Search results for: organic fertilizer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2636

Search results for: organic fertilizer

1496 Latest Finding about Copper Sulfide Biomineralization and General Features of Metal Sulfide Biominerals

Authors: Yeseul Park

Abstract:

Biopolymers produced by organisms highly contribute to the production of metal sulfides, both in extracellular and intracellular biomineralization. We discovered a new type of intracellular biomineral composed of copper sulfide in the periplasm of a sulfate-reducing bacterium. We suggest that the structural features of biomineral composed of 1-2 nm subgrains are based on biopolymer-based capping agents and an organic compartment. We further compare with other types of metal sulfide biominerals.

Keywords: biomineralization, copper sulfide, metal sulfide, biopolymer, capping agent

Procedia PDF Downloads 99
1495 OASIS: An Alternative Access to Potable Water, Renewable Energy and Organic Food

Authors: Julien G. Chenet, Mario A. Hernandez, U. Leonardo Rodriguez

Abstract:

The tropical areas are places where there is scarcity of access to potable water and where renewable energies need further development. They also display high undernourishment levels, even though they are one of the resources-richest areas in the world. In these areas, it is common to count on great extension of soils, high solar radiation and raw water from rain, groundwater, surface water or even saltwater. Even though resources are available, access to them is limited, and the low-density habitat makes central solutions expensive and investments not worthy. In response to this lack of investment, rural inhabitants use fossil fuels and timber as an energy source and import agrochemical for soils fertilization, which increase GHG emissions. The OASIS project brings an answer to this situation. It supplies renewable energy, potable water and organic food. The first step is the determination of the needs of the communities in terms of energy, water quantity and quality, food requirements and soil characteristics. Second step is the determination of the available resources, such as solar energy, raw water and organic residues on site. The pilot OASIS project is located in the Vichada department, Colombia, and ensures the sustainable use of natural resources to meet the community needs. The department has roughly 70% of indigenous people. They live in a very scattered landscape, with no access to clean water and energy. They use polluted surface water for direct consumption and diesel for energy purposes. OASIS pilot will ensure basic needs for a 400-students education center. In this case, OASIS will provide 20 kW of solar energy potential and 40 liters per student per day. Water will be treated form groundwater, with two qualities. A conventional one with chlorine, and as the indigenous people are not used to chlorine for direct consumption, second train is with reverse osmosis to bring conservable safe water without taste. OASIS offers a solution to supply basic needs, shifting from fossil fuels, timber, to a no-GHG-emission solution. This solution is part of the mitigation strategy against Climate Change for the communities in low-density areas of the tropics. OASIS is a learning center to teach how to convert natural resources into utilizable ones. It is also a meeting point for the community with high pedagogic impact that promotes the efficient and sustainable use of resources. OASIS system is adaptable to any tropical area and competes technically and economically with any conventional solution, that needs transport of energy, treated water and food. It is a fully automatic, replicable and sustainable solution to sort out the issue of access to basic needs in rural areas. OASIS is also a solution to undernourishment, ensuring a responsible use of resources, to prevent long-term pollution of soils and groundwater. It promotes the closure of the nutrient cycle, and the optimal use of the land whilst ensuring food security in depressed low-density regions of the tropics. OASIS is under optimization to Vichada conditions, and will be available to any other tropical area in the following months.

Keywords: climate change adaptation and mitigation, rural development, sustainable access to clean and renewable resources, social inclusion

Procedia PDF Downloads 236
1494 Innovative Technology to Sustain Food Security in Qatar

Authors: Sana Abusin

Abstract:

Food security in Qatar is a research priority of Qatar University (2021-2025) and all national strategies, including the Qatar National Vision 2030 and food security strategy (2018-2023). Achieving food security requires three actions: 1) transforming surplus food to those who are insecure; 2) reducing food loss and waste by recycling food into valuable resources such as compost (“green fertilizer”) that can be used in growing food; and, finally, 3) establishing strong enforcement agencies to protect consumers from outdated food and promote healthy food. Currently, these objectives are approached separately and not in a sustainable fashion. Food security in Qatar is a research priority of Qatar University (2021-2025) and all national strategies, including the Qatar National Vision 2030 and food security strategy (2018-2023). The study aims to develop an innovative mobile application that supports a sustainable solution to food insecurity and food waste in Qatar. The application will provide a common solution for many different users. For producers, it will facilitate easy disposal of excess food. For charities, it will notify them about surplus food ready for redistribution. The application will also benefit the second layer of end-users in the form of food recycling companies, who will receive information about available food waste that is unable to be consumed. We will use self-exoplanetary diagrams and digital pictures to show all the steps to the final stage. The aim is to motivate the young generation toward innovation and creation, and to encourage public-private collaboration in this sector.

Keywords: food security, innovative technology, sustainability, food waste, Qatar

Procedia PDF Downloads 102
1493 Permeable Reactive Pavement for Controlling the Transport of Benzene, Toluene, Ethyl-Benzene, and Xylene (BTEX) Contaminants

Authors: Shengyi Huang, Chenju Liang

Abstract:

Volatile organic compounds such as benzene, toluene, ethyl-benzene, and xylene (BTEX) are common contaminants in environment, which could come from asphalt concrete or exhaust emissions of vehicles. The BTEX may invade to the subsurface environment via wet and dry atmospheric depositions. If there aren’t available ways for controlling contaminants’ fate and transport, they would extensively harm natural environment. In the 1st phase of this study, various adsorbents were screened for a suitable one to be an additive in the porous asphalt mixture. In the 2nd phase, addition of the selected adsorbent was incorporated with the design of porous asphalt concrete (PAC) to produce the permeable reactive pavement (PRP), which was subsequently tested for the potential of adsorbing aqueous BTEX as compared to the PAC, in the 3rd phase. The PRP was prepared according to the following steps: firstly, the suitable adsorbent was chosen based on the analytical results of specific surface area analysis, thermal-gravimetric analysis, adsorption kinetics and isotherms, and thermal dynamics analysis; secondly, the materials of coarse aggregate, fine aggregate, filler, asphalt, and fiber were tested in order to meet regulated specifications (e.g., water adsorption, soundness, viscosity etc.) for preparing the PRP; thirdly, the amount of adsorbent additive was determined in the PRP; fourthly, the prepared PAC and PRP were examined for their physical properties (e.g., abrasion loss, drain-down loss, Marshall stability, Marshall flow, dynamic stability etc.). As a result of comparison between PRP and PAC, the PRP showed better physical performance than the traditional PAC. At last, the Marshall Specimen column tests were conducted to explore the adsorption capacities of PAC and PRPs. The BTEX adsorption capacities of PRPs are higher than those obtained from traditional PAC. In summary, PRPs showed superior physical performance and adsorption capacities, which exhibit the potential of PRP to be applied as a replacement of PAC for better controlling the transport of non-point source pollutants.

