Search results for: parallel particle swarm optimization
4677 The Effect of Initial Sample Size and Increment in Simulation Samples on a Sequential Selection Approach
Authors: Mohammad H. Almomani
Abstract:
In this paper, we argue the effect of the initial sample size, and the increment in simulation samples on the performance of a sequential approach that used in selecting the top m designs when the number of alternative designs is very large. The sequential approach consists of two stages. In the first stage the ordinal optimization is used to select a subset that overlaps with the set of actual best k% designs with high probability. Then in the second stage the optimal computing budget is used to select the top m designs from the selected subset. We apply the selection approach on a generic example under some parameter settings, with a different choice of initial sample size and the increment in simulation samples, to explore the impacts on the performance of this approach. The results show that the choice of initial sample size and the increment in simulation samples does affect the performance of a selection approach.Keywords: Large Scale Problems, Optimal Computing Budget Allocation, ordinal optimization, simulation optimization
Procedia PDF Downloads 3544676 Structural Analysis of Phase Transformation and Particle Formation in Metastable Metallic Thin Films Grown by Plasma-Enhanced Atomic Layer Deposition
Authors: Pouyan Motamedi, Ken Bosnick, Ken Cadien, James Hogan
Abstract:
Growth of conformal ultrathin metal films has attracted a considerable amount of attention recently. Plasma-enhanced atomic layer deposition (PEALD) is a method capable of growing conformal thin films at low temperatures, with an exemplary control over thickness. The authors have recently reported on growth of metastable epitaxial nickel thin films via PEALD, along with a comprehensive characterization of the films and a study on the relationship between the growth parameters and the film characteristics. The goal of the current study is to use the mentioned films as a case study to investigate the temperature-activated phase transformation and agglomeration in ultrathin metallic films. For this purpose, metastable hexagonal nickel thin films were annealed using a controlled heating/cooling apparatus. The transformations in the crystal structure were observed via in-situ synchrotron x-ray diffraction. The samples were annealed to various temperatures in the range of 400-1100° C. The onset and progression of particle formation were studied in-situ via laser measurements. In addition, a four-point probe measurement tool was used to record the changes in the resistivity of the films, which is affected by phase transformation, as well as roughening and agglomeration. Thin films annealed at various temperature steps were then studied via atomic force microscopy, scanning electron microscopy and high-resolution transmission electron microscopy, in order to get a better understanding of the correlated mechanisms, through which phase transformation and particle formation occur. The results indicate that the onset of hcp-to-bcc transformation is at 400°C, while particle formations commences at 590° C. If the annealed films are quenched after transformation, but prior to agglomeration, they show a noticeable drop in resistivity. This can be attributed to the fact that the hcp films are grown epitaxially, and are under severe tensile strain, and annealing leads to relaxation of the mismatch strain. In general, the results shed light on the nature of structural transformation in nickel thin films, as well as metallic thin films, in general.Keywords: atomic layer deposition, metastable, nickel, phase transformation, thin film
Procedia PDF Downloads 3274675 Topical Delivery of Griseofulvin via Lipid Nanoparticles
Authors: Yann Jean Tan, Hui Meng Er, Choy Sin Lee, Shew Fung Wong, Wen Huei Lim
Abstract:
Griseofulvin is a long standing fungistatic agent against dermatophytosis. Nevertheless, it has several drawbacks such as poor and highly variable bio availability, long duration of treatment, systemic side effects and drug interactions. Targeted treatment for the superficial skin infection, dermatophytosis via topical route could be beneficial. Nevertheless, griseofulvin is only available in the form of oral preparation. Hence, it generates interest in developing a topical formulation for griseofulvin, by using lipid nano particle as the vehicle. Lipid nanoparticle is a submicron colloidal carrier with a core that is solid in nature (lipid). It has combined advantages of various traditional carriers and is a promising vehicle for topical delivery. The griseofulvin loaded lipid nano particles produced using high pressure homogenization method were characterized and investigated for its skin targeting effect in vitro. It has a mean particle size of 179.8±4.9 nm with polydispersity index of 0.306±0.011. Besides, it showed higher skin permeation and better skin targeting effect compared to the griseofulvin suspension.Keywords: lipid nanoparticles, griseofulvin, topical, dermatophytosis
Procedia PDF Downloads 4564674 Research on Knowledge Graph Inference Technology Based on Proximal Policy Optimization
Authors: Yihao Kuang, Bowen Ding
Abstract:
With the increasing scale and complexity of knowledge graph, modern knowledge graph contains more and more types of entity, relationship, and attribute information. Therefore, in recent years, it has been a trend for knowledge graph inference to use reinforcement learning to deal with large-scale, incomplete, and noisy knowledge graphs and improve the inference effect and interpretability. The Proximal Policy Optimization (PPO) algorithm utilizes a near-end strategy optimization approach. This allows for more extensive updates of policy parameters while constraining the update extent to maintain training stability. This characteristic enables PPOs to converge to improved strategies more rapidly, often demonstrating enhanced performance early in the training process. Furthermore, PPO has the advantage of offline learning, effectively utilizing historical experience data for training and enhancing sample utilization. This means that even with limited resources, PPOs can efficiently train for reinforcement learning tasks. Based on these characteristics, this paper aims to obtain a better and more efficient inference effect by introducing PPO into knowledge inference technology.Keywords: reinforcement learning, PPO, knowledge inference
Procedia PDF Downloads 2414673 Air Pollution: The Journey from Single Particle Characterization to in vitro Fate
Authors: S. Potgieter-Vermaak, N. Bain, A. Brown, K. Shaw
Abstract:
It is well-known from public news media that air pollution is a health hazard and is responsible for early deaths. The quantification of the relationship between air quality and health is a probing question not easily answered. It is known that airborne particulate matter (APM) <2.5µm deposits in the tracheal and alveoli zones and our research probes the possibility of quantifying pulmonary injury by linking reactive oxygen species (ROS) in these particles to DNA damage. Currently, APM mass concentration is linked to early deaths and limited studies probe the influence of other properties on human health. To predict the full extent and type of impact, particles need to be characterised for chemical composition and structure. APMs are routinely analysed for their bulk composition, but of late analysis on a micro level probing single particle character, using micro-analytical techniques, are considered. The latter, single particle analysis (SPA), permits one to obtain detailed information on chemical character from nano- to micron-sized particles. This paper aims to provide a snapshot of studies using data obtained from chemical characterisation and its link with in-vitro studies to inform on personal health risks. For this purpose, two studies will be compared, namely, the bioaccessibility of the inhalable fraction of urban road dust versus total suspended solids (TSP) collected in the same urban environment. The significant influence of metals such as Cu and Fe in TSP on DNA damage is illustrated. The speciation of Hg (determined by SPA) in different urban environments proved to dictate its bioaccessibility in artificial lung fluids rather than its concentration.Keywords: air pollution, human health, in-vitro studies, particulate matter
Procedia PDF Downloads 2254672 Multi-Objective Optimization of a Solar-Powered Triple-Effect Absorption Chiller for Air-Conditioning Applications
Authors: Ali Shirazi, Robert A. Taylor, Stephen D. White, Graham L. Morrison
Abstract:
In this paper, a detailed simulation model of a solar-powered triple-effect LiBr–H2O absorption chiller is developed to supply both cooling and heating demand of a large-scale building, aiming to reduce the fossil fuel consumption and greenhouse gas emissions in building sector. TRNSYS 17 is used to simulate the performance of the system over a typical year. A combined energetic-economic-environmental analysis is conducted to determine the system annual primary energy consumption and the total cost, which are considered as two conflicting objectives. A multi-objective optimization of the system is performed using a genetic algorithm to minimize these objectives simultaneously. The optimization results show that the final optimal design of the proposed plant has a solar fraction of 72% and leads to an annual primary energy saving of 0.69 GWh and annual CO2 emissions reduction of ~166 tonnes, as compared to a conventional HVAC system. The economics of this design, however, is not appealing without public funding, which is often the case for many renewable energy systems. The results show that a good funding policy is required in order for these technologies to achieve satisfactory payback periods within the lifetime of the plant.Keywords: economic, environmental, multi-objective optimization, solar air-conditioning, triple-effect absorption chiller
Procedia PDF Downloads 2384671 A Resource Optimization Strategy for CPU (Central Processing Unit) Intensive Applications
Authors: Junjie Peng, Jinbao Chen, Shuai Kong, Danxu Liu
Abstract:
On the basis of traditional resource allocation strategies, the usage of resources on physical servers in cloud data center is great uncertain. It will cause waste of resources if the assignment of tasks is not enough. On the contrary, it will cause overload if the assignment of tasks is too much. This is especially obvious when the applications are the same type because of its resource preferences. Considering CPU intensive application is one of the most common types of application in the cloud, we studied the optimization strategy for CPU intensive applications on the same server. We used resource preferences to analyze the case that multiple CPU intensive applications run simultaneously, and put forward a model which can predict the execution time for CPU intensive applications which run simultaneously. Based on the prediction model, we proposed the method to select the appropriate number of applications for a machine. Experiments show that the model can predict the execution time accurately for CPU intensive applications. To improve the execution efficiency of applications, we propose a scheduling model based on priority for CPU intensive applications. Extensive experiments verify the validity of the scheduling model.Keywords: cloud computing, CPU intensive applications, resource optimization, strategy
Procedia PDF Downloads 2764670 Sensitivity Analysis of Prestressed Post-Tensioned I-Girder and Deck System
Authors: Tahsin A. H. Nishat, Raquib Ahsan
Abstract:
Sensitivity analysis of design parameters of the optimization procedure can become a significant factor while designing any structural system. The objectives of the study are to analyze the sensitivity of deck slab thickness parameter obtained from both the conventional and optimum design methodology of pre-stressed post-tensioned I-girder and deck system and to compare the relative significance of slab thickness. For analysis on conventional method, the values of 14 design parameters obtained by the conventional iterative method of design of a real-life I-girder bridge project have been considered. On the other side for analysis on optimization method, cost optimization of this system has been done using global optimization methodology 'Evolutionary Operation (EVOP)'. The problem, by which optimum values of 14 design parameters have been obtained, contains 14 explicit constraints and 46 implicit constraints. For both types of design parameters, sensitivity analysis has been conducted on deck slab thickness parameter which can become too sensitive for the obtained optimum solution. Deviations of slab thickness on both the upper and lower side of its optimum value have been considered reflecting its realistic possible ranges of variations during construction. In this procedure, the remaining parameters have been kept unchanged. For small deviations from the optimum value, compliance with the explicit and implicit constraints has been examined. Variations in the cost have also been estimated. It is obtained that without violating any constraint deck slab thickness obtained by the conventional method can be increased up to 25 mm whereas slab thickness obtained by cost optimization can be increased only up to 0.3 mm. The obtained result suggests that slab thickness becomes less sensitive in case of conventional method of design. Therefore, for realistic design purpose sensitivity should be conducted for any of the design procedure of girder and deck system.Keywords: sensitivity analysis, optimum design, evolutionary operations, PC I-girder, deck system
