Search results for: composite membrane
2954 Effect of Hydraulic Residence Time on Aromatic Petrochemical Wastewater Treatment Using Pilot-Scale Submerged Membrane Bioreactor
Authors: Fatemeh Yousefi, Narges Fallah, Mohsen Kian, Mehrzad Pakzadeh
Abstract:
The petrochemical complex releases wastewater, which is rich in organic pollutants and could not be treated easily. Treatment of the wastewater from a petrochemical industry has been investigated using a submerged membrane bioreactor (MBR). For this purpose, a pilot-scale submerged MBR with a flat-sheet ultrafiltration membrane was used for treatment of petrochemical wastewater according to Bandar Imam Petrochemical complex (BIPC) Aromatic plant. The testing system ran continuously (24-h) over 6 months. Trials on different membrane fluxes and hydraulic retention time (HRT) were conducted and the performance evaluation of the system was done. During the 167 days operation of the MBR at hydraulic retention time (HRT) of 18, 12, 6, and 3 and at an infinite sludge retention time (SRT), the MBR effluent quality consistently met the requirement for discharge to the environment. A fluxes of 6.51 and 13.02 L m-2 h-1 (LMH) was sustainable and HRT of 6 and 12 h corresponding to these fluxes were applicable. Membrane permeability could be fully recovered after cleaning. In addition, there was no foaming issue in the process. It was concluded that it was feasible to treat the wastewater using submersed MBR technology.Keywords: membrane bioreactor (MBR), petrochemical wastewater, COD removal, biological treatment
Procedia PDF Downloads 5202953 Effect of Air Gap Distance on the Structure of PVDF Hollow Fiber Membrane Contactors for Physical CO2 Absorption
Authors: J. Shiri, A. Mansourizadeh, F. Faghih, H. Vaez
Abstract:
In this study, porous polyvinylidene fluoride (PVDF) hollow fiber membranes are fabricated via a wet phase-inversion Process and used in the gas–liquid membrane contactor for physical CO2 absorption. Effect of different air gap on the structure and CO2 flux of the membrane was investigated. The hollow fibers were prepared using the wet spinning process using a dope solution containing PVDF/NMP/Licl (18%, 78%, 4%) at the extrusion rate of 4.5ml/min and air gaps of 0, 7, 15cm. Water was used as internal and external coagulants. Membranes were characterized using various techniques such as Field Emission Scanning Electron Microscopy (FESEM), Gas permeation test, Critical Water Entry Pressure (CEPw) to select the best membrane structure for Co2 absorption. The characterization results showed that the prepared membrane at which air gap possess small pore size with high surface porosity and wetting resistance, which are favorable for gas absorption application air gap increased, CEPw had a decrease, but the N2 permeation was decreased. Surface porosity and also Co2 absorption was increased.Keywords: porous PVDF hollow fiber membrane, CO2 absorption, phase inversion, air gap
Procedia PDF Downloads 3922952 Surface Modified Polyvinylidene Fluoride Membranes for Potential Use in Membrane Distillation
Authors: Lebea Nthunya, Arne Verliefde, Bhekie Mamba, Sabelo Mhlanga
Abstract:
A study aimed at developing membrane distillation (MD) processes that can be used for brackish/saline water purification will be presented. MD is a membrane-based technology that presents a possibility to counteract challenges associated with pressure driven membranes at high separation efficiencies. Membrane distillation membranes (MDM) are affected by wettability and fouling. Wetting inside the pores of the membrane is elevated by the hydrophilic characteristic of the membrane, while fouling is mostly induced by the hydrophobic-hydrophobic interaction of pollutants and the surface of the hydrophobic membranes, hence block the pores of the membranes. These properties are not desirable. As such, a carefully designed polyvinylidene fluoride (PVDF) MDM composed of a super-hydrophobic modified backbone and a super-hydrophilic thin layer has been developed to concurrently overcome these challenges. The membranes were characterized using contact angle measurements to confirm their hydrophobicity/hydrophilicity. SEM and SAXS were used to study the morphology and pore distribution on the surface of the membrane. The contact angles of the active surface ≤ 30º and that of the backbone ≥ 140º has thus revealed that the active surface was highly hydrophilic while the backbone was highly hydrophobic. The SEM and the SAXS results have also confirmed that the membranes are highly porous. These materials demonstrated a potential to remove salts from water at high efficiencies.Keywords: membrane distillation, modification, energy efficiency, desalination
Procedia PDF Downloads 2572951 Lateral Buckling of Nanoparticle Additive Composite Beams
Authors: Gürkan Şakar, Akgün Alsaran, Emrah E. Özbaldan
Abstract:
In this study, lateral buckling analysis of composite beams with particle additive was carried out experimentally and numerically. The effects of particle type, particle addition ratio on buckling loads of composite beams were determined. The numerical studies were performed with ANSYS package. In the analyses, clamped-free boundary condition was assumed. The load carrying capabilities of composite beams were influenced by different particle types and particle addition ratios.Keywords: lateral buckling, nanoparticle, composite beam, numeric analysis
Procedia PDF Downloads 4752950 Monitoring of the Chillon Viaducts after Rehabilitation with Ultra High Performance Fiber Reinforced Cement-Based Composite
Authors: Henar Martín-Sanz García, Eleni Chatzi, Eugen Brühwiler
Abstract:
Located on the shore of Geneva Lake, in Switzerland, the Chillon Viaducts are two parallel structures consisted of post-tensioned concrete box girders, with a total length of 2 kilometers and 100m spans. Built in 1969, the bridges currently accommodate a traffic load of 50.000 vehicles per day, thereby holding a key role both in terms of historic value as well as socio-economic significance. Although several improvements have been carried out in the past two decades, recent inspections demonstrate an Alkali-Aggregate reaction in the concrete deck and piers reducing the concrete strength. In order to prevent further expansion of this issue, a layer of 40 mm of Ultra High Performance Fiber Reinforced cement-based Composite (UHPFRC) (incorporating rebars) was casted over the slabs, acting as a waterproof membrane and providing significant increase in resistance of the bridge structure by composite UHPFRC – RC composite action in particular of the deck slab. After completing the rehabilitation works, a Structural Monitoring campaign was installed on the deck slab in one representative span, based on accelerometers, strain gauges, thermal and humidity sensors. This campaign seeks to reveal information on the behavior of UHPFRC-concrete composite systems, such as increase in stiffness, fatigue strength, durability and long-term performance. Consequently, the structural monitoring is expected to last for at least three years. A first insight of the analyzed results from the initial months of measurements is presented herein, along with future improvements or necessary changes on the deployment.Keywords: composite materials, rehabilitation, structural health monitoring, UHPFRC
Procedia PDF Downloads 2792949 Improved 3D Structure Prediction of Beta-Barrel Membrane Proteins by Using Evolutionary Coupling Constraints, Reduced State Space and an Empirical Potential Function
Authors: Wei Tian, Jie Liang, Hammad Naveed
Abstract:
Beta-barrel membrane proteins are found in the outer membrane of gram-negative bacteria, mitochondria, and chloroplasts. They carry out diverse biological functions, including pore formation, membrane anchoring, enzyme activity, and bacterial virulence. In addition, beta-barrel membrane proteins increasingly serve as scaffolds for bacterial surface display and nanopore-based DNA sequencing. Due to difficulties in experimental structure determination, they are sparsely represented in the protein structure databank and computational methods can help to understand their biophysical principles. We have developed a novel computational method to predict the 3D structure of beta-barrel membrane proteins using evolutionary coupling (EC) constraints and a reduced state space. Combined with an empirical potential function, we can successfully predict strand register at > 80% accuracy for a set of 49 non-homologous proteins with known structures. This is a significant improvement from previous results using EC alone (44%) and using empirical potential function alone (73%). Our method is general and can be applied to genome-wide structural prediction.Keywords: beta-barrel membrane proteins, structure prediction, evolutionary constraints, reduced state space
Procedia PDF Downloads 6182948 Baby Bed Sheets with a Nanofiber Membrane
Authors: Roman Knizek, Denisa Knizkova, Vladimir Bajzik
Abstract:
Nowadays there are countless kinds of bedsheets or mattress covers for little children which should stop any liquid getting into the mattress. It is quite easy to wash the cover of the mattress, but it is almost impossible to clean the body of a mattress which is made of latex foam, wool or synthetic materials. Children bedsheets or mattress covers are often made with plastic coating which is not steam or air permeable and therefore is not very hygienic. This is our goal: by laminating a nanofiber membrane to a suitable bedsheet textile material, we can create a bedsheet which is waterproof but at the same time steam permeable and also partially breathable, thanks to the membrane. For the same reason, nanofiber membranes are widely used in outdoor clothing. The comfort properties and durability of the new nano-membrane bedsheet were studied. The following comfort properties were investigated: steam permeability - measured in accordance with Standard ISO 11902 hydrostatic resistances - measured in accordance with Standard ISO 811 and air permeability - measured in accordance with Standard ISO 9237. The durability or more precisely the wash resistance of the nano-membrane bedsheet was also measured by submitting the sheet to 30 washing cycles. The result of our work is a children's bedsheet with a nano-membrane. The nano-membrane is made of polyurethane to keep maximum flexibility and elasticity which are essential for this product. The comfort properties of this new bedsheet are very good especially its steam permeability and hydrostatic resistance.Keywords: bed sheet, hydrostatic resistance, nanofiber membrane, water vapour permeable
Procedia PDF Downloads 2142947 Sintering of Composite Ceramic based on Corundum with Additive in the Al2O3-TiO2-MnO System
Authors: Aung Kyaw Moe, Lukin Evgeny Stepanovich, Popova Nelya Alexandrovna
Abstract:
In this paper, the effect of the additive content in the Al2O3-TiO2-MnO system on the sintering of composite ceramics based on corundum was studied. The samples were pressed by uniaxial semi-dry pressing under 100 MPa and sintered at 1500 °С and 1550 °С. The properties of composite ceramics for porosity and flexural strength were studied. When the amount of additives increases, the properties of composite ceramic samples are better than samples without additives.Keywords: ceramic, composite material, sintering, corundum