Keywords: porous asphalt concrete, volatile organic compounds, permeable reactive pavement, non-point source pollution

Procedia PDF Downloads 197
1492 Plasma-Assisted Decomposition of Cyclohexane in a Dielectric Barrier Discharge Reactor

Authors: Usman Dahiru, Faisal Saleem, Kui Zhang, Adam Harvey

Abstract:

Volatile organic compounds (VOCs) are atmospheric contaminants predominantly derived from petroleum spills, solvent usage, agricultural processes, automobile, and chemical processing industries, which can be detrimental to the environment and human health. Environmental problems such as the formation of photochemical smog, organic aerosols, and global warming are associated with VOC emissions. Research showed a clear relationship between VOC emissions and cancer. In recent years, stricter emission regulations, especially in industrialized countries, have been put in place around the world to restrict VOC emissions. Non-thermal plasmas (NTPs) are a promising technology for reducing VOC emissions by converting them into less toxic/environmentally friendly species. The dielectric barrier discharge (DBD) plasma is of interest due to its flexibility, moderate capital cost, and ease of operation under ambient conditions. In this study, a dielectric barrier discharge (DBD) reactor has been developed for the decomposition of cyclohexane (as a VOC model compound) using nitrogen, dry, and humidified air carrier gases. The effect of specific input energy (1.2-3.0 kJ/L), residence time (1.2-2.3 s) and concentration (220-520 ppm) were investigated. It was demonstrated that the removal efficiency of cyclohexane increased with increasing plasma power and residence time. The removal of cyclohexane decreased with increasing cyclohexane inlet concentration at fixed plasma power and residence time. The decomposition products included H₂, CO₂, H₂O, lower hydrocarbons (C₁-C₅) and solid residue. The highest removal efficiency (98.2%) was observed at specific input energy of 3.0 kJ/L and a residence time of 2.3 s in humidified air plasma. The effect of humidity was investigated to determine whether it could reduce the formation of solid residue in the DBD reactor. It was observed that the solid residue completely disappeared in humidified air plasma. Furthermore, the presence of OH radicals due to humidification not only increased the removal efficiency of cyclohexane but also improves product selectivity. This work demonstrates that cyclohexane can be converted to smaller molecules by a dielectric barrier discharge (DBD) non-thermal plasma reactor by varying plasma power (SIE), residence time, reactor configuration, and carrier gas.

Keywords: cyclohexane, dielectric barrier discharge reactor, non-thermal plasma, removal efficiency

Procedia PDF Downloads 124
1491 Comparative Analysis of Yield before and after Access to Extension Services among Crop Farmers in Bauchi Local Government Area of Bauchi State, Nigeria

Authors: U. S. Babuga, A. H. Danwanka, A. Garba

Abstract:

The research was carried out to compare the yield of respondents before and after access to extension services on crop production technologies in the study area. Data were collected from the study area through questionnaires administered to seventy-five randomly selected respondents. Data were analyzed using descriptive statistics, t-test and regression models. The result disclosed that majority (97%) of the respondent attended one form of school or the other. The majority (78.67%) of the respondents had farm size ranging between 1-3 hectares. The majority of the respondent adopt improved variety of crops, plant spacing, herbicide, fertilizer application, land preparation, crop protection, crop processing and storage of farm produce. The result of the t-test between the yield of respondents before and after access to extension services shows that there was a significant (p<0.001) difference in yield before and after access to extension. It also indicated that farm size was significant (p<0.001) while household size, years of farming experience and extension contact were significant at (p<0.005). The major constraint to adoption of crop production technologies were shortage of extension agents, high cost of technology and lack of access to credit facility. The major pre-requisite for the improvement of extension service are employment of more extension agents or workers and adequate training. Adequate agricultural credit to farmers at low interest rates will enhance their adoption of crop production technologies.

Keywords: comparative, analysis, yield, access, extension

Procedia PDF Downloads 343
1490 Growing Sorghum Varieties with Potential of Fodder and Biofuel Crops, with Potential of Two Harvest in One Year

Authors: Farah Jafarpisheh, John Hutson, Howard Fallowfield

Abstract:

Growing Sorghum varieties, with the potential of the animal food source, by using the treated wastewater from High Rate Algae Ponds (HRAPs) is an attractive subject. For the first time, in South Australia, Sorghum Earthnote variety one (SE1) has been grown using the wastewater from HRAPs. In this study, after the first harvest, the roots left in the soil. After a short period of time, sorghum started to regrow again, which can increase the value of planting sorghum by using the wastewater. This study demonstrates the higher amount of green biomass with the potential of animal food source after the second harvest. Different parameters, including height(mm), number of leaves and tiller, Brix percentage, fresh and dry leaf weight(g), total top fresh weight(g), stem and seed dry and fresh weight(g) have been measured in the field after first and second harvest. The results demonstrated the higher height, number of tiller, and diameter after the second harvest. Number of leaves and leaves fresh weight and total top weight increased by 6 and 10 times, respectively. Brix percentage increased by 2 times. In the first harvest, no seeds harvested, while in the second harvest, 134 g seeds harvested. This sorghum variety (SE1) showed the acceptable green biomass, especially after the second harvest. This property will add to the value of sorghum in this condition, as it will not need extra fertilizer and labor work for seed planting.

Keywords: energy, high rate algae ponds, HRAPs, Sorghum, waste water

Procedia PDF Downloads 92
1489 Organic Oils Fumigation and Ozonated Cold Storage Influence Storage Life and Fruit Quality in Granny Smith Apples

Authors: Rahil Malekipoor, Zora Singh, Alan Payne

Abstract:

Ethylene management during storage life of organically grown apples is a challenging issue due to limited available options. The objective of this investigation was to examine the effects of lemon and cinnamon oils fumigation on storage life, the incidence of superficial scald and quality of Granny Smith apple which were kept in cold storage with and without ozone. The fruit was fumigated with 3µl L⁻¹ lemon or cinnamon oil for 24 h and untreated fruit was kept as a control. Following the treatments, the fruit was stored at (0.5 to -1°C) with and without ozone for 100 and 150 days. After each storage period, ethylene production and respiration rate, superficial scald and various fruit quality parameters were estimated. Lemon oil fumigated fruit showed significantly reduced the mean climacteric peak ethylene production rate in both 100 and 150 days stored fruit. Mean climacteric peak ethylene production rate was significantly reduced in the apples which were kept in an ozonated as compared to cold stored without ozone for 100 days only. The climacteric ethylene peak was delayed only in 100 days cold stored fruit with ozone (8.78 d) as compared to without ozone (3.89 d). Firmness was significantly higher in the fruit fumigated with lemon or cinnamon oil compared to control for both storage time. The fruit stored for 150 days in cold storage without ozone exhibited higher mean firmness than those stored in ozonated. Lemon or cinnamon oil fumigation significantly reduced superficial scald in both cold stored fruit with or without ozone. Levels of total phenols were significantly higher in cinnamon oil treated fruit and stored for 100 days as compared to all other treatments. In 150 days stored fruit fumigated with lemon oil showed the significantly higher level of total phenols compared to cinnamon oil fumigation and control. The fruit fumigated with lemon oil or cinnamon oil following 150 days cold storage resulted in significantly higher levels of ascorbic acid and antioxidant capacity as compared to the control fruit. In conclusion, lemon oil fumigation was more effective in suppressing ethylene production in 100-150 days cold stored fruit than cinnamon oil. Whilst, fumigation of both lemon or cinnamon oil were effective in reducing superficial scald and maintaining quality in 100-150 days cold stored fruit.

