Search results for: Brain Evolution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3013

Search results for: Brain Evolution

2923 Construction of a Dynamic Model of Cerebral Blood Circulation for Future Integrated Control of Brain State

Authors: Tomohiko Utsuki

Abstract:

Currently, brain resuscitation becomes increasingly important due to revising various clinical guidelines pertinent to emergency care. In brain resuscitation, the control of brain temperature (BT), intracranial pressure (ICP), and cerebral blood flow (CBF) is required for stabilizing physiological state of brain, and is described as the essential treatment points in many guidelines of disorder and/or disease such as brain injury, stroke, and encephalopathy. Thus, an integrated control system of BT, ICP, and CBF will greatly contribute to alleviating the burden on medical staff and improving treatment effect in brain resuscitation. In order to develop such a control system, models related to BT, ICP, and CBF are required for control simulation, because trial and error experiments using patients are not ethically allowed. A static model of cerebral blood circulation from intracranial arteries and vertebral artery to jugular veins has already constructed and verified. However, it is impossible to represent the pooling of blood in blood vessels, which is one cause of cerebral hypertension in this model. And, it is also impossible to represent the pulsing motion of blood vessels caused by blood pressure change which can have an affect on the change of cerebral tissue pressure. Thus, a dynamic model of cerebral blood circulation is constructed in consideration of the elasticity of the blood vessel and the inertia of the blood vessel wall. The constructed dynamic model was numerically analyzed using the normal data, in which each arterial blood flow in cerebral blood circulation, the distribution of blood pressure in the Circle of Willis, and the change of blood pressure along blood flow were calculated for verifying against physiological knowledge. As the result, because each calculated numerical value falling within the generally known normal range, this model has no problem in representing at least the normal physiological state of the brain. It is the next task to verify the accuracy of the present model in the case of disease or disorder. Currently, the construction of a migration model of extracellular fluid and a model of heat transfer in cerebral tissue are in progress for making them parts of an integrated model of brain physiological state, which is necessary for developing an future integrated control system of BT, ICP and CBF. The present model is applicable to constructing the integrated model representing at least the normal condition of brain physiological state by uniting with such models.

Keywords: dynamic model, cerebral blood circulation, brain resuscitation, automatic control

Procedia PDF Downloads 150
2922 Dexamethasone Treatment Deregulates Proteoglycans Expression in Normal Brain Tissue

Authors: A. Y. Tsidulko, T. M. Pankova, E. V. Grigorieva

Abstract:

High-grade gliomas are the most frequent and most aggressive brain tumors which are characterized by active invasion of tumor cells into the surrounding brain tissue, where the extracellular matrix (ECM) plays a crucial role. Disruption of ECM can be involved in anticancer drugs effectiveness, side-effects and also in tumor relapses. The anti-inflammatory agent dexamethasone is a common drug used during high-grade glioma treatment for alleviating cerebral edema. Although dexamethasone is widely used in the clinic, its effects on normal brain tissue ECM remain poorly investigated. It is known that proteoglycans (PGs) are a major component of the extracellular matrix in the central nervous system. In our work, we studied the effects of dexamethasone on the ECM proteoglycans (syndecan-1, glypican-1, perlecan, versican, brevican, NG2, decorin, biglican, lumican) using RT-PCR in the experimental animal model. It was shown that proteoglycans in rat brain have age-specific expression patterns. In early post-natal rat brain (8 days old rat pups) overall PGs expression was quite high and mainly expressed PGs were biglycan, decorin, and syndecan-1. The overall transcriptional activity of PGs in adult rat brain is 1.5-fold decreased compared to post-natal brain. The expression pattern was changed as well with biglycan, decorin, syndecan-1, glypican-1 and brevican becoming almost equally expressed. PGs expression patterns create a specific tissue microenvironment that differs in developing and adult brain. Dexamethasone regimen close to the one used in the clinic during high-grade glioma treatment significantly affects proteoglycans expression. It was shown that overall PGs transcription activity is 1.5-2-folds increased after dexamethasone treatment. The most up-regulated PGs were biglycan, decorin, and lumican. The PGs expression pattern in adult brain changed after treatment becoming quite close to the expression pattern in developing brain. It is known that microenvironment in developing tissues promotes cells proliferation while in adult tissues proliferation is usually suppressed. The changes occurring in the adult brain after dexamethasone treatment may lead to re-activation of cell proliferation due to signals from changed microenvironment. Taken together obtained data show that dexamethasone treatment significantly affects the normal brain ECM, creating the appropriate microenvironment for tumor cells proliferation and thus can reduce the effectiveness of anticancer treatment and promote tumor relapses. This work has been supported by a Russian Science Foundation (RSF Grant 16-15-10243)

Keywords: dexamthasone, extracellular matrix, glioma, proteoglycan

Procedia PDF Downloads 198
2921 The Most Desirable Individual Relationship

Authors: Ali Babaei

Abstract:

There is a significant relationship between Soul Faculties and human relationships. Man has at least three levels of relationship according to three levels of his Faculties: individual (with himself), dual (with another) and collective (with others). Since all human actions are organized by the type of use of their internal faculties, their "hierarchy of relations" is related to the "hierarchy of their Faculties." In the final explanation based on the ontology of Islamic wisdom, one can consider the hierarchy of human Faculties in three levels: 1. senses, 2. intellect and heart, and 3. Soul. The best relationship, in the individual one is that every human being, with healthy senses, achieves both the intellectual growth and the perfection of the heart, which we call "Clear-headed" and "Good-hearted.” The result of human evolution in this two aspects will lead to the development of a powerful personality which can be interpreted as "spiritual prosperity"; having a great soul is the result of such evolution. A smart brain without a "Good-heart"ince can lead to criminality; and mere "Good-heart"ince" without "Clear-head"ince leads to "naivety". “clear-head”ince is achieved through thoughtfulness and study, and "Good-heart"ince through love and worship. So the best way to achieve perfection in a personal relationship is to have a dependable appearance, a coherent thinking