Procedia PDF Downloads 1354669 The Bernstein Expansion for Exponentials in Taylor Functions: Approximation of Fixed Points
Authors: Tareq Hamadneh, Jochen Merker, Hassan Al-Zoubi
Abstract:
Bernstein's expansion for exponentials in Taylor functions provides lower and upper optimization values for the range of its original function. these values converge to the original functions if the degree is elevated or the domain subdivided. Taylor polynomial can be applied so that the exponential is a polynomial of finite degree over a given domain. Bernstein's basis has two main properties: its sum equals 1, and positive for all x 2 (0; 1). In this work, we prove the existence of fixed points for exponential functions in a given domain using the optimization values of Bernstein. The Bernstein basis of finite degree T over a domain D is defined non-negatively. Any polynomial p of degree t can be expanded into the Bernstein form of maximum degree t ≤ T, where we only need to compute the coefficients of Bernstein in order to optimize the original polynomial. The main property is that p(x) is approximated by the minimum and maximum Bernstein coefficients (Bernstein bound). If the bound is contained in the given domain, then we say that p(x) has fixed points in the same domain.Keywords: Bernstein polynomials, Stability of control functions, numerical optimization, Taylor function
Procedia PDF Downloads 1344668 Optimization of Floor Heating System in the Incompressible Turbulent Flow Using Constructal Theory
Authors: Karim Farahmandfar, Hamidolah Izadi, Mohammadreza Rezaei, Amin Ardali, Ebrahim Goshtasbi Rad, Khosro Jafarpoor
Abstract:
Statistics illustrates that the higher amount of annual energy consumption is related to surmounting the demand in buildings. Therefore, it is vital to economize the energy consumption and also find the solution with regard to this issue. One of the systems for the sake of heating the building is floor heating. As a matter of fact, floor heating performance is based on convection and radiation. Actually, in addition to creating a favorable heating condition, this method leads to energy saving. It is the goal of this article to outline the constructal theory and introduce the optimization method in branch networks for floor heating. There are several steps in order to gain this purpose. First of all, the pressure drop through the two points of the network is calculated. This pressure drop is as a function of pipes diameter and other parameters. After that, the amount of heat transfer is determined. Consequently, as a result of the combination of these two functions, the final function will be determined. It is necessary to mention that flow is laminar.Keywords: constructal theory, optimization, floor heating system, turbulent flow
Procedia PDF Downloads 3184667 On Energy Condition Violation for Shifting Negative Mass Black Holes
Authors: Manuel Urueña Palomo
Abstract:
In this paper, we introduce the study of a new solution to gravitational singularities by violating the energy conditions of the Penrose Hawking singularity theorems. We consider that a shift to negative energies, and thus, to negative masses, takes place at the event horizon of a black hole, justified by the original, singular and exact Schwarzschild solution. These negative energies are supported by relativistic particle physics considering the negative energy solutions of the Dirac equation, which states that a time transformation shifts to a negative energy particle. In either general relativity or full Newtonian mechanics, these negative masses are predicted to be repulsive. It is demonstrated that the model fits actual observations, and could possibly clarify the size of observed and unexplained supermassive black holes, when considering the inflation that would take place inside the event horizon where massive particles interact antigravitationally. An approximated solution of the model proposed could be simulated in order to compare it with these observations.Keywords: black holes, CPT symmetry, negative mass, time transformation
Procedia PDF Downloads 1484666 Statistical Optimization of Vanillin Production by Pycnoporus Cinnabarinus 1181
Authors: Swarali Hingse, Shraddha Digole, Uday Annapure
Abstract:
The present study investigates the biotransformation of ferulic acid to vanillin by Pycnoporus cinnabarinus and its optimization using one-factor-at-a-time method as well as statistical approach. Effect of various physicochemical parameters and medium components was studied using one-factor-at-a-time method. Screening of the significant factors was carried out using L25 Taguchi orthogonal array and then these selected significant factors were further optimized using response surface methodology (RSM). Significant media components obtained using Taguchi L25 orthogonal array were glucose, KH2PO4 and yeast extract. Further, a Box Behnken design was used to investigate the interactive effects of the three most significant media components. The final medium obtained after optimization using RSM containing glucose (34.89 g/L), diammonium tartrate (1 g/L), yeast extract (1.47 g/L), MgSO4•7H2O (0.5 g/L), KH2PO4 (0.15 g/L), and CaCl2•2H2O (20 mg/L) resulted in amplification of vanillin production from 30.88 mg/L to 187.63 mg/L.Keywords: ferulic acid, pycnoporus cinnabarinus, response surface methodology, vanillin
Procedia PDF Downloads 3814665 Effect of the Initial Billet Shape Parameters on the Final Product in a Backward Extrusion Process for Pressure Vessels
Authors: Archana Thangavelu, Han-Ik Park, Young-Chul Park, Joon-Hong Park
Abstract:
In this numerical study, we have proposed a method for evaluation of backward extrusion process of pressure vessel made up of steel. Demand for lighter and stiffer products have been increasing in the last years especially in automobile engineering. Through detailed finite element analysis, effective stress, strain and velocity profile have been obtained with optimal range. The process design of a forward and backward extrusion axe-symmetric part has been studied. Forging is mainly carried out because forged products are highly reliable and possess superior mechanical properties when compared to normal products. Performing computational simulations of 3D hot forging with various dimensions of billet and optimization of weight is carried out using Taguchi Orthogonal Array (OA) Optimization technique. The technique used in this study can be used for newly developed materials to investigate its forgeability for much complicated shapes in closed hot die forging process.Keywords: backward extrusion, hot forging, optimization, finite element analysis, Taguchi method