Keywords: apple, cold storage, organic oil, ozone

Procedia PDF Downloads 136
1488 Microbial Activity and Greenhouse Gas (GHG) Emissions in Recovery Process in a Grassland of China

Authors: Qiushi Ning

Abstract:

The nitrogen (N) is an important limiting factor of various ecosystems, and the N deposition rate is increasing unprecedentedly due to anthropogenic activities. The N deposition altered the microbial growth and activity, and microbial mediated N cycling through changing soil pH, the availability of N and carbon (C). The CO2, CH4 and N2O are important greenhouse gas which threaten the sustainability and function of the ecosystem. With the prolonged and increasing N enrichment, the soil acidification and C limitation will be aggravated, and the microbial biomass will be further declined. The soil acidification and lack of C induced by N addition are argued as two important factors regulating the microbial activity and growth, and the studies combined soil acidification with lack of C on microbial community are scarce. In order to restore the ecosystem affected by chronic N loading, we determined the responses of microbial activity and GHG emssions to lime and glucose (control, 1‰ lime, 2‰ lime, glucose, 1‰ lime×glucose and 2‰ lime×glucose) addition which was used to alleviate the soil acidification and supply C resource into soils with N addition rates 0-50 g N m–2yr–1. The results showed no significant responses of soil respiration and microbial biomass (MBC and MBN) to lime addition, however, the glucose substantially improved the soil respiration and microbial biomass (MBC and MBN); the cumulative CO2 emission and microbial biomass of lime×glucose treatments were not significantly higher than those of only glucose treatment. The glucose and lime×glucose treatments reduced the net mineralization and nitrification rate, due to inspired microbial growth via C supply incorporating more inorganic N to the biomass, and mineralization of organic N was relatively reduced. The glucose addition also increased the CH4 and N2O emissions, CH4 emissions was regulated mainly by C resource as a substrate for methanogen. However, the N2O emissions were regulated by both C resources and soil pH, the C was important energy and the increased soil pH could benefit the nitrifiers and denitrifiers which were primary producers of N2O. The soil respiration and N2O emissions increased with increasing N addition rates in all glucose treatments, as the external C resource improved microbial N utilization. Compared with alleviated soil acidification, the improved availability of C substantially increased microbial activity, therefore, the C should be the main limiting factor in long-term N loading soils. The most important, when we use the organic C fertilization to improve the production of the ecosystems, the GHG emissions and consequent warming potentials should be carefully considered.

Keywords: acidification and C limitation, greenhouse gas emission, microbial activity, N deposition

Procedia PDF Downloads 284
1487 Influence of Wavelengths on Photosensitivity of Copper Phthalocyanine Based Photodetectors

Authors: Lekshmi Vijayan, K. Shreekrishna Kumar

Abstract:

We demonstrated an organic field effect transistor based photodetector using phthalocyanine as the active material that exhibited high photosensitivity under varying light wavelengths. The thermally grown SiO₂ layer on silicon wafer act as a substrate. The critical parameters, such as photosensitivity, responsivity and detectivity, are comparatively high and were 3.09, 0.98AW⁻¹ and 4.86 × 10¹⁰ Jones, respectively, under a bias of 5 V and a monochromatic illumination intensity of 4mW cm⁻². The photodetector has a linear I-V curve with a low dark current. On comparing photoresponse of copper phthalocyanine at four different wavelengths, 560 nm shows better photoresponse and the highest value of photosensitivity is also obtained.

Keywords: photodetector, responsivity, photosensitivity, detectivity

Procedia PDF Downloads 165
1486 Removal of Heavy Metal, Dye and Salinity from Industrial Wastewaters by Banana Rachis Cellulose Micro Crystal-Clay Composite

Authors: Mohd Maniruzzaman, Md. Monjurul Alam, Md. Hafezur Rahaman, Anika Amir Mohona

Abstract:

The consumption of water by various industries is increasing day by day, and the wastewaters from them are increasing as well. These wastewaters consist of various kinds of color, dissolved solids, toxic heavy metals, residual chlorine, and other non-degradable organic materials. If these wastewaters are exposed directly to the environment, it will be hazardous for the environment and personal health. So, it is very necessary to treat these wastewaters before exposing into the environment. In this research, we have demonstrated the successful processing and utilization of fully bio-based cellulose micro crystal (CMC) composite for the removal of heavy metals, dyes, and salinity from industrial wastewaters. Banana rachis micro-cellulose were prepared by acid hydrolysis (H₂SO₄) of banana (Musa acuminata L.) rachis fiber, and Bijoypur raw clay were treated by organic solvent tri-ethyl amine. Composites were prepared with varying different composition of banana rachis nano-cellulose and modified Bijoypur (north-east part in Bangladesh) clay. After the successful characterization of cellulose micro crystal (CMC) and modified clay, our targeted filter was fabricated with different composition of cellulose micro crystal and clay in the locally fabricated packing column with 7.5 cm as thickness of composites fraction. Waste-water was collected from local small textile industries containing basic yellow 2 as dye, lead (II) nitrate [Pb(NO₃)₂] and chromium (III) nitrate [Cr(NO₃)₃] as heavy metals and saline water was collected from Khulna to test the efficiency of banana rachis cellulose micro crystal-clay composite for removing the above impurities. The filtering efficiency of wastewater purification was characterized by Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (X-RD), thermo gravimetric analysis (TGA), atomic absorption spectrometry (AAS), scanning electron microscopy (SEM) analyses. Finally, our all characterizations data are shown with very high expected results for in industrial application of our fabricated filter.

Keywords: banana rachis, bio-based filter, cellulose micro crystal-clay composite, wastewaters, synthetic dyes, heavy metal, water salinity

Procedia PDF Downloads 114
1485 Elaboration of Titania Nanotubes on Ti₆Al₄V Substrate by Electrochemical Anodization for Dental Application

Authors: Abdelghani Boucheham, Ahcene Karaali, Amar Manseri

Abstract:

Nanostructured Titania layers formed on the surface of titanium and titanium alloys by anodic oxidation play an important role in the enhancement of their biocompatibility and osseointegration in the human body. In the current work, highly ordered titania nanotube array films were elaborated on Ti₆Al₄V medical grade alloys in organic electrolyte containing ethylene glycol, 0.2 wt. % NH₄F and 4 vol. % H₂O at an applied potential of 60 V for different durations. The diameters, lengths and wall thicknesses of the obtained nanotubes were characterized by scanning electronic microscopy (SEM).