Keywords: Ontology , good-heartince, wisdom, relationship, clear-head”ince, criminality, naivety

Procedia PDF Downloads 139
2920 Noninvasive Brain-Machine Interface to Control Both Mecha TE Robotic Hands Using Emotiv EEG Neuroheadset

Authors: Adrienne Kline, Jaydip Desai

Abstract:

Electroencephalogram (EEG) is a noninvasive technique that registers signals originating from the firing of neurons in the brain. The Emotiv EEG Neuroheadset is a consumer product comprised of 14 EEG channels and was used to record the reactions of the neurons within the brain to two forms of stimuli in 10 participants. These stimuli consisted of auditory and visual formats that provided directions of ‘right’ or ‘left.’ Participants were instructed to raise their right or left arm in accordance with the instruction given. A scenario in OpenViBE was generated to both stimulate the participants while recording their data. In OpenViBE, the Graz Motor BCI Stimulator algorithm was configured to govern the duration and number of visual stimuli. Utilizing EEGLAB under the cross platform MATLAB®, the electrodes most stimulated during the study were defined. Data outputs from EEGLAB were analyzed using IBM SPSS Statistics® Version 20. This aided in determining the electrodes to use in the development of a brain-machine interface (BMI) using real-time EEG signals from the Emotiv EEG Neuroheadset. Signal processing and feature extraction were accomplished via the Simulink® signal processing toolbox. An Arduino™ Duemilanove microcontroller was used to link the Emotiv EEG Neuroheadset and the right and left Mecha TE™ Hands.

Keywords: brain-machine interface, EEGLAB, emotiv EEG neuroheadset, OpenViBE, simulink

Procedia PDF Downloads 500
2919 Robot Navigation and Localization Based on the Rat’s Brain Signals

Authors: Endri Rama, Genci Capi, Shigenori Kawahara

Abstract:

The mobile robot ability to navigate autonomously in its environment is very important. Even though the advances in technology, robot self-localization and goal directed navigation in complex environments are still challenging tasks. In this article, we propose a novel method for robot navigation based on rat’s brain signals (Local Field Potentials). It has been well known that rats accurately and rapidly navigate in a complex space by localizing themselves in reference to the surrounding environmental cues. As the first step to incorporate the rat’s navigation strategy into the robot control, we analyzed the rats’ strategies while it navigates in a multiple Y-maze, and recorded Local Field Potentials (LFPs) simultaneously from three brain regions. Next, we processed the LFPs, and the extracted features were used as an input in the artificial neural network to predict the rat’s next location, especially in the decision-making moment, in Y-junctions. We developed an algorithm by which the robot learned to imitate the rat’s decision-making by mapping the rat’s brain signals into its own actions. Finally, the robot learned to integrate the internal states as well as external sensors in order to localize and navigate in the complex environment.

Keywords: brain-machine interface, decision-making, mobile robot, neural network

Procedia PDF Downloads 295
2918 Real Time Acquisition and Psychoacoustic Analysis of Brain Wave

Authors: Shweta Singh, Dipali Bansal, Rashima Mahajan

Abstract:

Psychoacoustics has become a potential area of research due to the growing interest of both laypersons and medical and mental health professionals. Non-invasive brain computer interface like Electroencephalography (EEG) is widely being used in this field. An attempt has been made in this paper to examine the response of EEG signals to acoustic stimuli further analysing the brain electrical activity. The real time EEG is acquired for 6 participants using a cost effective and portable EMOTIV EEG neuron headset. EEG data analysis is further done using EMOTIV test bench, EDF browser and EEGLAB (MATLAB Tool) application software platforms. Spectral analysis of acquired neural signals (AF3 channel) using these software platforms are clearly indicative of increased brain activity in various bands. The inferences drawn from such an analysis have significant correlation with subject’s subjective reporting of the experiences. The results suggest that the methodology adopted can further be used to assist patients with sleeping and depressive disorders.

Keywords: OM chant, spectral analysis, EDF browser, EEGLAB, EMOTIV, real time acquisition

Procedia PDF Downloads 281
2917 Electroencephalogram Based Approach for Mental Stress Detection during Gameplay with Level Prediction

Authors: Priyadarsini Samal, Rajesh Singla

Abstract:

Many mobile games come with the benefits of entertainment by introducing stress to the human brain. In recognizing this mental stress, the brain-computer interface (BCI) plays an important role. It has various neuroimaging approaches which help in analyzing the brain signals. Electroencephalogram (EEG) is the most commonly used method among them as it is non-invasive, portable, and economical. Here, this paper investigates the pattern in brain signals when introduced with mental stress. Two healthy volunteers played a game whose aim was to search hidden words from the grid, and the levels were chosen randomly. The EEG signals during gameplay were recorded to investigate the impacts of stress with the changing levels from easy to medium to hard. A total of 16 features of EEG were analyzed for this experiment which includes power band features with relative powers, event-related desynchronization, along statistical features. Support vector machine was used as the classifier, which resulted in an accuracy of 93.9% for three-level stress analysis; for two levels, the accuracy of 92% and 98% are achieved. In addition to that, another game that was similar in nature was played by the volunteers. A suitable regression model was designed for prediction where the feature sets of the first and second game were used for testing and training purposes, respectively, and an accuracy of 73% was found.