Procedia PDF Downloads 3084664 Determination of Optimum Conditions for the Leaching of Oxidized Copper Ores with Ammonium Nitrate
Authors: Javier Paul Montalvo Andia, Adriana Larrea Valdivia, Adolfo Pillihuaman Zambrano
Abstract:
The most common lixiviant in the leaching process of copper minerals is H₂SO₄, however, the current situation requires more environmentally friendly reagents and in certain situations that have a lower consumption due to the presence of undesirable gangue as muscovite or kaolinite that can make the process unfeasible. The present work studied the leaching of an oxidized copper mineral in an aqueous solution of ammonium nitrate, in order to obtain the optimum leaching conditions of the copper contained in the malachite mineral from Peru. The copper ore studied comes from a deposit in southern Peru and was characterized by X-ray diffractometer, inductively coupled-plasma emission spectrometer (ICP-OES) and atomic absorption spectrophotometry (AAS). The experiments were developed in batch reactor of 600 mL where the parameters as; temperature, pH, ammonium nitrate concentration, particle size and stirring speed were controlled according to experimental planning. The sample solution was analyzed for copper by atomic absorption spectrophotometry (AAS). A simulation in the HSC Chemistry 6.0 program showed that the predominance of the copper compounds of a Cu-H₂O aqueous system is altered by the presence in the system of ammonium complexes, the compound being thermodynamically more stable Cu(NH3)₄²⁺, which predominates in pH ranges from 8.5 to 10 at a temperature of 25 °C. The optimum conditions for copper leaching of the malachite mineral were a stirring speed of 600 rpm, an ammonium nitrate concentration of 4M, a particle diameter of 53 um and temperature of 62 °C. These results showed that the leaching of copper increases with increasing concentration of the ammonium solution, increasing the stirring rate, increasing the temperature and decreasing the particle diameter. Finally, the recovery of copper in optimum conditions was above 80%.Keywords: ammonium nitrate, malachite, copper oxide, leaching
Procedia PDF Downloads 1884663 Simulation of a Pressure Driven Based Subsonic Steady Gaseous Flow inside a Micro Channel Using Direct Simulation Monte-Carlo Method
Authors: Asghar Ebrahimi, Elyas Lakzian
Abstract:
For the analysis of flow inside micro geometries, classical CFD methods can not accurately predict the behavior of flow. Alternatively, the gas flow through micro geometries can be investigated precisely using the direct simulation Monte Carlo (DSMC) method. In the present paper, a pressure boundary condition is utilized to simulate a gaseous flow inside a micro channel using the DSMC method. Accuracy of simulation is guaranteed by choosing proper cell dimension and number of particle per cell analysis. Also, results of simulation are compared with the results of reliable references. Good agreement with results certifies the correctness of new boundary condition implemented on the micro channel.Keywords: pressure boundary condition, DSMC, micro channel, cell dimension, particle per cell
Procedia PDF Downloads 4764662 Research on the Development and Space Optimization of Rental-Type Public Housing in Hangzhou
Authors: Xuran Zhang, Huiru Chen
Abstract:
In recent years, China has made great efforts to cultivate and develop the housing rental market, especially the rental-type public housing, which has been paid attention to by all sectors of the society. This paper takes Hangzhou rental-type public housing as the research object, and divides it into three development stages according to the different supply modes of rental-type public housing. Through data collection and field research, the paper summarizes the spatial characteristics of rental-type public housing from the five perspectives of spatial planning, spatial layout, spatial integration, spatial organization and spatial configuration. On this basis, the paper proposes the optimization of the spatial layout. The study concludes that the spatial layout of rental-type public housing should be coordinated with the development of urban planning. When planning and constructing, it is necessary to select more mixed construction modes, to be properly centralized, and to improve the surrounding transportation service facilities. It is hoped that the recommendations in this paper will provide a reference for the further development of rental-type public housing in Hangzhou.Keywords: Hangzhou, rental-type public housing, spatial distribution, spatial optimization
Procedia PDF Downloads 3224661 Hydrodynamics of Dual Hybrid Impeller of Stirred Reactor Using Radiotracer
Authors: Noraishah Othman, Siti K. Kamarudin, Norinsan K. Othman, Mohd S. Takriff, Masli I. Rosli, Engku M. Fahmi, Mior A. Khusaini
Abstract:
The present work describes hydrodynamics of mixing characteristics of two dual hybrid impeller consisting of, radial and axial impeller using radiotracer technique. Type A mixer, a Rushton turbine is mounted above a Pitched Blade Turbine (PBT) at common shaft and Type B mixer, a Rushton turbine is mounted below PBT. The objectives of this paper are to investigate the residence time distribution (RTD) of two hybrid mixers and to represent the respective mixers by RTD model. Each type of mixer will experience five radiotracer experiments using Tc99m as source of tracer and scintillation detectors NaI(Tl) are used for tracer detection. The results showed that mixer in parallel model and mixers in series with exchange can represent the flow model in mixer A whereas only mixer in parallel model can represent Type B mixer well than other models. In conclusion, Type A impeller, Rushton impeller above PBT, reduced the presence of dead zone in the mixer significantly rather than Type B.Keywords: hybrid impeller, residence time distribution (RTD), radiotracer experiments, RTD model
Procedia PDF Downloads 3574660 Chitosan Stabilized Oil-in-Water Pickering Emulsion Optimized for Food-Grade Application
Authors: Ankit Patil, Tushar D. Deshpande, Yogesh M. Nimdeo
Abstract:
Pickering emulsions (PE) were developed in response to increased demand for organic, eco-friendly, and biocompatible products. These emulsions are usually stabilized by solid particles. In this research, we created chitosan-based sunflower oil-in-water (O/W) PE without the need for a surfactant. In our work, we employed chitosan, a biopolymer derived from chitin, as a stabilizer. This decision was influenced by chitosan's biocompatibility and biodegradability, as well as its anti-inflammatory and antibacterial capabilities. It also has other functional properties, such as antioxidant activity, a probiotic delivery mechanism, and the ability to encapsulate bioactive compounds. The purpose of this study was to govern key parameters that can be changed to obtain stable PE, such as the concentration of chitosan (0.3-0.5 wt.%), the concentration of oil (0.8-1 vol%), the pH of the emulsion (3-7) manipulated by the addition of 1M HCl/ 4M NaOH, and the amount of electrolyte (NaCl-0-300mM) added to increase or decrease ionic strength. A careful combination of these properties resulted in the production of the most stable and optimal PE. Particle size study found that emulsions with pH 6, 0.4% chitosan, and 300 mM salts were exceptionally stable, with droplet size 886 nm, PI of 0.1702, and zeta potential of 32.753.83 mV. It is fair to infer that when ionic strength rises, particle size, zeta potential, and PI value decrease. A lower PI value suggests that emulsion nanoparticles are more homogeneous. The addition of sodium chloride increases the ionic strength of the emulsion, facilitating the formation of more compact and ordered particle layers. These findings provide light on the creation of stimulus-responsive chitosan-based PE capable of encapsulating bioactive materials, functioning as antioxidants, and serving as food-grade emulsifiers.Keywords: pickering emulsion, biocompatibility, eco-friendly, chitosan
Procedia PDF Downloads 2364659 Optimization of the Enzymatic Synthesis of the Silver Core-Shell Nanoparticles
Authors: Lela Pintarić, Iva Rezić, Ana Vrsalović Presečki
Abstract:
Considering an enormous increase of the use of metal nanoparticles with the exactly defined characteristics, the main goal of this research was to found the optimal and environmental friendly method of their synthesis. The synthesis of the inorganic core-shell nanoparticles was optimized as a model. The core-shell nanoparticles are composed of the enzyme core belted with the metal ions, oxides or salts as a shell. In this research, enzyme urease was the core catalyst and the shell nanoparticle was made of silver. Silver nanoparticles are widespread utilized and some of their common uses are: as an addition to disinfectants to ensure an aseptic environment for the patients, as a surface coating for neurosurgical shunts and venous catheters, as an addition to implants, in production of socks for diabetics and athletic clothing where they improve antibacterial characteristics, etc. Characteristics of synthesized nanoparticles directly depend on of their size, so the special care during this optimization was given to the determination of the size of the synthesized nanoparticles. For the purpose of the above mentioned optimization, sixteen experiments were generated by the Design of Experiments (DoE) method and conducted under various temperatures, with different initial concentration of the silver nitrate and constant concentration of the urease of two separate manufacturers. Synthesized nanoparticles were analyzed by the Nanoparticle Tracking Analysis (NTA) method on Malvern NanoSight NS300. Results showed that the initial concentration of the silver ions does not affect the concentration of the synthesized silver nanoparticles neither their size distribution. On the other hand, temperature of the experiments has affected both of the mentioned values.Keywords: core-shell nanoparticles, optimization, silver, urease
Procedia PDF Downloads 3094658 Photocatalytic Hydrogen Production, Effect of Metal Particle Size and Their Electronic/Optical Properties on the Reaction
Authors: Hicham Idriss
Abstract:
Hydrogen production from water is one of the most promising methods to secure renewable sources or vectors of energy for societies in general and for chemical industries in particular. At present over 90% of the total amount of hydrogen produced in the world is made from non-renewable fossil fuels (via methane reforming). There are many methods for producing hydrogen from water and these include reducible oxide materials (solar thermal production), combined PV/electrolysis, artificial photosynthesis and photocatalysis. The most promising of these processes is the one relying on photocatalysis; yet serious challenges are hindering its success so far. In order to make this process viable considerable improvement of the photon conversion is needed. Among the key studies that our group has been conducting in the last few years are those focusing on synergism between the semiconductor phases, photonic band gap materials, pn junctions, plasmonic resonance responses, charge transfer to metal cations, in addition to metal dispersion and band gap engineering. In this work results related to phase transformation of the anatase to rutile in the case of TiO2 (synergism), of Au and Ag dispersion (electron trapping and hydrogen-hydrogen recombination centers) as well as their plasmon resonance response (visible light conversion) are presented and discussed. It is found for example that synergism between the two common phases of TiO2 (anatase and rutile) is sensitive to the initial particle size. It is also found, in agreement with previous results, that the rate is very sensitive to the amount of metals (with similar particle size) on the surface unlike the case of thermal heterogeneous catalysis.Keywords: photo-catalysis, hydrogen production, water splitting, plasmonic
Procedia PDF Downloads 2514657 Advancing UAV Operations with Hybrid Mobile Network and LoRa Communications
Authors: Annika J. Meyer, Tom Piechotta
Abstract:
Unmanned Aerial Vehicles (UAVs) have increasingly become vital tools in various applications, including surveillance, search and rescue, and environmental monitoring. One common approach to ensure redundant communication systems when flying beyond visual line of sight is for UAVs to employ multiple mobile data modems by different providers. Although widely adopted, this approach suffers from several drawbacks, such as high costs, added weight and potential increases in signal interference. In light of these challenges, this paper proposes a communication framework intermeshing mobile networks and LoRa (Long Range) technology—a low-power, long-range communication protocol. LoRaWAN (Long Range Wide Area Network) is commonly used in Internet of Things applications, relying on stationary gateways and Internet connectivity. This paper, however, utilizes the underlying LoRa protocol, taking advantage of the protocol’s low power and long-range capabilities while ensuring efficiency and reliability. Conducted in collaboration with the Potsdam Fire Department, the implementation of mobile network technology in combination with