Keywords: anodization, dental implants, titania nanotubes, titanium alloys, SEM

Procedia PDF Downloads 230
1484 Magnetic Biomaterials for Removing Organic Pollutants from Wastewater

Authors: L. Obeid, A. Bee, D. Talbot, S. Abramson, M. Welschbillig

Abstract:

The adsorption process is one of the most efficient methods to remove pollutants from wastewater provided that suitable adsorbents are used. In order to produce environmentally safe adsorbents, natural polymers have received increasing attention in recent years. Thus, alginate and chitosane are extensively used as inexpensive, non-toxic and efficient biosorbents. Alginate is an anionic polysaccharide extracted from brown seaweeds. Chitosan is an amino-polysaccharide; this cationic polymer is obtained by deacetylation of chitin the major constituent of crustaceans. Furthermore, it has been shown that the encapsulation of magnetic materials in alginate and chitosan beads facilitates their recovery from wastewater after the adsorption step, by the use of an external magnetic field gradient, obtained with a magnet or an electromagnet. In the present work, we have studied the adsorption affinity of magnetic alginate beads and magnetic chitosan beads (called magsorbents) for methyl orange (MO) (an anionic dye), methylene blue (MB) (a cationic dye) and p-nitrophenol (PNP) (a hydrophobic pollutant). The effect of different parameters (pH solution, contact time, pollutant initial concentration…) on the adsorption of pollutant on the magnetic beads was investigated. The adsorption of anionic and cationic pollutants is mainly due to electrostatic interactions. Consequently methyl orange is highly adsorbed by chitosan beads in acidic medium and methylene blue by alginate beads in basic medium. In the case of a hydrophobic pollutant, which is weakly adsorbed, we have shown that the adsorption is enhanced by adding a surfactant. Cetylpyridinium chloride (CPC), a cationic surfactant, was used to increase the adsorption of PNP by magnetic alginate beads. Adsorption of CPC by alginate beads occurs through two mechanisms: (i) electrostatic attractions between cationic head groups of CPC and negative carboxylate functions of alginate; (ii) interaction between the hydrocarbon chains of CPC. The hydrophobic pollutant is adsolubilized within the surface aggregated structures of surfactant. Figure c shows that PNP can reach up to 95% of adsorption in presence of CPC. At highest CPC concentrations, desorption occurs due to the formation of micelles in the solution. Our magsorbents appear to efficiently remove ionic and hydrophobic pollutants and we hope that this fundamental research will be helpful for the future development of magnetically assisted processes in water treatment plants.

Keywords: adsorption, alginate, chitosan, magsorbent, magnetic, organic pollutant

Procedia PDF Downloads 239
1483 Livelihood Security and Mitigating Climate Changes in the Barind Tract of Bangladesh through Agroforestry Systems

Authors: Md Shafiqul Bari, Md Shafiqul Islam Sikdar

Abstract:

This paper summarizes the current knowledge on Agroforestry practices in the Barind tract of Bangladesh. The part of greater Rajshahi, Dinajpur, Rangpur and Bogra district of Bangladesh is geographically identified as the Barind tract. The hard red soil of these areas is very significant in comparison to that of the other parts of the country. A typical dry climate with comparatively high temperature prevails in the Barind area. Scanty rainfall and excessive extraction of groundwater have created an alarming situation among the Barind people and others about irrigation to the rice field. In addition, the situation may cause an adverse impact on the people whose livelihood largely depends on agriculture. The groundwater table has been declined by at least 10 to 15 meters in some areas of the Barind tract during the last 20 years. Due to absent of forestland in the Barind tract, the soil organic carbon content can decrease more rapidly because of the higher rate of decomposition. The Barind soils are largely carbon depleted but can be brought back to carbon-carrying capacity by bringing under suitable Agroforestry systems. Agroforestry has tremendous potential for carbon sequestration not only in above C biomass but also root C biomass in deeper soil depths. Agroforestry systems habitually conserve soil organic carbon and maintain a great natural nutrient pool. Cultivation of trees with arable crops under Agroforestry systems help in improving soil organic carbon content and sequestration carbon, particularly in the highly degraded Barind lands. Agroforestry systems are a way of securing the growth of cash crops that may constitute an alternative source of income in moments of crisis. Besides being a source of fuel wood, a greater presence of trees in cropping system contributes to decreasing temperatures and to increasing rainfall, thus contrasting the negative environmental impact of climate changes. In order to fulfill the objectives of this study, two experiments were conducted. The first experiment was survey on the impact of existing agroforestry system on the livelihood security in the Barind tract of Bangladesh and the second one was the role of agroforestry system on the improvement of soil properties in a multilayered coconut orchard. Agroforestry systems have been generated a lot of employment opportunities in the Barind area. More crops mean involvement of more people in various activities like involvements in dairying, sericulture, apiculture and additional associated agro-based interventions. Successful adoption of Agroforestry practices in the Barind area has shown that the Agroforestry practitioners of this area were very sound positioned economically, and had added social status too. However, from the findings of the present study, it may be concluded that the majority rural farmers of the Barind tract of Bangladesh had a very good knowledge and medium extension contact related to agroforestry production system. It was also observed that 85 per cent farmers followed agroforestry production system and received benefits to a higher extent. Again, from the research study on orchard based mutistoried agroforestry cropping system, it was evident that there was an important effect of agroforestry cropping systems on the improvement of soil chemical properties. As a result, the agroforestry systems may be helpful to attain the development objectives and preserve the biosphere core.

Keywords: agroforestry systems, Barind tract, carbon sequestration, climate changes

Procedia PDF Downloads 187
1482 Analysis of Nitrogenase Fe Protein Activity in Transplastomic Tobacco

Authors: Jose A. Aznar-Moreno, Xi Jiang, Stefan Burén, Luis M. Rubio

Abstract:

Integration of prokaryotic nitrogen fixation (nif) genes into the plastid genome for expression of functional nitrogenase components could render plants capable of assimilating atmospheric N2 making their crops less dependent of nitrogen fertilizers. The nitrogenase Fe protein component (NifH) has been used as proxy for expression and targeting of Nif proteins within plant and yeast cells. Here we use tobacco plants with the Azotobacter vinelandii nifH and nifM genes integrated into the plastid genome. NifH and its maturase NifM were constitutively produced in leaves, but not roots, during light and dark periods. Nif protein expression in transplastomic plants was stable throughout development. Chloroplast NifH was soluble, but it only showed in vitro activity when isolated from leaves collected at the end of the dark period. Exposing the plant extracts to elevated temperatures precipitated NifM and apo-NifH protein devoid of [Fe4S4] clusters, dramatically increasing the specific activity of remaining NifH protein. Our data indicate that the chloroplast endogenous [Fe-S] cluster biosynthesis was insufficient for complete NifH maturation, albeit a negative effect on NifH maturation due to excess NifM in the chloroplast cannot be excluded. NifH and NifM constitutive expression in transplastomic plants did not affect any of the following traits: seed size, germination time, germination ratio, seedling growth, emergence of the cotyledon and first leaves, chlorophyll content and plant height throughout development.