Keywords: brain computer interface, electroencephalogram, regression model, stress, word search

Procedia PDF Downloads 185
2916 Heterogeneous Artifacts Construction for Software Evolution Control

Authors: Mounir Zekkaoui, Abdelhadi Fennan

Abstract:

The software evolution control requires a deep understanding of the changes and their impact on different system heterogeneous artifacts. And an understanding of descriptive knowledge of the developed software artifacts is a prerequisite condition for the success of the evolutionary process. The implementation of an evolutionary process is to make changes more or less important to many heterogeneous software artifacts such as source code, analysis and design models, unit testing, XML deployment descriptors, user guides, and others. These changes can be a source of degradation in functional, qualitative or behavioral terms of modified software. Hence the need for a unified approach for extraction and representation of different heterogeneous artifacts in order to ensure a unified and detailed description of heterogeneous software artifacts, exploitable by several software tools and allowing to responsible for the evolution of carry out the reasoning change concerned.

Keywords: heterogeneous software artifacts, software evolution control, unified approach, meta model, software architecture

Procedia PDF Downloads 442
2915 Effects of Cell Phone Electromagnetic Radiation on the Brain System

Authors: A. Alao Olumuyiwa

Abstract:

Health hazards reported to be associated with exposure to electromagnetic radiations which include brain tumors, genotoxic effects, neurological effects, immune system deregulation, allergic responses and some cardiovascular effects are discussed under a closed tabular model in this study. This review however showed that there is strong and robust evidence that chronic exposures to electromagnetic frequency across the spectrum, through strength, consistency, biological plausibility and many dose-response relationships, may result in brain cancer and other carcinogenic disease symptoms. There is therefore no safe threshold because of the genotoxic nature of the mechanism that may however be involved. The discussed study explains that the cell phone has induced effects upon the blood –brain barrier permeability and the cerebellum exposure to continuous long hours RF radiation may result in significant increase in albumin extravasations. A physical Biomodeling approach is however employed to review this health effects using Specific Absorption Rate (SAR) of different GSM machines to critically examine the symptoms such as a decreased loco motor activity, increased grooming and reduced memory functions in a variety of animal spices in classified grouped and sub grouped models.

Keywords: brain cancer, electromagnetic radiations, physical biomodeling, specific absorption rate (SAR)

Procedia PDF Downloads 345
2914 A Novel NRIS Index to Evaluate Brain Activity in Prefrontal Regions While Listening to First and Second Languages for Long Time Periods

Authors: Kensho Takahashi, Ko Watanabe, Takashi Kaburagi, Hiroshi Tanaka, Kajiro Watanabe, Yosuke Kurihara

Abstract:

Near-infrared spectroscopy (NIRS) has been widely used as a non-invasive method to measure brain activity, but it is corrupted by baseline drift noise. Here we present a method to measure regional cerebral blood flow as a derivative of NIRS output. We investigate whether, when listening to languages, blood flow can reasonably localize and represent regional brain activity or not. The prefrontal blood flow distribution pattern when advanced second-language listeners listened to a second language (L2) was most similar to that when listening to their first language (L1) among the patterns of mean and standard deviation. In experiments with 25 healthy subjects, the maximum blood flow was localized to the left BA46 of advanced listeners. The blood flow presented is robust to baseline drift and stably localizes regional brain activity.

Keywords: NIRS, oxy-hemoglobin, baseline drift, blood flow, working memory, BA46, first language, second language

Procedia PDF Downloads 557
2913 Ethanol in Carbon Monoxide Intoxication: Focus on Delayed Neuropsychological Sequelae

Authors: Hyuk-Hoon Kim, Young Gi Min

Abstract:

Background: In carbon monoxide (CO) intoxication, the pathophysiology of delayed neurological sequelae (DNS) is very complex and remains poorly understood. And predicting whether patients who exhibit resolved acute symptoms have escaped or will experience DNS represents a very important clinical issue. Brain magnetic resonance (MR) imaging has been conducted to assess the severity of brain damage as an objective method to predict prognosis. And co-ingestion of a second poison in patients with intentional CO poisoning occurs in almost one-half of patients. Among patients with co-ingestions, 66% ingested ethanol. We assessed the effects of ethanol on neurologic sequelae prevalence in acute CO intoxication by means of abnormal lesion in brain MR. Method: This study was conducted retrospectively by collecting data for patients who visited an emergency medical center during a period of 5 years. The enrollment criteria were diagnosis of acute CO poisoning and the measurement of the serum ethanol level and history of taking a brain MR during admission period. Official readout data by radiologist are used to decide whether abnormal lesion is existed or not. The enrolled patients were divided into two groups: patients with abnormal lesion and without abnormal lesion in Brain MR. A standardized extraction using medical record was performed; Mann Whitney U test and logistic regression analysis were performed. Result: A total of 112 patients were enrolled, and 68 patients presented abnormal brain lesion on MR. The abnormal brain lesion group had lower serum ethanol level (mean, 20.14 vs 46.71 mg/dL) (p-value<0.001). In addition, univariate logistic regression analysis showed the serum ethanol level (OR, 0.99; 95% CI, 0.98 -1.00) was independently associated with the development of abnormal lesion in brain MR. Conclusion: Ethanol could have neuroprotective effect in acute CO intoxication by sedative effect in stressful situation and mitigative effect in neuro-inflammatory reaction.