Procedia PDF Downloads 3082946 Tribological Behavior of Warm Rolled Spray Formed Al-6Si-1Mg-1Graphite Composite
Authors: Surendra Kumar Chourasiya, Sandeep Kumar, Devendra Singh
Abstract:
In the present investigation tribological behavior of Al-6Si-1Mg-1Graphite composite has been explained. The composite was developed through the unique spray forming route in the spray forming chamber by using N₂ gas at 7kg/cm² and the flight distance was 400 mm. Spray formed composite having a certain amount of porosity which was reduced by the deformations. The composite was subjected to the warm rolling (WR) at 250ºC up to 40% reduction. Spray forming composite shows the considerable microstructure refinement, equiaxed grains, distribution of silicon and graphite particles in the primary matrix of the composite. Graphite (Gr) was incorporated externally during the process that works as a solid lubricant. Porosity decreased after reduction and hardness increases. Pin on disc test has been performed to analyze the wear behavior which is the function of sliding distance for all percent reduction of the composite. 30% WR composite shows the better result of wear rate and coefficient of friction. The improved wear properties of the composite containing Gr are discussed in light of the microstructural features of spray formed the composite and the nature of the debris particles. Scanning electron microscope and optical microscope analysis of the present material supported the prediction of aforementioned changes.Keywords: Al-6Si-1Mg-1Graphite, spray forming, warm rolling, wear
Procedia PDF Downloads 5652945 Desalination Performance of a Passive Solar-Driven Membrane Distiller: Effect of Middle Layer Material and Thickness
Authors: Glebert C. Dadol, Pamela Mae L. Ucab, Camila Flor Y. Lobarbio, Noel Peter B. Tan
Abstract:
Water scarcity is a global problem and membrane-based desalination technologies are one of the promising solutions to this problem. In this study, a passive solar-driven membrane distiller was fabricated and tested for its desalination performance. The distiller was composed of a TiNOX plate solar absorber, cellulose-based upper and lower hydrophilic layers, a hydrophobic middle layer, and aluminum heatsinks. The effect of the middle layer material and thickness on the desalination performance was investigated in terms of distillate productivity and salinity. The materials used for the middle layer were a screen mesh (2 mm, 4 mm, 6 mm thickness) to generate an air gap, a PTFE membrane (0.3 mm thickness)), and a combination of the screen mesh and the PTFE membrane (2.3 mm total thickness). Salt water (35 g/L NaCl) was desalinated using the distiller at a rooftop setting at the University of San Carlos, Cebu City, Philippines. The highest distillate productivity of 1.08 L/m2-h was achieved using a 2-mm screen mesh (air gap) but it also resulted in a high distillate salinity of 25.20 g/L. Increasing the thickness of the air gap lowered the distillate salinity but also decreased the distillate productivity. The lowest salinity of 1.07 g/L was achieved using a 6-mm air gap but the productivity was reduced to 0.08 L/m2-h. The use of the hydrophobic PTFE membrane increased the productivity (0.44 L/m2-h) compared to a 6-mm air gap but produced a distillate with high salinity (16.68 g/L). When using a combination of the screen mesh and the PTFE membrane, the productivity was 0.13 L/m2-h and a distillate salinity of 1.61 g/L. The distiller with a thick air gap as the middle layer can deliver a distillate with low salinity and is preferred over a thin hydrophobic PTFE membrane. The use of a combination of the air gap and PTFE membrane slightly increased the productivity with comparable distillate salinity. Modifications and optimizations to the distiller can be done to improve further its performance.Keywords: desalination, membrane distillation, passive solar-driven membrane distiller, solar distillation
Procedia PDF Downloads 1192944 Removal of Na₂SO₄ by Electro-Confinement on Nanoporous Carbon Membrane
Authors: Jing Ma, Guotong Qin
Abstract:
We reported electro-confinement desalination (ECMD), a desalination method combining electric field effects and confinement effects using nanoporous carbon membranes as electrode. A carbon membrane with average pore size of 8.3 nm was prepared by organic sol-gel method. The precursor of support was prepared by curing porous phenol resin tube. Resorcinol-formaldehyde sol was coated on porous tubular resin support. The membrane was obtained by carbonisation of coated support. A well-combined top layer with the thickness of 35 μm was supported by macroporous support. Measurements of molecular weight cut-off using polyethylene glycol showed the average pore size of 8.3 nm. High salt rejection can be achieved because the water molecules need not overcome high energy barriers in confined space, while huge inherent dehydration energy was required for hydrated ions to enter the nanochannels. Additionally, carbon membrane with additional electric field can be used as an integrated membrane electrode combining the effects of confinement and electric potential gradient. Such membrane electrode can repel co-ions and attract counter-ions using pressure as the driving force for mass transport. When the carbon membrane was set as cathode, the rejection of SO₄²⁻ was 94.89%, while the removal of Na⁺ was less than 20%. We set carbon membrane as anode chamber to treat the effluent water from the cathode chamber. The rejection of SO₄²⁻ and Na⁺ reached to 100% and 88.86%, respectively. ECMD will be a promising energy efficient method for salt rejection.Keywords: nanoporous carbon membrane, confined effect, electric field, desalination, membrane reactor