the LoRa protocol in small UAVs (take-off weight < 0.4 kg), specifically designed for search and rescue and area monitoring missions, is explored. This research aims to test the viability of LoRa as an additional redundant communication system during UAV flights as well as its intermeshing with the primary, mobile network-based controller. The methodology focuses on direct UAV-to-UAV and UAV-to-ground communications, employing different spreading factors optimized for specific operational scenarios—short-range for UAV-to-UAV interactions and long-range for UAV-to-ground commands. This explored use case also dramatically reduces one of the major drawbacks of LoRa communication systems, as a line of sight between the modules is necessary for reliable data transfer. Something that UAVs are uniquely suited to provide, especially when deployed as a swarm. Additionally, swarm deployment may enable UAVs that have lost contact with their primary network to reestablish their connection through another, better-situated UAV. The experimental setup involves multiple phases of testing, starting with controlled environments to assess basic communication capabilities and gradually advancing to complex scenarios involving multiple UAVs. Such a staged approach allows for meticulous adjustment of parameters and optimization of the communication protocols to ensure reliability and effectiveness. Furthermore, due to the close partnership with the Fire Department, the real-world applicability of the communication system is assured. The expected outcomes of this paper include a detailed analysis of LoRa's performance as a communication tool for UAVs, focusing on aspects such as signal integrity, range, and reliability under different environmental conditions. Additionally, the paper seeks to demonstrate the cost-effectiveness and operational efficiency of using a single type of communication technology that reduces UAV payload and power consumption. By shifting from traditional cellular network communications to a more robust and versatile cellular and LoRa-based system, this research has the potential to significantly enhance UAV capabilities, especially in critical applications where reliability is paramount. The success of this paper could pave the way for broader adoption of LoRa in UAV communications, setting a new standard for UAV operational communication frameworks.Keywords: LoRa communication protocol, mobile network communication, UAV communication systems, search and rescue operations
Procedia PDF Downloads 424656 Fast Generation of High-Performance Driveshafts: A Digital Approach to Automated Linked Topology and Design Optimization
Authors: Willi Zschiebsch, Alrik Dargel, Sebastian Spitzer, Philipp Johst, Robert Böhm, Niels Modler
Abstract:
In this article, we investigate an approach that digitally links individual development process steps by using the drive shaft of an aircraft engine as a representative example of a fiber polymer composite. Such high-performance, lightweight composite structures have many adjustable parameters that influence the mechanical properties. Only a combination of optimal parameter values can lead to energy efficient lightweight structures. The development tools required for the Engineering Design Process (EDP) are often isolated solutions, and their compatibility with each other is limited. A digital framework is presented in this study, which allows individual specialised tools to be linked via the generated data in such a way that automated optimization across programs becomes possible. This is demonstrated using the example of linking geometry generation with numerical structural analysis. The proposed digital framework for automated design optimization demonstrates the feasibility of developing a complete digital approach to design optimization. The methodology shows promising potential for achieving optimal solutions in terms of mass, material utilization, eigenfrequency, and deformation under lateral load with less development effort. The development of such a framework is an important step towards promoting a more efficient design approach that can lead to stable and balanced results.Keywords: digital linked process, composite, CFRP, multi-objective, EDP, NSGA-2, NSGA-3, TPE
Procedia PDF Downloads 754655 Silver Nanoparticles-Enhanced Luminescence Spectra of Silicon Nanocrystals
Authors: Khamael M. Abualnaja, Lidija Šiller, Benjamin R. Horrocks
Abstract:
Metal-enhanced luminescence of silicon nano crystals (SiNCs) was determined using two different particle sizes of silver nano particles (AgNPs). SiNCs have been characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photo electron spectroscopy (XPS). It is found that the SiNCs are crystalline with an average diameter of 65 nm and FCC lattice. AgNPs were synthesized using photochemical reduction of AgNO3 with sodium dodecyl sulphate (SDS). The enhanced luminescence of SiNCs by AgNPs was evaluated by confocal Raman microspectroscopy. Enhancement up to ×9 and ×3 times were observed for SiNCs that mixed with AgNPs which have an average particle size of 100 nm and 30 nm, respectively. Silver NPs-enhanced luminescence of SiNCs occurs as a result of the coupling between the excitation laser light and the plasmon bands of AgNPs; thus this intense field at AgNPs surface couples strongly to SiNCs.Keywords: silver nanoparticles, surface enhanced raman spectroscopy (SERS), silicon nanocrystals, luminescence
Procedia PDF Downloads 4184654 Research on Knowledge Graph Inference Technology Based on Proximal Policy Optimization
Authors: Yihao Kuang, Bowen Ding
Abstract:
With the increasing scale and complexity of knowledge graph, modern knowledge graph contains more and more types of entity, relationship, and attribute information. Therefore, in recent years, it has been a trend for knowledge graph inference to use reinforcement learning to deal with large-scale, incomplete, and noisy knowledge graph and improve the inference effect and interpretability. The Proximal Policy Optimization (PPO) algorithm utilizes a near-end strategy optimization approach. This allows for more extensive updates of policy parameters while constraining the update extent to maintain training stability. This characteristic enables PPOs to converge to improve strategies more rapidly, often demonstrating enhanced performance early in the training process. Furthermore, PPO has the advantage of offline learning, effectively utilizing historical experience data for training and enhancing sample utilization. This means that even with limited resources, PPOs can efficiently train for reinforcement learning tasks. Based on these characteristics, this paper aims to obtain better and more efficient inference effect by introducing PPO into knowledge inference technology.Keywords: reinforcement learning, PPO, knowledge inference, supervised learning