Keywords: carbon monoxide, delayed neuropsychological sequelae, ethanol, intoxication, magnetic resonance

Procedia PDF Downloads 251
2912 Effect of Rehabilitation on Outcomes for Persons with Traumatic Brain Injury: Results from a Single Center

Authors: Savaş Karpuz, Sami Küçükşen

Abstract:

The aim of this study is to investigate the effectiveness of neurological rehabilitation in patients with traumatic brain injury. Participants were 45 consecutive adults with traumatic brain injury who were received the neurologic rehabilitation. Sociodemographic characteristics of the patients, the cause of the injury, the duration of the coma and posttraumatic amnesia, the length of stay in the other inpatient clinics before rehabilitation, the time between injury and admission to the rehabilitation clinic, and the length of stay in the rehabilitation clinic were recorded. The differences in functional status between admission and discharge were determined with Disability Rating Scale (DRS), Functional Independence Measure (FIM), and Functional Ambulation Scale (FAS) and levels of cognitive functioning determined with Ranchos Los Amigos Scale (RLAS). According to admission time, there was a significant improvement identified in functional status of patients who had been given the intensive in-hospital cognitive rehabilitation program. At discharge time, the statistically significant differences were obtained in DRS, FIM, FAS and RLAS scores according to admission time. Better improvement in functional status was detected in patients with lower scores in DRS, and higher scores FIM and RLAS scores at the entry time. The neurologic rehabilitation significantly affects the recovery of functional status after traumatic brain injury.

Keywords: traumatic brain injury, rehabilitation, functional status, neurological

Procedia PDF Downloads 228
2911 Explainable MRI-Based Diagnosis of Diverse Brain Conditions Using Ensemble Learning

Authors: Nighat Bibi, Jane Courtney, Kathleen M. Curran

Abstract:

Magnetic Resonance Imaging (MRI) is essential for the differential diagnosis of brain diseases, with deep learning methods showing promise for enhancing diagnostic accuracy. This study develops an ensemble learning model incorporating DenseNet121, EfficientNetB1, and ResNet50 architectures for the accurate classification of diverse brain conditions, including glioma, meningioma, pituitary tumors, and multiple sclerosis (MS). The model is trained on publicly available MRI datasets, utilizing Gradient-weighted Class Activation Mapping (Grad-CAM) to increase interpretability by highlighting crucial image regions, thereby enhancing transparency in AI-assisted diagnostics. The ensemble model achieved a notable classification accuracy of 99.84%, demonstrating its reliability in distinguishing multiple brain conditions. Grad-CAM visualizations further support the model’s decision-making, fostering trust in clinical applications. This approach offers a valuable tool for MRI-based diagnosis, emphasizing both accuracy and interpretability in neuroimaging. Future research will expand to larger, diverse datasets to ensure robustness across varied clinical settings.

Keywords: brain tumor, ensemble learning, explainability, grad-cam, glioma, interpretability, meningioma, multiple sclerosis, pituitary, XAI

Procedia PDF Downloads 6
2910 Investigating the Neural Heterogeneity of Developmental Dyscalculia

Authors: Fengjuan Wang, Azilawati Jamaludin

Abstract:

Developmental Dyscalculia (DD) is defined as a particular learning difficulty with continuous challenges in learning requisite math skills that cannot be explained by intellectual disability or educational deprivation. Recent studies have increasingly recognized that DD is a heterogeneous, instead of monolithic, learning disorder with not only cognitive and behavioral deficits but so too neural dysfunction. In recent years, neuroimaging studies employed group comparison to explore the neural underpinnings of DD, which contradicted the heterogenous nature of DD and may obfuscate critical individual differences. This research aimed to investigate the neural heterogeneity of DD using case studies with functional near-infrared spectroscopy (fNIRS). A total of 54 aged 6-7 years old of children participated in this study, comprising two comprehensive cognitive assessments, an 8-minute resting state, and an 8-minute one-digit addition task. Nine children met the criteria of DD and scored at or below 85 (i.e., the 16th percentile) on the Mathematics or Math Fluency subtest of the Wechsler Individual Achievement Test, Third Edition (WIAT-III) (both subtest scores were 90 and below). The remaining 45 children formed the typically developing (TD) group. Resting-state data and brain activation in the inferior frontal gyrus (IFG), superior frontal gyrus (SFG), and intraparietal sulcus (IPS) were collected for comparison between each case and the TD group. Graph theory was used to analyze the brain network under the resting state. This theory represents the brain network as a set of nodes--brain regions—and edges—pairwise interactions across areas to reveal the architectural organizations of the nervous network. Next, a single-case methodology developed by Crawford et al. in 2010 was used to compare each case’s brain network indicators and brain activation against 45 TD children’s average data. Results showed that three out of the nine DD children displayed significant deviation from TD children’s brain indicators. Case 1 had inefficient nodal network properties. Case 2 showed inefficient brain network properties and weaker activation in the IFG and IPS areas. Case 3 displayed inefficient brain network properties with no differences in activation patterns. As a rise above, the present study was able to distill differences in architectural organizations and brain activation of DD vis-à-vis TD children using fNIRS and single-case methodology. Although DD is regarded as a heterogeneous learning difficulty, it is noted that all three cases showed lower nodal efficiency in the brain network, which may be one of the neural sources of DD. Importantly, although the current “brain norm” established for the 45 children is tentative, the results from this study provide insights not only for future work in “developmental brain norm” with reliable brain indicators but so too the viability of single-case methodology, which could be used to detect differential brain indicators of DD children for early detection and interventions.

Keywords: brain activation, brain network, case study, developmental dyscalculia, functional near-infrared spectroscopy, graph theory, neural heterogeneity

Procedia PDF Downloads 52
2909 Cognitive Model of Analogy Based on Operation of the Brain Cells: Glial, Axons and Neurons

Authors: Ozgu Hafizoglu

Abstract:

Analogy is an essential tool of human cognition that enables connecting diffuse and diverse systems with attributional, deep structural, casual relations that are essential to learning, to innovation in artificial worlds, and to discovery in science. Cognitive Model of Analogy (CMA) leads and creates information pattern transfer within and between domains and disciplines in science. This paper demonstrates the Cognitive Model of Analogy (CMA) as an evolutionary approach to scientific research. The model puts forward the challenges of deep uncertainty about the future, emphasizing the need for flexibility of the system in order to enable reasoning methodology to adapt to changing conditions. In this paper, the model of analogical reasoning is created based on brain cells, their fractal, and operational forms within the system itself. Visualization techniques are used to show correspondences. Distinct phases of the problem-solving processes are divided thusly: encoding, mapping, inference, and response. The system is revealed relevant to brain activation considering each of these phases with an emphasis on achieving a better visualization of the brain cells: glial cells, axons, axon terminals, and neurons, relative to matching conditions of analogical reasoning and relational information. It’s found that encoding, mapping, inference, and response processes in four-term analogical reasoning are corresponding with the fractal and operational forms of brain cells: glial, axons, and neurons.