Procedia PDF Downloads 1272943 Understanding Nanocarrier Efficacy in Drug Delivery Systems Using Molecular Dynamics
Authors: Maedeh Rahimnejad, Bahman Vahidi, Bahman Ebrahimi Hoseinzadeh, Fatemeh Yazdian, Puria Motamed Fath, Roghieh Jamjah
Abstract:
Introduction: The intensive labor and high cost of developing new vehicles for controlled drug delivery highlights the need for a change in their discovery process. Computational models can be used to accelerate experimental steps and control the high cost of experiments. Methods: In this work, to better understand the interaction of anti-cancer drug and the nanocarrier with the cell membrane, we have done molecular dynamics simulation using NAMD. We have chosen paclitaxel for the drug molecule and dipalmitoylphosphatidylcholine (DPPC) as a natural phospholipid nanocarrier. Results: Next, center of mass (COM) between molecules and the van der Waals interaction energy close to the cell membrane has been analyzed. Furthermore, the simulation results of the paclitaxel interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane have been compared. Discussion: Analysis by molecular dynamics (MD) showed that not only the energy between the nanocarrier and the cell membrane is low, but also the center of mass amount decreases in the nanocarrier and the cell membrane system during the interaction; therefore they show significantly better interaction in comparison to the individual drug with the cell membrane.Keywords: anti-cancer drug, center of mass, interaction energy, molecular dynamics simulation, nanocarrier
Procedia PDF Downloads 2992942 Non-Circular Carbon Fiber Reinforced Polymers Chainring Failure Analysis
Authors: A. Elmikaty, Z. Thanawarothon, L. Mezeix
Abstract:
This paper presents a finite element model to simulate the teeth failure of non-circular composite chainring. Model consists of the chainring and a part of the chain. To reduce the size of the model, only the first 11 rollers are simulated. In order to validate the model, it is firstly applied to a circular aluminum chainring and evolution of the stress in the teeth is compared with the literature. Then, effect of the non-circular shape is studied through three different loading positions. Strength of non-circular composite chainring and failure scenario is investigated. Moreover, two composite lay-ups are proposed to observe the influence of the stacking. Results show that composite material can be used but the lay-up has a large influence on the strength. Finally, loading position does not have influence on the first composite failure that always occurs in the first tooth.Keywords: CFRP, composite failure, FEA, non-circular chainring
Procedia PDF Downloads 2952941 Development of Numerical Method for Mass Transfer across the Moving Membrane with Selective Permeability: Approximation of the Membrane Shape by Level Set Method for Numerical Integral
Authors: Suguru Miyauchi, Toshiyuki Hayase
Abstract:
Biological membranes have selective permeability, and the capsules or cells enclosed by the membrane show the deformation by the osmotic flow. This mass transport phenomenon is observed everywhere in a living body. For the understanding of the mass transfer in a body, it is necessary to consider the mass transfer phenomenon across the membrane as well as the deformation of the membrane by a flow. To our knowledge, in the numerical analysis, the method for mass transfer across the moving membrane has not been established due to the difficulty of the treating of the mass flux permeating through the moving membrane with selective permeability. In the existing methods for the mass transfer across the membrane, the approximate delta function is used to communicate the quantities on the interface. The methods can reproduce the permeation of the solute, but cannot reproduce the non-permeation. Moreover, the computational accuracy decreases with decreasing of the permeable coefficient of the membrane. This study aims to develop the numerical method capable of treating three-dimensional problems of mass transfer across the moving flexible membrane. One of the authors developed the numerical method with high accuracy based on the finite element method. This method can capture the discontinuity on the membrane sharply due to the consideration of the jumps in concentration and concentration gradient in the finite element discretization. The formulation of the method takes into account the membrane movement, and both permeable and non-permeable membranes can be treated. However, searching the cross points of the membrane and fluid element boundaries and splitting the fluid element into sub-elements are needed for the numerical integral. Therefore, cumbersome operation is required for a three-dimensional problem. In this paper, we proposed an improved method to avoid the search and split operations, and confirmed its effectiveness. The membrane shape was treated implicitly by introducing the level set function. As the construction of the level set function, the membrane shape in one fluid element was expressed by the shape function of the finite element method. By the numerical experiment, it was found that the shape function with third order appropriately reproduces the membrane shapes. The same level of accuracy compared with the previous method using search and split operations was achieved by using a number of sampling points of the numerical integral. The effectiveness of the method was confirmed by solving several model problems.Keywords: finite element method, level set method, mass transfer, membrane permeability