Keywords: NifH, chloroplast, nitrogen fixation, crop improvement, transplastomic plants, fertilizer, biotechnology

Procedia PDF Downloads 144
1481 Effective Photodegradation of Tetracycline by a Heteropoly Acid/Graphene Oxide Nanocomposite Based on Uio-66

Authors: Anasheh Maridiroosi, Ali Reza Mahjoub, Hanieh Fakhri

Abstract:

Heteropoly acid nanoparticles anchored on graphene oxide based on UiO-66 were synthesized via in-situ growth hydrothermal method and tested for photodegradation of a tetracycline as critical pollutant. Results showed that presence of graphene oxide and UiO-66 with high specific surface area, great electron mobility and various functional groups make an excellent support for heteropoly acid and improve photocatalytic efficiency up to 95% for tetracycline. Furthermore, total organic carbon (TOC) analysis verified 79% mineralization of this pollutant under optimum condition.

Keywords: heteropoly acid, graphene oxide, MOF, tetracycline

Procedia PDF Downloads 112
1480 Evaluation of Sugarcane Straw Derived Biochar for the Remediation of Chromium and Nickel Contaminated Soil

Authors: Selam M. Tefera

Abstract:

Soil constitutes a crucial component of rural and urban environments. This fact is making role of heavy and trace elements in the soil system an issue of global concern. Heavy metals constitute an ill-defined group of inorganic chemical hazards, whose main source is anthropogenic activities mainly related to fabrications. This accumulation of heavy metals soils can prove toxic to the environment. The application of biochar to soil is one way of immobilizing these contaminants through sorption by exploiting the high surface area of this material among its other essential properties. This research examined the ability of sugar cane straw, an organic waste material from sugar farm, derived biochar and ash to remediate soil contaminated with heavy metals mainly Chromium and Zinc from the effluent of electroplating industry. Biochar was produced by varying the temperature from 300 °C to 500 °C and ash at 700 °C. The highest yield (50%) was obtained at the lowest temperature (300 °C). The proximate analysis showed ash content of 42.8%, ultimate analysis with carbon content of 67.18%, the Hydrogen to Carbon ratio of 0.54 and the results from FTIR analysis disclosed the organic nature of biochar. Methylene blue absorption indicated its fine surface area and pore structure, which increases with severity of temperature. Biochar was mixed with soil with at a ration varying from 4% w/w to 10% w/w of soil, and the response variables were determined at a time interval of 150 days, 180 days, and 210 days. As for ash (10% w/w), the characterization was performed at incubation time of 210 days. The results of pH indicated that biochar (9.24) had a notable liming capacity of acidic soil (4.8) by increasing it to 6.89 whereas ash increased it to 7.5. The immobilization capacity of biochar was found to effected mostly by the highest production temperature (500 °C), which was 75.5% for chromium and 80.5% for nickel. In addition, ash was shown to possess an outstanding immobilization capacity of 95.5% and 90.5% for Chromium and Nickel, respectively. All in all, the results from these methods showed that biochar produced from this specific biomass possesses the typical functional groups that enable it to store carbon, the appropriate pH that could remediate acidic soil, a fine amount of macro and micro nutrients that would aid plant growth.

Keywords: biochar, biomass, heavy metal immobalization, soil remediation

Procedia PDF Downloads 131
1479 Plasma Technology for Hazardous Biomedical Waste Treatment

Authors: V. E. Messerle, A. L. Mosse, O. A. Lavrichshev, A. N. Nikonchuk, A. B. Ustimenko

Abstract:

One of the most serious environmental problems today is pollution by biomedical waste (BMW), which in most cases has undesirable properties such as toxicity, carcinogenicity, mutagenicity, fire. Sanitary and hygienic survey of typical solid BMW, made in Belarus, Kazakhstan, Russia and other countries shows that their risk to the environment is significantly higher than that of most chemical wastes. Utilization of toxic BMW requires use of the most universal methods to ensure disinfection and disposal of any of their components. Such technology is a plasma technology of BMW processing. To implement this technology a thermodynamic analysis of the plasma processing of BMW was fulfilled and plasma-box furnace was developed. The studies have been conducted on the example of the processing of bone. To perform thermodynamic calculations software package Terra was used. Calculations were carried out in the temperature range 300 - 3000 K and a pressure of 0.1 MPa. It is shown that the final products do not contain toxic substances. From the organic mass of BMW synthesis gas containing combustible components 77.4-84.6% was basically produced, and mineral part consists mainly of calcium oxide and contains no carbon. Degree of gasification of carbon reaches 100% by the temperature 1250 K. Specific power consumption for BMW processing increases with the temperature throughout its range and reaches 1 kWh/kg. To realize plasma processing of BMW experimental installation with DC plasma torch of 30 kW power was developed. The experiments allowed verifying the thermodynamic calculations. Wastes are packed in boxes weighing 5-7 kg. They are placed in the box furnace. Under the influence of air plasma flame average temperature in the box reaches 1800 OC, the organic part of the waste is gasified and inorganic part of the waste is melted. The resulting synthesis gas is continuously withdrawn from the unit through the cooling and cleaning system. Molten mineral part of the waste is removed from the furnace after it has been stopped. Experimental studies allowed determining operating modes of the plasma box furnace, the exhaust gases was analyzed, samples of condensed products were assembled and their chemical composition was determined. Gas at the outlet of the plasma box furnace has the following composition (vol.%): CO - 63.4, H2 - 6.2, N2 - 29.6, S - 0.8. The total concentration of synthesis gas (CO + H2) is 69.6%, which agrees well with the thermodynamic calculation. Experiments confirmed absence of the toxic substances in the final products.

Keywords: biomedical waste, box furnace, plasma torch, processing, synthesis gas

Procedia PDF Downloads 513
1478 The Effect of Multi-Stakeholder Extension Services towards Crop Choice and Farmer's Income, the Case of the Arc High Value Crop Programme

Authors: Joseph Sello Kau, Elias Mashayamombe, Brian Washington Madinkana, Cynthia Ngwane

Abstract:

This paper presents the results for the statistical (stepwise linear regression and multiple regression) analyses, carried out on a number of crops in order to evaluate how the decision for crop choice affect the level of farm income generated by the farmers participating in the High Value Crop production (referred to as the HVC). The goal of the HVC is to encourage farmers cultivate fruit crops. The farmers received planting material from different extension agencies, together with other complementary packages such as fertilizer, garden tools, water tanks etc. During the surveys, it was discovered that a significant number of farmers were cultivating traditional crops even when their plot sizes were small. Traditional crops are competing for resources with high value crops. The results of the analyses show that farmers cultivating fruit crops, maize and potatoes were generating high income than those cultivating spinach and cabbage. High farm income is associated with plot size, access to social grants and gender. Choice for a crop is influenced by the availability of planting material and the market potential for the crop. Extension agencies providing the planting materials stand a good chance of having farmers follow their directives. As a recommendation, for the farmers to cultivate more of the HVCs, the ARC must intensify provision of fruit trees.