Keywords: analogy, analogical reasoning, cognitive model, brain and glials

Procedia PDF Downloads 184
2908 Event Related Brain Potentials Evoked by Carmen in Musicians and Dancers

Authors: Hanna Poikonen, Petri Toiviainen, Mari Tervaniemi

Abstract:

Event-related potentials (ERPs) evoked by simple tones in the brain have been extensively studied. However, in reality the music surrounding us is spectrally and temporally complex and dynamic. Thus, the research using natural sounds is crucial in understanding the operation of the brain in its natural environment. Music is an excellent example of natural stimulation, which, in various forms, has always been an essential part of different cultures. In addition to sensory responses, music elicits vast cognitive and emotional processes in the brain. When compared to laymen, professional musicians have stronger ERP responses in processing individual musical features in simple tone sequences, such as changes in pitch, timbre and harmony. Here we show that the ERP responses evoked by rapid changes in individual musical features are more intense in musicians than in laymen, also while listening to long excerpts of the composition Carmen. Interestingly, for professional dancers, the amplitudes of the cognitive P300 response are weaker than for musicians but still stronger than for laymen. Also, the cognitive P300 latencies of musicians are significantly shorter whereas the latencies of laymen are significantly longer. In contrast, sensory N100 do not differ in amplitude or latency between musicians and laymen. These results, acquired from a novel ERP methodology for natural music, suggest that we can take the leap of studying the brain with long pieces of natural music also with the ERP method of electroencephalography (EEG), as has already been made with functional magnetic resonance (fMRI), as these two brain imaging devices complement each other.

Keywords: electroencephalography, expertise, musical features, real-life music

Procedia PDF Downloads 481
2907 Golden Brain Theory (GBT) for Language Learning

Authors: Tapas Karmaker

Abstract:

Centuries ago, we came to know about ‘Golden Ratio’ also known as Golden Angle. The idea of this research is based on this theme. Researcher perceives ‘The Golden Ratio’ in terms of harmony, meaning that every single item in the universe follows a harmonic behavior. In case of human being, brain responses easily and quickly to this harmony to help memorization. In this theory, harmony means a link. This study has been carried out on a segment of school students and a segment of common people for a period of three years from 2003 to 2006. The research in this respect intended to determine the impact of harmony in the brain of these people. It has been found that students and common people can increase their memorization capacity as much as 70 times more by applying this method. This method works faster and better between age of 8 and 30 years. This result was achieved through tests to assess memorizing capacity by using tools like words, rhymes, texts, math and drawings. The research concludes that this harmonic method can be applied for improving the capacity of learning languages, for the better quality of lifestyle, or any other terms of life as well as in professional activity.

Keywords: language, education, golden brain, learning, teaching

Procedia PDF Downloads 200
2906 The Impact of Neuroscience Knowledge on the Field of Education

Authors: Paula Andrea Segura Delgado, Martha Helena Ramírez-Bahena

Abstract:

Research on how the brain learns has a transcendental application in the educational context. It is crucial for teacher training to understand the nature of brain changes and their direct influence on learning processes. This communication is based on a literature review focused on neuroscience, neuroeducation, and the impact of digital technology on the human brain. Information was gathered from both English and Spanish language sources, using online journals, books and reports. The general objective was to analyze the role of neuroscience knowledge in enriching our understanding of the learning process. In fact, the authors have focused on the impact of digital technology on the human brain as well as its influence in the field of education..Neuroscience knowledge can contribute significantly to improving the training of educators and therefore educational practices. Education as an instrument of change and school as an agent of socialization, it is necessary to understand what it aims to transform: the human brain. Understanding the functioning of the human brain has important repercussions on education: this elucidates cognitive skills, psychological processes and elements that influence the learning process (memory, executive functions, emotions and the circadian cycle); helps identify psychological and neurological deficits that can impede learning processes (dyslexia, autism, hyperactivity); It allows creating environments that promote brain development and contribute to the advancement of brain capabilities in alignment with the stages of neurobiological development. The digital age presents diverse opportunities to every social environment. The frequent use of digital technology (DT) has had a significant and abrupt impact on both the cognitive abilities and physico-chemical properties of the brain, significantly influencing educational processes. Hence, educational community, with the insights from advances in neuroscience, aspire to identify the positive and negative effects of digital technology on the human brain. This knowledge helps ensure the alignment of teacher training and practices with these findings. The knowledge of neuroscience enables teachers to develop teaching methods that are aligned with the way the brain works. For example, neuroscience research has shown that digital technology is having a significant impact on the human brain (addition, anxiety, high levels of dopamine, circadian cycle disorder, decrease in attention, memory, concentration, problems with their social relationships). Therefore, it is important to understand the nature of these changes, their impact on the learning process, and how educators should effectively adapt their approaches based on these brain's changes.