Procedia PDF Downloads 2502940 Gellan Gum/Gamma-Polyglutamic Acid and Glycerol Composited Membrane for Guiding Bone Regeneration
Authors: Chi-Chang Lin, Jiun-Yan Chiu
Abstract:
Periodontal disease, oral cancer relating trauma is the prominent factor devastating bone tissue that is crucial to reestablishing in clinical. As we know, common symptom, osteoporosis, and infection limiting the ability of the bone tissue to recover cause difficulty before implantation therapy. Regeneration of bone tissue is the fundamental therapy before surgical processes. To promote the growth of bone tissue, many commercial products still have sophisticated problems that need to overcome. Regrettably, there is no available material which is apparently preferable for releasing and controlling of loading dosage, or mitigating inflammation. In our study, a hydrogel-based composite membrane has been prepared by using Gellan gum (GG), gamma-polyglutamic acid (γ-PGA) and glycerol with simple sol-gel method. GG is a natural material that is massively adopted in cartilage. Unfortunately, the strength of pure GG film is a manifest weakness especially under simulating body fluidic conditions. We utilize another biocompatible material, γ-PGA as cross-linker which can form tri-dimension structure that enhancing the strength. Our result indicated the strength of pure GG membrane can be obviously improved by cross-linked with γ-PGA (0.5, 0.6, 0.7, 0.8, 0.9, 1.0 w/v%). Besides, blending with glycerol (0, 1.0, 2.0, 3.0 w/v%) can significantly improve membrane toughness that corresponds to practical use. The innovative composited hydrogel made of GG, γ-PGA, and glycerol is attested with neat results including elongation and biocompatibility that take the advantage of extension covering major trauma. Recommendations are made for treatment to build up the foundation of bone tissue that would help patients to escape from the suffering and shorten the amount of time in recovery.Keywords: bone tissue, gellan gum, regeneration, toughness
Procedia PDF Downloads 1422939 Steady State and Accelerated Decay Rate Evaluations of Membrane Electrode Assembly of PEM Fuel Cells
Authors: Yingjeng James Li, Lung-Yu Sung, Huan-Jyun Ciou
Abstract:
Durability of Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells was evaluated in both steady state and accelerated decay modes. Steady state mode was carried out at constant current of 800mA / cm2 for 2500 hours using air as cathode feed and pure hydrogen as anode feed. The degradation of the cell voltage was 0.015V after such 2500 hrs operation. The degradation rate was therefore calculated to be 6uV / hr. Accelerated mode was carried out by switching the voltage of the single cell between OCV and 0.2V. The durations held at OCV and 0.2V were 20 and 40 seconds, respectively, meaning one minute per cycle. No obvious change in performance of the MEA was observed after 10000 cycles of such operation.Keywords: durability, lifetime, membrane electrode assembly, proton exchange membrane fuel cells
Procedia PDF Downloads 5892938 Development and Analysis of Waste Human Hair Fiber Reinforced Composite
Authors: Tesfaye Worku
Abstract:
Human hair, chicken feathers, and hairs of other birds and animals are commonly described as waste products, and the currently available disposal methods, such as burying and burning these waste products, are contributing to environmental pollution. However, those waste products are used to develop fiber-reinforced textile composite material. In this research work, the composite was developed using human hair fiber and analysis of the mechanical and physical properties of the developed composite sample. A composite sample was made with different ratios of human hair and unsaturated polyester resin, and an analysis of the mechanical and physical properties of the developed composite sample was tested according to standards. The fabricated human hair fibers reinforced polymer matrix composite sample has given encouraging results in terms of high strength and rigidity for lightweight house ceiling board material.Keywords: composite, human hair fiber, matrix, unsaturated polyester
Procedia PDF Downloads 692937 Crack Propagation Effect at the Interface of a Composite Beam
Authors: Mezidi Amar
Abstract:
In this research work, crack propagation at the interface of a composite beam is considered. The behavior of composite beams (CB) depends upon a law based on relationship between tangential or normal efforts with inelastic propagation. Throughout this study, composite beams are classified like composite beams with partial connection or sandwich beams of three layers. These structural systems are controlled by the same nature of differential equations regarding their behavior in the plane, as well as out-of-plane. Multi-layer elements with partial connection are typically met in the field of timber construction where the elements are assembled by joining. The formalism of the behavior in the plane and out-of-plane of these composite beams is obtained and their results concerning the engineering aspect or simple of interpretation are proposed for the case of composite beams made up of rectangular section and simply supported section. An apparent analytical peculiarity or paradox in the bending behavior of elastic–composite beams with interlayer slip, sandwich beam or other similar problems subjected to boundary moments exists. For a fully composite beam subjected to end moments, the partial composite model will render a non-vanishing uniform value for the normal force in the individual subelement. Obtained results are similar to those for the case of vibrations in the plane as well for the composite beams as for the sandwich beams where eigen-frequencies increase with related rigidity.Keywords: composite beam, behaviour, interface, deflection, propagation