Procedia PDF Downloads 664653 Multi-Objective Discrete Optimization of External Thermal Insulation Composite Systems in Terms of Thermal and Embodied Energy Performance
Authors: Berfin Yildiz
Abstract:
These days, increasing global warming effects, limited amount of energy resources, etc., necessitates the awareness that must be present in every profession group. The architecture and construction sectors are responsible for both the embodied and operational energy of the materials. This responsibility has led designers to seek alternative solutions for energy-efficient material selection. The choice of energy-efficient material requires consideration of the entire life cycle, including the building's production, use, and disposal energy. The aim of this study is to investigate the method of material selection of external thermal insulation composite systems (ETICS). Embodied and in-use energy values of material alternatives were used for the evaluation in this study. The operational energy is calculated according to the u-value calculation method defined in the TS 825 (Thermal Insulation Requirements) standard for Turkey, and the embodied energy is calculated based on the manufacturer's Energy Performance Declaration (EPD). ETICS consists of a wall, adhesive, insulation, lining, mechanical, mesh, and exterior finishing materials. In this study, lining, mechanical, and mesh materials were ignored because EPD documents could not be obtained. The material selection problem is designed as a hypothetical volume area (5x5x3m) and defined as a multi-objective discrete optimization problem for external thermal insulation composite systems. Defining the problem as a discrete optimization problem is important in order to choose between materials of various thicknesses and sizes. Since production and use energy values, which are determined as optimization objectives in the study, are often conflicting values, material selection is defined as a multi-objective optimization problem, and it is aimed to obtain many solution alternatives by using Hypervolume (HypE) algorithm. The enrollment process started with 100 individuals and continued for 50 generations. According to the obtained results, it was observed that autoclaved aerated concrete and Ponce block as wall material, glass wool, as insulation material gave better results.Keywords: embodied energy, multi-objective discrete optimization, performative design, thermal insulation
Procedia PDF Downloads 1404652 Performance Evaluation of Distributed Deep Learning Frameworks in Cloud Environment
Authors: Shuen-Tai Wang, Fang-An Kuo, Chau-Yi Chou, Yu-Bin Fang
Abstract:
2016 has become the year of the Artificial Intelligence explosion. AI technologies are getting more and more matured that most world well-known tech giants are making large investment to increase the capabilities in AI. Machine learning is the science of getting computers to act without being explicitly programmed, and deep learning is a subset of machine learning that uses deep neural network to train a machine to learn features directly from data. Deep learning realizes many machine learning applications which expand the field of AI. At the present time, deep learning frameworks have been widely deployed on servers for deep learning applications in both academia and industry. In training deep neural networks, there are many standard processes or algorithms, but the performance of different frameworks might be different. In this paper we evaluate the running performance of two state-of-the-art distributed deep learning frameworks that are running training calculation in parallel over multi GPU and multi nodes in our cloud environment. We evaluate the training performance of the frameworks with ResNet-50 convolutional neural network, and we analyze what factors that result in the performance among both distributed frameworks as well. Through the experimental analysis, we identify the overheads which could be further optimized. The main contribution is that the evaluation results provide further optimization directions in both performance tuning and algorithmic design.Keywords: artificial intelligence, machine learning, deep learning, convolutional neural networks
Procedia PDF Downloads 2104651 Study of Influencing Factors on the Flowability of Jute Nonwoven Reinforced Sheet Molding Compound
Authors: Miriam I. Lautenschläger, Max H. Scheiwe, Kay A. Weidenmann, Frank Henning, Peter Elsner
Abstract:
Due to increasing environmental awareness jute fibers are more often used in fiber reinforced composites. In the Sheet Molding Compound (SMC) process, the mold cavity is filled via material flow allowing more complex component design. But, the difficulty of using jute fibers in this process is the decreased capacity of fiber movement in the mold. A comparative flow study with jute nonwoven reinforced SMC was conducted examining the influence of the fiber volume content, the grammage of the jute nonwoven textile and a mechanical modification of the nonwoven textile on the flowability. The nonwoven textile reinforcement was selected to support homogeneous fiber distribution. Trials were performed using two SMC paste formulations differing only in filler type. Platy-shaped kaolin with a mean particle size of 0.8 μm and ashlar calcium carbonate with a mean particle size of 2.7 μm were selected as fillers. Ensuring comparability of the two SMC paste formulations the filler content was determined to reach equal initial viscosity for both systems. The calcium carbonate filled paste was set as reference. The flow study was conducted using a jute nonwoven textile with 300 g/m² as reference. The manufactured SMC sheets were stacked and centrally placed in a square mold. The mold coverage was varied between 25 and 90% keeping the weight of the stack for comparison constant. Comparing the influence of the two fillers kaolin yielded better results regarding a homogeneous fiber distribution. A mold coverage of about 68% was already sufficient to homogeneously fill the mold cavity whereas for calcium carbonate filled system about 79% mold coverage was necessary. The flow study revealed a strong influence of the fiber volume content on the flowability. A fiber volume content of 12 vol.-% and 25 vol.-% were compared for both SMC formulations. The lower fiber volume content strongly supported fiber transport whereas 25 vol.-% showed insignificant influence. The results indicate a limiting fiber volume content for the flowability. The influence of the nonwoven textile grammage was determined using nonwoven jute material with 500 g/m² and a fiber volume content of 20 vol.-%. The 500 g/m² reinforcement material showed inferior results with regard to fiber movement. A mold coverage of about 90 % was required to prevent the destruction of the nonwoven structure. Below this mold coverage the 500 g/m² nonwoven material was ripped and torn apart. Low mold coverages led to damage of the textile reinforcement. Due to the ripped nonwoven structure the textile was modified with cuts in order to facilitate fiber movement in the mold. Parallel cuts of about 20 mm length and 20 mm distance to each other were applied to the textile and stacked with varying orientations prior to molding. Stacks with unidirectional orientated cuts over stacks with cuts in various directions e.g. (0°, 45°, 90°, -45°) were investigated. The mechanical modification supported tearing of the textile without achieving benefit for the flowability.Keywords: filler, flowability, jute fiber, nonwoven, sheet molding compound