Keywords: digital technology, learn process, neuroscience knowledge, neuroeducation, training proffesors

Procedia PDF Downloads 59
2905 Effect of Signal Acquisition Procedure on Imagined Speech Classification Accuracy

Authors: M.R Asghari Bejestani, Gh. R. Mohammad Khani, V.R. Nafisi

Abstract:

Imagined speech recognition is one of the most interesting approaches to BCI development and a lot of works have been done in this area. Many different experiments have been designed and hundreds of combinations of feature extraction methods and classifiers have been examined. Reported classification accuracies range from the chance level to more than 90%. Based on non-stationary nature of brain signals, we have introduced 3 classification modes according to time difference in inter and intra-class samples. The modes can explain the diversity of reported results and predict the range of expected classification accuracies from the brain signal accusation procedure. In this paper, a few samples are illustrated by inspecting results of some previous works.

Keywords: brain computer interface, silent talk, imagined speech, classification, signal processing

Procedia PDF Downloads 152
2904 In vivo Inhibition and Restoration of Acetyl Cholinesterase Activities in Induced Clarias Gariepinus

Authors: T. O. Ikpesu, I. Tongo, A. Ariyo

Abstract:

This study was conducted to assess the effects of an organophosphate pesticide glyphosate formulation on neurological enzymes in the brain, liver and serum of juvenile Clarias gariepinus, and also to examine the antidotal prospect of Garcinia kola seeds extract. The fish divided into five groups were exposed to different treatments of glyphosate formulation and Garcinia kola seeds extract. Acetyl cholinesterase activities in the brain, liver and serum of the fish were estimated in the experimental and control fishes on day -7, 14, 21 and of 28 by spectrophotometrical methods. The enzyme was significantly (p < 0.05) inhibited in glyphosate formulation test. The inhibition percentages of AChE ranged for the brain, liver and serum between 40.7–59.4%, 50-57% and 27.5–51.3%, respectively. The aberrated parameters were recovered in G. kola seeds extract treated aquaria, and was dose and time dependent. The present study demonstrated that in vivo glyphosate formulation exposure caused AChE inhibition in the brain, liver and the serum. The brain tissue, however, might be suggested as a good indicator tissue for aquatic pollutants exposure in the fish and G. kola seeds extract has shown to be a good remedy for neurology restoration in a noxious circumstance. The findings has shown that xenobiotics could be eliminated from aquatic organisms, especially fish, and could be put into practice in areas at risk of pollutants. This approach can reduce the risks of biomagnification of poison in sea food. Hence, formulation of this plant extracts into capsule should be encouraged and supported.

Keywords: glyphosate, Clarias gariepinus, brain, Garcinia kola, acetyl cholinesterase, enzymes

Procedia PDF Downloads 389
2903 The Accuracy of Parkinson's Disease Diagnosis Using [123I]-FP-CIT Brain SPECT Data with Machine Learning Techniques: A Survey

Authors: Lavanya Madhuri Bollipo, K. V. Kadambari

Abstract:

Objective: To discuss key issues in the diagnosis of Parkinson disease (PD), To discuss features influencing PD progression, To discuss importance of brain SPECT data in PD diagnosis, and To discuss the essentiality of machine learning techniques in early diagnosis of PD. An accurate and early diagnosis of PD is nowadays a challenge as clinical symptoms in PD arise only when there is more than 60% loss of dopaminergic neurons. So far there are no laboratory tests for the diagnosis of PD, causing a high rate of misdiagnosis especially when the disease is in the early stages. Recent neuroimaging studies with brain SPECT using 123I-Ioflupane (DaTSCAN) as radiotracer shown to be widely used to assist the diagnosis of PD even in its early stages. Machine learning techniques can be used in combination with image analysis procedures to develop computer-aided diagnosis (CAD) systems for PD. This paper addressed recent studies involving diagnosis of PD in its early stages using brain SPECT data with Machine Learning Techniques.

Keywords: Parkinson disease (PD), dopamine transporter, single-photon emission computed tomography (SPECT), support vector machine (SVM)

Procedia PDF Downloads 397
2902 A Positive Neuroscience Perspective for Child Development and Special Education

Authors: Amedeo D'Angiulli, Kylie Schibli

Abstract:

Traditionally, children’s brain development research has emphasized the limitative aspects of disability and impairment, electing as an explanatory model the classical clinical notions of brain lesion or functional deficit. In contrast, Positive Educational Neuroscience (PEN) is a new approach that emphasizes strengths and human flourishing related to the brain by exploring how learning practices have the potential to enhance neurocognitive flexibility through neuroplastic overcompensation. This mini-review provides an overview of PEN and shows how it links to the concept of neurocognitive flexibility. We provide examples of how the present concept of neurocognitive flexibility can be applied to special education by exploring examples of neuroplasticity in the learning domain, including: (1) learning to draw in congenitally totally blind children, and (2) music training in children from disadvantaged neighborhoods. PEN encourages educators to focus on children’s strengths by recognizing the brain’s capacity for positive change and to incorporate activities that support children’s individual development.

Keywords: neurocognitive development, positive educational neuroscience, sociocultural approach, special education

Procedia PDF Downloads 239
2901 Rapid and Sensitive Detection: Biosensors as an Innovative Analytical Tools

Authors: Sylwia Baluta, Joanna Cabaj, Karol Malecha

Abstract:

The evolution of biosensors was driven by the need for faster and more versatile analytical methods for application in important areas including clinical, diagnostics, food analysis or environmental monitoring, with minimum sample pretreatment. Rapid and sensitive neurotransmitters detection is extremely important in modern medicine. These compounds mainly occur in the brain and central nervous system of mammals. Any changes in the neurotransmitters concentration may lead to many diseases, such as Parkinson’s or schizophrenia. Classical techniques of chemical analysis, despite many advantages, do not permit to obtain immediate results or automatization of measurements.