Keywords: farm income, nature of extension services, type of crops cultivated, fruit crops, cabbage, maize, potato and spinach

Procedia PDF Downloads 301
1477 Synthesis, Growth, Characterization and Quantum Chemical Investigations of an Organic Single Crystal: 2-Amino- 4-Methylpyridinium Quinoline- 2-Carboxylate

Authors: Anitha Kandasamy, Thirumurugan Ramaiah

Abstract:

Interestingly, organic materials exhibit large optical nonlinearity with quick responses and having the flexibility of molecular tailoring using computational modelling and favourable synthetic methodologies. Pyridine based organic compounds and carboxylic acid contained aromatic compounds play a crucial role in crystal engineering of NCS complexes that displays admirable optical nonlinearity with fast response and favourable physicochemical properties such as low dielectric constant, wide optical transparency and large laser damage threshold value requires for optoelectronics device applications. Based on these facts, it was projected to form an acentric molecule of π-conjugated system interaction with appropriately replaced electron donor and acceptor groups for achieving higher SHG activity in which quinoline-2-carboyxlic acid is chosen as an electron acceptor and capable of acting as an acid as well as a base molecule, while 2-amino-4-methylpyridine is used as an electron donor and previously employed in numerous proton transfer complexes for synthesis of NLO materials for optoelectronic applications. 2-amino-4-mehtylpyridinium quinoline-2-carboxylate molecular complex (2AQ) is having π-donor-acceptor groups in which 2-amino-4-methylpyridine donates one of its electron to quinoline -2-carboxylic acid thereby forming a protonated 2-amino-4-methyl pyridinium moiety and mono ionized quinoline-2-carboxylate moiety which are connected via N-H…O intermolecular interactions with non-centrosymmetric crystal packing arrangement at microscopic scale is accountable to the enhancement of macroscopic second order NLO activity. The 2AQ crystal was successfully grown by a slow evaporation solution growth technique and its structure was determined in orthorhombic crystal system with acentric, P212121, space group. Hirshfeld surface analysis reveals that O…H intermolecular interactions primarily contributed with 31.0 % to the structural stabilization of 2AQ. The molecular structure of title compound has been confirmed by 1H and 13C NMR spectral studies. The vibrational modes of functional groups present in 2AQ have been assigned by using FTIR and FT-Raman spectroscopy. The grown 2AQ crystal exhibits high optical transparency with lower cut-off wavelength (275 nm) within the region of 275-1500 nm. The laser study confirmed that 2AQ exhibits high SHG efficiency of 12.6 times greater than that of KDP. TGA-DTA analysis revealed that 2AQ crystal had a thermal stability of 223 °C. The low dielectric constant and low dielectric loss at higher frequencies confirmed good crystalline nature with fewer defects of grown 2AQ crystal. The grown crystal exhibits soft material and positive photoconduction behaviour. Mulliken atomic distribution and FMOs analysis suggested that the strong intermolecular hydrogen bonding which lead to the enhancement of NLO activity. These properties suggest that 2AQ crystal is a suitable material for optoelectronic and laser frequency conversion applications.

Keywords: crystal growth, NLO activity, proton transfer complex, quantum chemical investigation

Procedia PDF Downloads 109
1476 Synthesis, Characterization and Photocatalytic Applications of Ag-Doped-SnO₂ Nanoparticles by Sol-Gel Method

Authors: M. S. Abd El-Sadek, M. A. Omar, Gharib M. Taha

Abstract:

In recent years, photocatalytic degradation of various kinds of organic and inorganic pollutants using semiconductor powders as photocatalysts has been extensively studied. Owing to its relatively high photocatalytic activity, biological and chemical stability, low cost, nonpoisonous and long stable life, Tin oxide materials have been widely used as catalysts in chemical reactions, including synthesis of vinyl ketone, oxidation of methanol and so on. Tin oxide (SnO₂), with a rutile-type crystalline structure, is an n-type wide band gap (3.6 eV) semiconductor that presents a proper combination of chemical, electronic and optical properties that make it advantageous in several applications. In the present work, SnO₂ nanoparticles were synthesized at room temperature by the sol-gel process and thermohydrolysis of SnCl₂ in isopropanol by controlling the crystallite size through calculations. The synthesized nanoparticles were identified by using XRD analysis, TEM, FT-IR, and Uv-Visible spectroscopic techniques. The crystalline structure and grain size of the synthesized samples were analyzed by X-Ray diffraction analysis (XRD) and the XRD patterns confirmed the presence of tetragonal phase SnO₂. In this study, Methylene blue degradation was tested by using SnO₂ nanoparticles (at different calculations temperatures) as a photocatalyst under sunlight as a source of irradiation. The results showed that the highest percentage of degradation of Methylene blue dye was obtained by using SnO₂ photocatalyst at calculations temperature 800 ᵒC. The operational parameters were investigated to be optimized to the best conditions which result in complete removal of organic pollutants from aqueous solution. It was found that the degradation of dyes depends on several parameters such as irradiation time, initial dye concentration, the dose of the catalyst and the presence of metals such as silver as a dopant and its concentration. Percent degradation was increased with irradiation time. The degradation efficiency decreased as the initial concentration of the dye increased. The degradation efficiency increased as the dose of the catalyst increased to a certain level and by further increasing the SnO₂ photocatalyst dose, the degradation efficiency is decreased. The best degradation efficiency on which obtained from pure SnO₂ compared with SnO₂ which doped by different percentage of Ag.

Keywords: SnO₂ nanoparticles, a sol-gel method, photocatalytic applications, methylene blue, degradation efficiency

Procedia PDF Downloads 139
1475 In-silico Antimicrobial Activity of Bioactive Compounds of Ricinus communis against DNA Gyrase of Staphylococcus aureus as Molecular Target

Authors: S. Rajeswari

Abstract:

Medicinal Plant extracts and their bioactive compounds have been used for antimicrobial activities and have significant remedial properties. In the recent years, a wide range of investigations have been carried out throughout the world to confirm antimicrobial properties of different medicinally important plants. A number of plants showed efficient antimicrobial activities, which were comparable to that of synthetic standard drugs or antimicrobial agents. The large family Euphorbiaceae contains nearly about 300 genera and 7,500 speciesand one among is Ricinus communis or castor plant which has high traditional and medicinal value for disease free healthy life. Traditionally the plant is used as laxative, purgative, fertilizer and fungicide etc. whereas the plant possess beneficial effects such as anti-oxidant, antihistamine, antinociceptive, antiasthmatic, antiulcer, immunomodulatory anti diabetic, hepatoprotective, anti inflammatory, antimicrobial, and many other medicinal properties. This activity of the plant possess due to the important phytochemical constituents like flavonoids, saponins, glycosides, alkaloids and steroids. The presents study includes the phytochemical properties of Ricinus communis and to prediction of the anti-microbial activity of Ricinus communis using DNA gyrase of Staphylococcus aureus as molecular target. Docking results of varies chemicals compounds of Ricinus communis against DNA gyrase of Staphylococcus aureus by maestro 9.8 of Schrodinger show that the phytochemicals are effective against the target protein DNA gyrase. our studies suggest that the phytochemical from Ricinus communis such has INDICAN (G.Score 4.98) and SUPLOPIN-2(G.Score 5.74) can be used as lead molecule against Staphylococcus infections.