Procedia PDF Downloads 3304650 Shear Strength Characteristics of Sand Mixed with Particulate Rubber
Authors: Firas Daghistani, Hossam Abuel Naga
Abstract:
Waste tyres is a global problem that has a negative effect on the environment, where there are approximately one billion waste tyres discarded worldwide yearly. Waste tyres are discarded in stockpiles, where they provide harm to the environment in many ways. Finding applications to these materials can help in reducing this global problem. One of these applications is recycling these waste materials and using them in geotechnical engineering. Recycled waste tyre particulates can be mixed with sand to form a lightweight material with varying shear strength characteristics. Contradicting results were found in the literature on the inclusion of particulate rubber to sand, where some experiments found that the inclusion of particulate rubber can increase the shear strength of the mixture, while other experiments stated that the addition of particulate rubber decreases the shear strength of the mixture. This research further investigates the inclusion of particulate rubber to sand and whether it can increase or decrease the shear strength characteristics of the mixture. For the experiment, a series of direct shear tests were performed on a poorly graded sand with a mean particle size of 0.32 mm mixed with recycled poorly graded particulate rubber with a mean particle size of 0.51 mm. The shear tests were performedon four normal stresses 30, 55, 105, 200 kPa at a shear rate of 1 mm/minute. Different percentages ofparticulate rubber content were used in the mixture i.e., 10%, 20%, 30% and 50% of sand dry weight at three density states, namely loose, slight dense, and dense state. The size ratio of the mixture,which is the mean particle size of the particulate rubber divided by the mean particle size of the sand, was 1.59. The results identified multiple parameters that can influence the shear strength of the mixture. The parameters were: normal stress, particulate rubber content, mixture gradation, mixture size ratio, and the mixture’s density. The inclusion of particulate rubber tosand showed a decrease to the internal friction angle and an increase to the apparent cohesion. Overall, the inclusion of particulate rubber did not have a significant influenceon the shear strength of the mixture. For all the dense states at the low normal stresses 33 and 55 kPa, the inclusion of particulate rubber showed aslight increase in the shear strength where the peak was at 20% rubber content of the sand’s dry weight. On the other hand, at the high normal stresses 105, and 200 kPa, there was a slight decrease in the shear strength.Keywords: shear strength, direct shear, sand-rubber mixture, waste material, granular material
Procedia PDF Downloads 1314649 Pallet Tracking and Cost Optimization of the Flow of Goods in Logistics Operations by Serial Shipping Container Code
Authors: Dominika Crnjac Milic, Martina Martinovic, Vladimir Simovic
Abstract:
The case study method in this paper shows the implementation of Information Technology (IT) and the Serial Shipping Container Code (SSCC) in a Croatian company that deals with logistics operations and provides logistics services in the cold chain segment. This company is aware of the sensitivity of the goods entrusted to them by the user of the service, as well as of the importance of speed and accuracy in providing logistics services. To that end, it has implemented and used the latest IT to ensure the highest standard of high-quality logistics services to its customers. Looking for efficiency and optimization of supply chain management, while maintaining a high level of quality of the products that are sold, today's users of outsourced logistics services are open to the implementation of new IT products that ultimately deliver savings. By analysing the positive results and the difficulties that arise when using this technology, we aim to provide an insight into the potential of this approach of the logistics service provider.Keywords: logistics operations, serial shipping container code, information technology, cost optimization
Procedia PDF Downloads 3584648 Hybrid Intelligent Optimization Methods for Optimal Design of Horizontal-Axis Wind Turbine Blades
Authors: E. Tandis, E. Assareh
Abstract:
Designing the optimal shape of MW wind turbine blades is provided in a number of cases through evolutionary algorithms associated with mathematical modeling (Blade Element Momentum Theory). Evolutionary algorithms, among the optimization methods, enjoy many advantages, particularly in stability. However, they usually need a large number of function evaluations. Since there are a large number of local extremes, the optimization method has to find the global extreme accurately. The present paper introduces a new population-based hybrid algorithm called Genetic-Based Bees Algorithm (GBBA). This algorithm is meant to design the optimal shape for MW wind turbine blades. The current method employs crossover and neighborhood searching operators taken from the respective Genetic Algorithm (GA) and Bees Algorithm (BA) to provide a method with good performance in accuracy and speed convergence. Different blade designs, twenty-one to be exact, were considered based on the chord length, twist angle and tip speed ratio using GA results. They were compared with BA and GBBA optimum design results targeting the power coefficient and solidity. The results suggest that the final shape, obtained by the proposed hybrid algorithm, performs better compared to either BA or GA. Furthermore, the accuracy and speed convergence increases when the GBBA is employedKeywords: Blade Design, Optimization, Genetic Algorithm, Bees Algorithm, Genetic-Based Bees Algorithm, Large Wind Turbine
Procedia PDF Downloads 316