Keywords: adrenaline, biosensor, dopamine, laccase, tyrosinase

Procedia PDF Downloads 140
2900 Initial Dip: An Early Indicator of Neural Activity in Functional Near Infrared Spectroscopy Waveform

Authors: Mannan Malik Muhammad Naeem, Jeong Myung Yung

Abstract:

Functional near infrared spectroscopy (fNIRS) has a favorable position in non-invasive brain imaging techniques. The concentration change of oxygenated hemoglobin and de-oxygenated hemoglobin during particular cognitive activity is the basis for this neuro-imaging modality. Two wavelengths of near-infrared light can be used with modified Beer-Lambert law to explain the indirect status of neuronal activity inside brain. The temporal resolution of fNIRS is very good for real-time brain computer-interface applications. The portability, low cost and an acceptable temporal resolution of fNIRS put it on a better position in neuro-imaging modalities. In this study, an optimization model for impulse response function has been used to estimate/predict initial dip using fNIRS data. In addition, the activity strength parameter related to motor based cognitive task has been analyzed. We found an initial dip that remains around 200-300 millisecond and better localize neural activity.

Keywords: fNIRS, brain-computer interface, optimization algorithm, adaptive signal processing

Procedia PDF Downloads 223
2899 Composite Electrodes Containing Ni-Fe-Cr as an Activatable Oxygen Evolution Catalyst

Authors: Olga A. Krysiak, Grzegorz Cichowicz, Wojciech Hyk, Michal Cyranski, Jan Augustynski

Abstract:

Metal oxides are known electrocatalyst in water oxidation reaction. Due to the fact that it is desirable for efficient oxygen evolution catalyst to contain numerous redox-active metal ions to guard four electron water oxidation reaction, mixed metal oxides exhibit enhanced catalytic activity towards oxygen evolution reaction compared to single metal oxide systems. On the surface of fluorine doped tin oxide coated glass slide (FTO) deposited (doctor blade technique) mixed metal oxide layer composed of nickel, iron, and chromium. Oxide coating was acquired by heat treatment of the aqueous precursors' solutions of the corresponding salts. As-prepared electrodes were photosensitive and acted as an efficient oxygen evolution catalyst. Our results showed that obtained by this method electrodes can be activated which leads to achieving of higher current densities. The recorded current and photocurrent associated with oxygen evolution process were at least two orders of magnitude higher in the presence of oxide layer compared to bare FTO electrode. The overpotential of the process is low (ca. 0,2 V). We have also checked the activity of the catalyst at different known photoanodes used in sun-driven water splitting. Herein, we demonstrate that we were able to achieve efficient oxygen evolution catalysts using relatively cheap precursor consisting of earth abundant metals and simple method of preparation.

Keywords: chromium, electrocatalysis, iron, metal oxides, nickel, oxygen evolution

Procedia PDF Downloads 208
2898 Computational Screening of Secretory Proteins with Brain-Specific Expression in Glioblastoma Multiforme

Authors: Sumera, Sanila Amber, Fatima Javed Mirza, Amjad Ali, Saadia Zahid

Abstract:

Glioblastoma multiforme (GBM) is a widely spread and fatal primary brain tumor with an increased risk of relapse in spite of aggressive treatment. The current procedures for GBM diagnosis include invasive procedures i.e. resection or biopsy, to acquire tumor mass. Implementation of negligibly invasive tests as a potential diagnostic technique and biofluid-based monitoring of GBM stresses on discovering biomarkers in CSF and blood. Therefore, we performed a comprehensive in silico analysis to identify potential circulating biomarkers for GBM. Initially, six gene and protein databases were utilized to mine brain-specific proteins. The resulting proteins were filtered using a channel of five tools to predict the secretory proteins. Subsequently, the expression profile of the secreted proteins was verified in the brain and blood using two databases. Additional verification of the resulting proteins was done using Plasma Proteome Database (PPD) to confirm their presence in blood. The final set of proteins was searched in literature for their relationship with GBM, keeping a special emphasis on secretome proteome. 2145 proteins were firstly mined as brain-specific, out of which 69 proteins were identified as secretory in nature. Verification of expression profile in brain and blood eliminated 58 proteins from the 69 proteins, providing a final list of 11 proteins. Further verification of these 11 proteins further eliminated 2 proteins, giving a final set of nine secretory proteins i.e. OPCML, NPTX1, LGI1, CNTN2, LY6H, SLIT1, CREG2, GDF1 and SERPINI1. Out of these 9 proteins, 7 were found to be linked to GBM, whereas 2 proteins are not investigated in GBM so far. We propose that these secretory proteins can serve as potential circulating biomarker signatures of GBM and will facilitate the development of minimally invasive diagnostic methods and novel therapeutic interventions for GBM.

Keywords: glioblastoma multiforme, secretory proteins, brain secretome, biomarkers

Procedia PDF Downloads 151
2897 Brain Tumor Segmentation Based on Minimum Spanning Tree

Authors: Simeon Mayala, Ida Herdlevær, Jonas Bull Haugsøen, Shamundeeswari Anandan, Sonia Gavasso, Morten Brun

Abstract:

In this paper, we propose a minimum spanning tree-based method for segmenting brain tumors. The proposed method performs interactive segmentation based on the minimum spanning tree without tuning parameters. The steps involve preprocessing, making a graph, constructing a minimum spanning tree, and a newly implemented way of interactively segmenting the region of interest. In the preprocessing step, a Gaussian filter is applied to 2D images to remove the noise. Then, the pixel neighbor graph is weighted by intensity differences and the corresponding minimum spanning tree is constructed. The image is loaded in an interactive window for segmenting the tumor. The region of interest and the background are selected by clicking to split the minimum spanning tree into two trees. One of these trees represents the region of interest and the other represents the background. Finally, the segmentation given by the two trees is visualized. The proposed method was tested by segmenting two different 2D brain T1-weighted magnetic resonance image data sets. The comparison between our results and the standard gold segmentation confirmed the validity of the minimum spanning tree approach. The proposed method is simple to implement and the results indicate that it is accurate and efficient.