Keywords: euphorbiaceae, antimicrobial activity, Ricinus communis, Staphylococcus aureus

Procedia PDF Downloads 464
1474 Stretchable and Flexible Thermoelectric Polymer Composites for Self-Powered Volatile Organic Compound Vapors Detection

Authors: Petr Slobodian, Pavel Riha, Jiri Matyas, Robert Olejnik, Nuri Karakurt

Abstract:

Thermoelectric devices generate an electrical current when there is a temperature gradient between the hot and cold junctions of two dissimilar conductive materials typically n-type and p-type semiconductors. Consequently, also the polymeric semiconductors composed of polymeric matrix filled by different forms of carbon nanotubes with proper structural hierarchy can have thermoelectric properties which temperature difference transfer into electricity. In spite of lower thermoelectric efficiency of polymeric thermoelectrics in terms of the figure of merit, the properties as stretchability, flexibility, lightweight, low thermal conductivity, easy processing, and low manufacturing cost are advantages in many technological and ecological applications. Polyethylene-octene copolymer based highly elastic composites filled with multi-walled carbon nanotubes (MWCTs) were prepared by sonication of nanotube dispersion in a copolymer solution followed by their precipitation pouring into non-solvent. The electronic properties of MWCNTs were moderated by different treatment techniques such as chemical oxidation, decoration by Ag clusters or addition of low molecular dopants. In this concept, for example, the amounts of oxygenated functional groups attached on MWCNT surface by HNO₃ oxidation increase p-type charge carriers. p-type of charge carriers can be further increased by doping with molecules of triphenylphosphine. For partial altering p-type MWCNTs into less p-type ones, Ag nanoparticles were deposited on MWCNT surface and then doped with 7,7,8,8-tetracyanoquino-dimethane. Both types of MWCNTs with the highest difference in generated thermoelectric power were combined to manufacture polymeric based thermoelectric module generating thermoelectric voltage when the temperature difference is applied between hot and cold ends of the module. Moreover, it was found that the generated voltage by the thermoelectric module at constant temperature gradient was significantly affected when exposed to vapors of different volatile organic compounds representing then a self-powered thermoelectric sensor for chemical vapor detection.

Keywords: carbon nanotubes, polymer composites, thermoelectric materials, self-powered gas sensor

Procedia PDF Downloads 137
1473 Dry Season Rice Production along Hadejia Valley Irrigation Scheme in Auyo Local Government Area in Jigawa State

Authors: Saifullahi Umar, Baba Mamman Yarima, Mohammed Bello Usman, Hassan Mohammed

Abstract:

This study was conducted along with the Hadejia valley project irrigation under the Hadejia-Jama’are River Basin Development Authority (HRBDA) in Jigawa State. The multi-stage sampling procedure was used to select 72 rice farmers operating along with the Hadejia Valley Irrigation Project. Data for the study were collected using a structured questionnaire. The analytical tools employed for the study were descriptive statistics and Farm budget technique. The result shows that 55% of the farmers were between 31-40 years of age, 66.01% were male, and the result also revealed that the total cost of cultivation of an acre of land for rice production during the dry season was N73,900 with input cost accounting for 63.59% of the total cost of production. The gross return was N332,500, with a net return of N258,600 per acre. The estimated benefit-cost ratio of 3.449 indicates the strong performance of the dry season rice production. The leading constraints to dry season rice production were low access to quality extension services, low access to finance, poor quality fertilizers, and poor prices. The study, therefore, concludes that dry season rice production is a profitable enterprise in the study area hence, to productivity the farmers should be linked to effective extension service delivery institutions, expanding their access to productive sources of finances, the government should strengthen fertilizer quality control measures and comprehensive market linkages for the farmers.

Keywords: Auyo, dry season, Hadejia Valley, rice

Procedia PDF Downloads 144
1472 Water Depth and Optical Attenuation Characteristics of Natural Water Reservoirs nearby Kolkata City Assessed from Hyperion Hyperspectral and LISS-3 Multispectral Images

Authors: Barun Raychaudhuri

Abstract:

A methodology is proposed for estimating the optical attenuation and proportional depth variation of shallow inland water. The process is demonstrated with EO-1 Hyperion hyperspectral and IRS-P6 LISS-3 multispectral images of Kolkata city nearby area centered around 22º33′ N 88º26′ E. The attenuation coefficient of water was found to change with fine resolution of wavebands and in presence of suspended organic matter in water.

Keywords: hyperion, hyperspectral, Kolkata, water depth

Procedia PDF Downloads 232
1471 Cleaning of Polycyclic Aromatic Hydrocarbons (PAH) Obtained from Ferroalloys Plant

Authors: Stefan Andersson, Balram Panjwani, Bernd Wittgens, Jan Erik Olsen

Abstract:

Polycyclic Aromatic hydrocarbons are organic compounds consisting of only hydrogen and carbon aromatic rings. PAH are neutral, non-polar molecules that are produced due to incomplete combustion of organic matter. These compounds are carcinogenic and interact with biological nucleophiles to inhibit the normal metabolic functions of the cells. Norways, the most important sources of PAH pollution is considered to be aluminum plants, the metallurgical industry, offshore oil activity, transport, and wood burning. Stricter governmental regulations regarding emissions to the outer and internal environment combined with increased awareness of the potential health effects have motivated Norwegian metal industries to increase their efforts to reduce emissions considerably. One of the objective of the ongoing industry and Norwegian research council supported "SCORE" project is to reduce potential PAH emissions from an off gas stream of a ferroalloy furnace through controlled combustion. In a dedicated combustion chamber. The sizing and configuration of the combustion chamber depends on the combined properties of the bulk gas stream and the properties of the PAH itself. In order to achieve efficient and complete combustion the residence time and minimum temperature need to be optimized. For this design approach reliable kinetic data of the individual PAH-species and/or groups thereof are necessary. However, kinetic data on the combustion of PAH are difficult to obtain and there is only a limited number of studies. The paper presents an evaluation of the kinetic data for some of the PAH obtained from literature. In the present study, the oxidation is modelled for pure PAH and also for PAH mixed with process gas. Using a perfectly stirred reactor modelling approach the oxidation is modelled including advanced reaction kinetics to study influence of residence time and temperature on the conversion of PAH to CO2 and water. A Chemical Reactor Network (CRN) approach is developed to understand the oxidation of PAH inside the combustion chamber. Chemical reactor network modeling has been found to be a valuable tool in the evaluation of oxidation behavior of PAH under various conditions.

