifecycle. Most plugged and abandoned (P & A) wells in Peninsular Malaysia have drilled 20 – 30 years ago and were not designed to withstand downhole conditions having >50%vol CO₂ and CO₂/H₂O mixture. In addition, Corrosive-Resistant Alloy (CRA) tubular and CO₂-resistant cement was not used during good construction. The reservoir pressure and temperature conditions may have further degraded the material strength and elevated the corrosion rate. Understanding all the uncertainties that may have affected cement-casing bonds, such as the quality of cement behind the casing, subsidence effect, corrosion rate, etc., is the first step toward well integrity evaluation. Secondly, proper quantification of all the uncertainties involved needs to be done to ensure long-term underground storage objectives of CO₂ are achieved. This paper will discuss challenges associated with estimating the performance of well barrier elements in existing P&A wells. Risk ranking of the existing P&A wells is to be carried out in order to ensure the integrity of the storage site is maintained for long-term CO₂ storage. High-risk existing P&A wells are to be re-entered to restore good integrity and to reduce future leakage that may happen. In addition, the requirement to design a fit-for-purpose monitoring and mitigation technology package for potential CO₂ leakage/seepage in the marine environment will be discussed accordingly. The holistic approach will ensure that the integrity is maintained, and CO₂ is contained underground for years to come.

Keywords: CCUS, well integrity, co₂ storage, offshore

Procedia PDF Downloads 83