Keywords: brain tumor, brain tumor segmentation, minimum spanning tree, segmentation, image processing

Procedia PDF Downloads 119
2896 Circadian-Clock Controlled Drug Transport Across Blood-Cerebrospinal Fluid Barrier

Authors: André Furtado, Rafael Mineiro, Isabel Gonçalves, Cecília Santos, Telma Quintela

Abstract:

The development of therapies for central nervous system (CNS) disorders is one of the biggest challenges of current pharmacology, given the unique features of brain barriers, which limit drug delivery. Efflux transporters (ABC transporters) expressed at the blood-cerebrospinal fluid barrier (BCSFB), are the main obstacles for the delivery of therapeutic compounds into the CNS, compromising the effective treatment of brain cancer, brain metastasis from peripheral cancers, or even neurodegenerative disorders. It is thus extremely important to understand the regulation of these transporters for reducing their expression while treating a brain disorder or choosing the most appropriate conditions for drug administration. Based on the fact that the BCSFB have fine-tuned biological rhythms, studying the circadian variation of drug transport processes is critical for choosing the most appropriate time of the day for drug administration. In our study, using an in vitro model of the BCSFB, we characterized the circadian transport profile of methotrexate (MTX) and donepezil (DNPZ), two drugs involved in the treatment of cancer and Alzheimer’s Disease symptoms, respectively. We found that MTX is transported across the basal and apical membranes of the BCSFB in a circadian way. The circadian pattern of an ABC transporter, Abcc4, might be partially responsible for MTX circadian transport. Furthermore, regarding the DNPZ transport study, we observed that the regulation of Abcg2 expression by the circadian rhythm will impact the circadian-dependent transport of DNPZ across the BCSFB. Overall, our results will contribute to the current knowledge on brain pharmacoresistance at the BCSFB by disclosing how circadian rhythms control drug delivery to the brain, setting the grounds for a potential application of chronotherapy to brain diseases to enhance the efficacy of medications and minimize their side effects.

Keywords: blood-cerebrospinal fluid barrier, ABC transporters, drug transport, chronotherapy

Procedia PDF Downloads 13
2895 Protective Effect of Cow Urine against Chlorpyrifos Induced-Genotoxicity and Neurotoxicity in Albino Rats

Authors: Shelly Sharma, Pooja Chadha

Abstract:

Humans are exposed to pesticides and insecticides either directly or indirectly. Exposure to these pesticides may lead to acute toxicity to mammals and non-target organisms. Chlorpyrifos (CPF) is a broad spectrum organophosphate pesticide widely used in various countries of the world. The aim of the present study was to assess the toxicity associated with chlorpyrifos exposure and possible mitigating effect of cow urine against genotoxic and toxic effects in rat brain induced by chlorpyrifos. For this purpose LD50 was determined and rats were orally administered with 1/8th of LD50 (19mg/kg b.wt). Brain samples were taken after 24hrs, 48hrs and 72hrs of treatment. A significant increase in the % tail DNA was observed along with the increase in MDA levels of brain tissues in chlorpyrifos treated groups as compared to control. Cow urine treated groups show decrease in DNA damage and MDA levels as compared to CPF treated group. The study indicates that cow urine has ameliorative potential against neurotoxicity and genotoxicity induced by CPF. Cow urine is considered rich in vitamin A, E and volatile fatty acids which provide antioxidant potential to it. Thus, it can be used as a genoprotective agent.

Keywords: comet assay, brain, cow urine, genotoxicity, toxicity

Procedia PDF Downloads 380
2894 Cellular Senescence and Neuroinflammation Following Controlled Cortical Impact Traumatic Brain Injury in Juvenile Mice

Authors: Zahra F. Al-Khateeb, Shenel Shekerzade, Hasna Boumenar, Siân M. Henson, Jordi L. Tremoleda, A. T. Michael-Titus

Abstract:

Traumatic brain injury (TBI) is the leading cause of disability and death in young adults and also increases the risk ofneurodegeneration. The mechanisms linking moderate to severe TBI to neurodegeneration are not known. It has been proposed that cellular senescence inductionpost-injury could amplify neuroinflammation and induce long-term changes. The impact of these processes after injury to an immature brain has not been characterised yet. We carried out a controlled cortical impact injury (CCI) in juvenile 1 month-old male CD1 mice. Animals were anesthetised and received a unilateral CCI injury. The sham group received anaesthesia and had a craniotomy. A naïve group had no intervention. The brain tissue was analysed at 5 days and 35 days post-injury using immunohistochemistry and markers for microglia, astrocytes, and senescence. Compared tonaïve animals, injured mice showed an increased microglial and astrocytic reaction early post-injury, as reflected in Iba1 and GFAP markers, respectively; the GFAP increase persisted in the later phase. The senescence analysis showed a significant increase inγH2AX-53BP1 nuclear foci, 8-oxoguanine, p19ARF, p16INK4a, and p53 expression in naïve vs. sham groups and naïve vs. CCI groups, at 5 dpi. At 35 days, the difference was no longer statistically significant in all markers. The injury induced a decrease p21 expression vs. the naïve group, at 35 dpi. These results indicate the induction of a complex senescence response after immature brain injury. Some changes occur early and may reflect the activation/proliferation of non-neuronal cells post-injury that had been hindered, whereas changes such as p21 downregulation may reflect a delayed response and pro-repair processes.

Keywords: cellular senescence, traumatic brain injury, brain injury, controlled cortical impact

Procedia PDF Downloads 137