Procedia PDF Downloads 3032936 Composite Components Manufacturing in SAE Formula Student, a Case Study of AGH Racing
Authors: Hanna Faron, Wojciech Marcinkowski, Daniel Prusak, Władysław Hamiga
Abstract:
Interest in composite materials comes out of two basic premises: their supreme mechanical and strength properties,combined with a small specific weight. Origin and evolution of modern composite materials bonds with development of manufacturing of synthetic fibers, which have begun during Second World War. Main condition to achieve intended properties of composite materials is proper bonding of reinforcing layer with appropriate adhesive in manufacturing process. It is one of the fundamental quality evaluation criterion of fabrication processes.Keywords: SAE, formula student, composite materials, carbon fiber, Aramid fiber, hot wire cutter
Procedia PDF Downloads 5142935 Identification of Membrane Foulants in Direct Contact Membrane Distillation for the Treatment of Reject Brine
Authors: Shefaa Mansour, Hassan Arafat, Shadi Hasan
Abstract:
Management of reverse osmosis (RO) brine has become a major area of research due to the environmental concerns associated with it. This study worked on studying the feasibility of the direct contact membrane distillation (DCMD) system in the treatment of this RO brine. The system displayed great potential in terms of its flux and salt rejection, where different operating conditions such as the feed temperature, feed salinity, feed and permeate flow rates were varied. The highest flux of 16.7 LMH was reported with a salt rejection of 99.5%. Although the DCMD has displayed potential of enhanced water recovery from highly saline solutions, one of the major drawbacks associated with the operation is the fouling of the membranes which impairs the system performance. An operational run of 77 hours for the treatment of RO brine of 56,500 ppm salinity was performed in order to investigate the impact of fouling of the membrane on the overall operation of the system over long time operations. Over this time period, the flux was observed to have reduced by four times its initial flux. The fouled membrane was characterized through different techniques for the identification of the organic and inorganic foulants that have deposited on the membrane surface. The Infrared Spectroscopy method (IR) was used to identify the organic foulants where SEM images displayed the surface characteristics of the membrane. As for the inorganic foulants, they were identified using X-ray Diffraction (XRD), Ion Chromatography (IC) and Energy Dispersive Spectroscopy (EDS). The major foulants found on the surface of the membrane were inorganic salts such as sodium chloride and calcium sulfate.Keywords: brine treatment, membrane distillation, fouling, characterization
Procedia PDF Downloads 4362934 Reliability-Simulation of Composite Tubular Structure under Pressure by Finite Elements Methods
Authors: Abdelkader Hocine, Abdelhakim Maizia
Abstract:
The exponential growth of reinforced fibers composite materials use has prompted researchers to step up their work on the prediction of their reliability. Owing to differences between the properties of the materials used for the composite, the manufacturing processes, the load combinations and types of environment, the prediction of the reliability of composite materials has become a primary task. Through failure criteria, TSAI-WU and the maximum stress, the reliability of multilayer tubular structures under pressure is the subject of this paper, where the failure probability of is estimated by the method of Monte Carlo.Keywords: composite, design, monte carlo, tubular structure, reliability
Procedia PDF Downloads 4642933 Analysis of Mechanotransduction-Induced Microalgae under Direct Membrane Distortion
Authors: Myung Kwon Cho, Seul Ki Min, Gwang Heum Yoon, Jung Hyun Joo, Sang Jun Sim, Hwa Sung Shin
Abstract:
Mechanotransduction is a mechanism that external mechanical stimulation is converted to biochemical activity in the cell. When applying this mechanism to the unicellular green algae Chlamydomonas reinhardtii, the dramatic result that the accumulation of intracellular lipid was up to 60% of dry weight basis occurred. Furthermore, various variations in cellular physiology occurred, but there is a lack of the development of the system and related research for applying that technology to control the mechanical stress and facilitate molecular analyses. In this study, applying a mechanical stress to microalgae, the microfluidic device system that finely induced direct membrane distortion of microalgae. Cellular membrane distortion led to deflagellation, calcium influx and lipid accumulation in microalgae. In conclusion, cytological studies such as mechanotransduction can be actualized by using this system and membrane distortion is a promising inducer for biodiesel production.Keywords: mechanotransduction, microalgae, membrane distortion, biodiesel
Procedia PDF Downloads 3232932 Removal of Bulk Parameters and Chromophoric Fractions of Natural Organic Matter by Porous Kaolin/Fly Ash Ceramic Membrane at South African Drinking Water Treatment Plants
Authors: Samkeliso S. Ndzimandze, Welldone Moyo, Oranso T. Mahlangu, Adolph A. Muleja, Alex T. Kuvarega, Thabo T. I. Nkambule
Abstract:
The high cost of precursor materials has hindered the commercialization of ceramic membrane technology in water treatment. In this work, a ceramic membrane disc (approximately 50 mm in diameter and 4 mm thick) was prepared from low-cost starting materials, kaolin, and fly ash by pressing at 200 bar and calcining at 900 °C. The fabricated membrane was characterized for various physicochemical properties, natural organic matter (NOM) removal as well as fouling propensity using several techniques. Further, the ceramic membrane was tested on samples collected from four drinking water treatment plants in KwaZulu-Natal, South Africa (named plants 1-4). The membrane achieved 48.6%, 54.6%, 57.4%, and 76.4% bulk UV254 reduction for raw water at plants 1, 2, 3, and 4, respectively. These removal rates were comparable to UV254 reduction achieved by coagulation/flocculation steps at the respective plants. Further, the membrane outperformed sand filtration steps in plants 1-4 in removing disinfection by-product precursors (8%-32%) through size exclusion. Fluorescence excitation-emission matrices (FEEM) studies showed the removal of fluorescent NOM fractions present in the water samples by the membrane. The membrane was fabricated using an up-scalable facile method, and it has the potential for application as a polishing step to complement conventional processes in water treatment for drinking purposes.Keywords: crossflow filtration, drinking water treatment plants, fluorescence excitation-emission matrices, ultraviolet 254 (UV₂₅₄)
Procedia PDF Downloads 432931 Numerical Study for Structural Design of Composite Rotor with Crack Initiation
Authors: A. Chellil, A. Nour, S. Lecheb, H.Mechakra, A. Bouderba, H. Kebir
Abstract:
In this paper, the numerical study for the instability of a composite rotor is presented, under dynamic loading response in the harmonic analysis condition. The analysis of the stress which operates the rotor is done. Calculations of different energies and the virtual work of the aerodynamic loads from the rotor is developed. The use of the composite material for the rotor, offers a good Stability. Numerical calculations on the model develop of three dimensions prove that the damage effect has a negative effect on the stability of the rotor. The study of the composite rotor in transient system allowed to determine the vibratory responses due to various excitations.Keywords: rotor, composite, damage, finite element, numerical
Procedia PDF Downloads 4882930 Effect of Grayanotoxins on Skeletal Muscle Cell C2C12
Authors: Bayan Almofty, Yuto Yamaki, Tadamasa Terai, Sadahito Uto
Abstract:
Myopathy (muscles disease) treatment are expected in the field of regenerative medicine and applied research of cultured muscle to bio actuator is performed in Biomedical Engineering as applied research of cultured muscle. This study is about cultured myoblast C2C12 from mouse skeletal muscle and a mechanism of cultured muscle contraction by electric stimulation is investigated. Grayanotoxins (GTXs) belong to neurotoxins known to enhance the permeability of cell membrane for Na ions. Grayanotoxins are extracted from a famous Pieris japonica and Ericaceae as a phytotoxin. We investigated the functional role of GTXs on muscle cells (C2C12) contraction and membrane potential. A change in membrane potential is measured using a micro glass tube electrode contraction of myotubes is induced by applying an external electrical stimulation. The contraction and membrane potential change induced by injection of current using the micro glass electrode are also measured. From the result, contraction and membrane potential of muscle cells was affected by GTXs treatment, suggesting that the diverse chemical structures of GTXs are responsible for contraction and membrane potential of muscle cells.Keywords: skeletal muscle, C2C12, myoblast, myotubes, contraction, Grayanotoxins, membrane potential, neurotoxins, phytotoxin
Procedia PDF Downloads 4682929 Corrosion Resistance of Mild Steel Coated with Different Polyimides/h-Boron Nitride Composite Films
Authors: Tariku Nefo Duke
Abstract:
Herein, we synthesized three PIs/h-boron nitride composite films for corrosion resistance of mild steel material. The structures of these three polyimide/h-boron nitride composite films were confirmed using (FTIR, 1H NMR, 13C NMR, and 2D NMR) spectroscopy techniques. The synthesized PIs composite films have high mechanical properties, thermal stability, high glass-transition temperature (Tg), and insulating properties. It has been shown that the presence of electroactive TiO2, SiO2, and h-BN, in polymer coatings effectively inhibits corrosion. The h-BN displays an admirable anti-corrosion barrier for the 6F-OD and BT-OD films. PI/ h-BN composite films of 6F-OD exhibited better resistance to water vapor, high corrosion resistance, and positive corrosion voltage. Only four wt. percentage of h-BN in the composite is adequate.Keywords: polyimide, corrosion resistance, electroactive, Tg
Procedia PDF Downloads 2022928 Effect of Lithium Bromide Concentration on the Structure and Performance of Polyvinylidene Fluoride (PVDF) Membrane for Wastewater Treatment
Authors: Poojan Kothari, Yash Madhani, Chayan Jani, Bharti Saini
Abstract:
The requirements for quality drinking and industrial water are increasing and water resources are depleting. Moreover large amount of wastewater is being generated and dumped into water bodies without treatment. These have made improvement in water treatment efficiency and its reuse, an important agenda. Membrane technology for wastewater treatment is an advanced process and has become increasingly popular in past few decades. There are many traditional methods for tertiary treatment such as chemical coagulation, adsorption, etc. However recent developments in membrane technology field have led to manufacturing of better quality membranes at reduced costs. This along with the high costs of conventional treatment processes, high separation efficiency and relative simplicity of the membrane treatment process has made it an economically viable option for municipal and industrial purposes. Ultrafiltration polymeric membranes can be used for wastewater treatment and drinking water applications. The proposed work focuses on preparation of one such UF membrane - Polyvinylidene fluoride (PVDF) doped with LiBr for wastewater treatment. Majorly all polymeric membranes are hydrophobic in nature. This property leads to repulsion of water and hence solute particles occupy the pores, decreasing the lifetime of a membrane. Thus modification of membrane through addition of small amount of salt such as LiBr helped us attain certain characteristics of membrane, which can then be used for wastewater treatment. The membrane characteristics are investigated through measuring its various properties such as porosity, contact angle and wettability to find out the hydrophilic nature of the membrane and morphology (surface as well as structure). Pure water flux, solute rejection and permeability of membrane is determined by permeation experiments. A study of membrane characteristics with various concentration of LiBr helped us to compare its effectivity.Keywords: Lithium bromide (LiBr), morphology, permeability, Polyvinylidene fluoride (PVDF), solute rejection, wastewater treatment
Procedia PDF Downloads 1472927 Performance Analysis of a Planar Membrane Humidifier for PEM Fuel Cell
Authors: Yu-Hsuan Chang, Jian-Hao Su, Chen-Yu Chen, Wei-Mon Yan
Abstract:
In this work, the experimental measurement was applied to examine the membrane type and flow field design on the performance of a planar membrane humidifier. The performance indexes were used to evaluate the planar membrane humidifier. The performance indexes of the membrane humidifier include the dew point approach temperature (DPAT), water recovery ratio (WRR), water flux (J) and pressure loss (P). The experiments contain mainly three parts. In the first part, a single membrane humidifier was tested using different flow field under different dry-inlet temperatures. The measured results show that the dew point approach temperature decreases with increasing the depth of flow channel at the same width of flow channel. However, the WRR and J reduce with an increase in the dry air-inlet temperature. The pressure loss tests indicate that pressure loss decreases with increasing the hydraulic diameter of flow channel, resulting from an increase in Darcy friction. Owing to the comparison of humidifier performances and pressure losses, the flow channel of width W=1 and height H=1.5 was selected as the channel design of the multi-membrane humidifier in the second part of experiment. In the second part, the multi-membrane humidifier was used to evaluate the humidification performance under different relative humidity and flow rates. The measurement results indicate that the humidifier at both lower temperature and relative humidity of inlet dry air have higher DPAT but lower J and WRR. In addition, the counter flow approach has better mass and heat transfer performance than the parallel flow approach. Moreover, the effects of dry air temperature, relative humidity and humidification approach are not significant to the pressure loss in the planar membrane humidifier. For the third part, different membranes were tested in this work in order to find out which kind membrane is appropriate for humidifier.Keywords: water management, planar membrane humidifier, heat and mass transfer, pressure loss, PEM fuel cell
Procedia PDF Downloads 2062926 Thermal Analysis of a Composite of Coco Fiber and Látex
Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale
Abstract:
Given the unquestionable need of environmental preservation, the natural fibers have been seen as a salutary alternative for production of composites in substitution to the synthetic fibers, vitreous and metallic. In this work, the behavior of a composite was analyzed done with fiber of the peel of the coconut as reinforcement and latex as head office, when submitted the source of heat. The temperature profiles were verified in the internal surfaces and it expresses of the composite as well as the temperature gradient in the same. It was also analyzed the behavior of this composite when submitted to a cold source. As consequence, in function of the answers of the system, conclusions were reached.Keywords: natural fiber, composite, temperature, latex, gradient
Procedia PDF Downloads 8172925 Aging Behaviour of 6061 Al-15 vol% SiC Composite in T4 and T6 Treatments
Authors: Melby Chacko, Jagannath Nayak
Abstract:
The aging behaviour of 6061 Al-15 vol% SiC composite was investigated using Rockwell B hardness measurement. The composite was solutionized at 350°C and quenched in water. The composite was aged at room temperature (T4 treatment) and also at 140°C, 160°C, 180°C and 200°C (T6 treatment). The natural and artificial aging behaviour of composite was studied using aging curves determined at different temperatures. The aging period for peak aging for different temperatures was identified. The time required for attaining peak aging decreased with increase in the aging temperature. The peak hardness was found to increase with increase with aging temperature and the highest peak hardness was observed at 180ºC. Beyond 180ºC the peak hardness was found to be decreasing.Keywords: 6061 Al-SiC composite, aging curve, Rockwell B hardness, T4, T6 treatments
Procedia PDF Downloads 268