Keywords: PAH, PSR, energy recovery, ferro alloy furnace

Procedia PDF Downloads 257
1470 Geochemical Study of the Bound Hydrocarbon in the Asphaltene of Biodegraded Oils of Cambay Basin

Authors: Sayani Chatterjee, Kusum Lata Pangtey, Sarita Singh, Harvir Singh

Abstract:

Biodegradation leads to a systematic alteration of the chemical and physical properties of crude oil showing sequential depletion of n-alkane, cycloalkanes, aromatic which increases its specific gravity, viscosity and the abundance of heteroatom-containing compounds. The biodegradation leads to a change in the molecular fingerprints and geochemical parameters of degraded oils, thus make source and maturity identification inconclusive or ambiguous. Asphaltene is equivalent to the most labile part of the respective kerogen and generally has high molecular weight. Its complex chemical structure with substantial microporous units makes it suitable to occlude the hydrocarbon expelled from the source. The occluded molecules are well preserved by the macromolecular structure and thus prevented from secondary alterations. They retain primary organic geochemical information over the geological time. The present study involves the extraction of this occluded hydrocarbon from the asphaltene cage through mild oxidative degradation using mild oxidative reagents like Hydrogen Peroxide (H₂O₂) and Acetic Acid (CH₃COOH) on purified asphaltene of the biodegraded oils of Mansa, Lanwa and Santhal fields in Cambay Basin. The study of these extracted occluded hydrocarbons was carried out for establishing oil to oil and oil to source correlation in the Mehsana block of Cambay Basin. The n-alkane and biomarker analysis through GC and GC-MS of these occluded hydrocarbons show similar biomarker imprint as the normal oil in the area and hence correlatable with them. The abundance of C29 steranes, presence of Oleanane, Gammacerane and 4-Methyl sterane depicts that the oils are derived from terrestrial organic matter deposited in the stratified saline water column in the marine environment with moderate maturity (VRc 0.6-0.8). The oil source correlation study suggests that the oils are derived from Jotana-Warosan Low area. The developed geochemical technique to extract the occluded hydrocarbon has effectively resolved the ambiguity that resulted from the inconclusive fingerprint of the biodegraded oil and the method can be also applied in other biodegraded oils as well.

Keywords: asphaltene, biomarkers, correlation, mild oxidation, occluded hydrocarbon

Procedia PDF Downloads 143
1469 Pioneering Technology of Night Photo-Stimulation of the Brain Lymphatic System: Therapy of Brain Diseases during Sleep

Authors: Semyachkina-Glushkovskaya Oxana, Fedosov Ivan, Blokhina Inna, Terskov Andrey, Evsukova Arina, Elovenko Daria, Adushkina Viktoria, Dubrovsky Alexander, Jürgen Kurths

Abstract:

In modern neurobiology, sleep is considered a novel biomarker and a promising therapeutic target for brain diseases. This is due to recent discoveries of the nighttime activation of the brain lymphatic system (BLS), playing an important role in the removal of wastes and toxins from the brain and contributes neuroprotection of the central nervous system (CNS). In our review, we discuss that night stimulation of BLS might be a breakthrough strategy in a new treatment of Alzheimer’s and Parkinson’s disease, stroke, brain trauma, and oncology. Although this research is in its infancy, however, there are pioneering and promising results suggesting that night transcranial photostimulation (tPBM) stimulates more effectively lymphatic removal of amyloid-beta from mouse brain than daily tPBM that is associated with a greater improvement of the neurological status and recognition memory of animals. In our previous study, we discovered that tPBM modulates the tone and permeability of the lymphatic endothelium by stimulating NO formation, promoting lymphatic clearance of wastes and toxins from the brain tissues. We also demonstrate that tPBM can also lead to angio- and lymphangiogenesis, which is another mechanism underlying tPBM-mediated stimulation of BLS. Thus, photo-augmentation of BLS might be a promising therapeutic target for preventing or delaying brain diseases associated with BLS dysfunction. Here we present pioneering technology for simultaneous tPBM in humans and sleep monitoring for stimulation of BLS to remove toxins from CNS and modulation of brain immunity. The wireless-controlled gadget includes a flexible organic light-emitting diode (LED) source that is controlled directly by a sleep-tracking device via a mobile application. The designed autonomous LED source is capable of providing the required therapeutic dose of light radiation at a certain region of the patient’s head without disturbing of sleeping patient. To minimize patients' discomfort, advanced materials like flexible organic LEDs were used. Acknowledgment: This study was supported by RSF project No. 23-75-30001.

Keywords: brain diseases, brain lymphatic system, phototherapy, sleep

Procedia PDF Downloads 59
1468 A Novel Approach for Energy Utilisation in a Pyrolysis Plant

Authors: S. Murugan, Bohumil Horak

Abstract:

Pyrolysis is one of the possible technologies to derive energy from waste organic substances. In recent years, pilot level and demonstrated plants have been installed in few countries. The heat energy lost during the process is not effectively utilized resulting in less savings of energy and money. This paper proposes a novel approach to integrate a combined heat and power unit(CHP) and reduce the primary energy consumption in a tyre pyrolysis pilot plant. The proposal primarily uses the micro combined heat and power concept that will help to produce both heat and power in the process.

Keywords: pyrolysis, waste tyres, waste plastics, biomass, waste heat

Procedia PDF Downloads 315
1467 Reliability of Dry Tissues Sampled from Exhumed Bodies in DNA Analysis

Authors: V. Agostini, S. Gino, S. Inturri, A. Piccinini

Abstract:

In cases of corpse identification or parental testing performed on exhumed alleged dead father, usually, we seek and acquire organic samples as bones and/or bone fragments, teeth, nails and muscle’s fragments. The DNA analysis of these cadaveric matrices usually leads to identifying success, but it often happens that the results of the typing are not satisfactory with highly degraded, partial or even non-interpretable genetic profiles. To aggravate the interpretative panorama deriving from the analysis of such 'classical' organic matrices, we must add a long and laborious treatment of the sample that starts from the mechanical fragmentation up to the protracted decalcification phase. These steps greatly increase the chance of sample contamination. In the present work, instead, we want to report the use of 'unusual' cadaveric matrices, demonstrating that their forensic genetics analysis can lead to better results in less time and with lower costs of reagents. We report six case reports, result of on-field experience, in which eyeswabs and cartilage were sampled and analyzed, allowing to obtain clear single genetic profiles, useful for identification purposes. In all cases we used the standard DNA tissue extraction protocols (as reported on the user manuals of the manufacturers such as QIAGEN or Invitrogen- Thermo Fisher Scientific), thus bypassing the long and difficult phases of mechanical fragmentation and decalcification of bones' samples. PCR was carried out using PowerPlex® Fusion System kit (Promega), and capillary electrophoresis was carried out on an ABI PRISM® 310 Genetic Analyzer (Applied Biosystems®), with GeneMapper ID v3.2.1 (Applied Biosystems®) software. The software Familias (version 3.1.3) was employed for kinship analysis. The genetic results achieved have proved to be much better than the analysis of bones or nails, both from the qualitative and quantitative point of view and from the point of view of costs and timing. This way, by using the standard procedure of DNA extraction from tissue, it is possible to obtain, in a shorter time and with maximum efficiency, an excellent genetic profile, which proves to be useful and can be easily decoded for later paternity tests and/or identification of human remains.

Keywords: DNA, eye swabs and cartilage, identification human remains, paternity testing

Procedia PDF Downloads 93