Search results for: content%20standart
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6153

Search results for: content%20standart

5043 Role of Arbuscular Mycorrhiza in Heavy Metal Tolerance in Sweet Basil Plants

Authors: Aboul-Nasr Amal, Sabry Soraya, Sabra Mayada

Abstract:

The effects of phosphorus amendments and arbuscular mycorrhizal (AM) fungi Glomus intraradices on the sweet basil (Ocimum basilicum L.), chemical composition and percent of volatile oil, and metal accumulation in plants and its availability in soil were investigated in field experiment at two seasons 2012 and 2013 under contaminated soil with Pb and Cu. The content of essential oil and shoot and root dry weights of sweet basil was increased by the application of mineral phosphorus as compared to control. Inoculation with AM fungi reduced the metal concentration in shoot, recording a lowest value of (33.24, 18.60 mg/kg) compared to the control (46.49, 23.46 mg/kg) for Pb and Cu, respectively. Availability of Pb and Cu in soil were decreased after cultivation in all treatments compared to control. However, metal root concentration increased with the inoculation, with highest values of (30.15, 39.25 mg/kg)compared to control (22.01, 33.57mg/kg) for Pb and Cu, respectively. The content of linalool and methyl chavicol in basil oil was significantly increased in all treatments compared to control. We can thus conclude that the AM-sweet basil symbiosis could be employed as an approach to bioremediate polluted soils and enhance the yield and maintain the quality of volatile oil of sweet basil plants.

Keywords: arbuscular mycorrhizal fungus, heavy metals, sweet basil, oil composition

Procedia PDF Downloads 257
5042 Green Extraction Processes for the Recovery of Polyphenols from Solid Wastes of Olive Oil Industry

Authors: Theodora-Venetia Missirli, Konstantina Kyriakopoulou, Magdalini Krokida

Abstract:

Olive mill solid waste is an olive oil mill industry by-product with high phenolic, lipid and organic acid concentrations that can be used as a low cost source of natural antioxidants. In this study, extracts of Olea europaea (olive tree) solid olive mill waste (SOMW) were evaluated in terms of their antiradical activity and total phenolic compounds concentrations, such as oleuropein, hydroxytyrosol etc. SOMW samples were subjected to drying prior to extraction as a pretreatment step. Two drying processes, accelerated solar drying (ASD) and air-drying (AD) (at 35, 50, 70°C constant air velocity of 1 m/s), were applied. Subsequently, three different extraction methods were employed to recover extracts from untreated and dried SOMW samples. The methods include the green Microwave Assisted (MAE) and Ultrasound Assisted Extraction (UAE) and the conventional Soxhlet extraction (SE), using water and methanol as solvents. The efficiency and selectivity of the processes were evaluated in terms of extraction yield. The antioxidant activity (AAR) and the total phenolic content (TPC) of the extracts were evaluated using the DPPH assay and the Folin-Ciocalteu method, respectively. The results showed that bioactive content was significantly affected by the extraction technique and the solvent. Specifically, untreated SOMW samples showed higher performance in the yield for all solvents and higher antioxidant potential and phenolic content in the case of water. UAE extraction method showed greater extraction yields than the MAE method for both untreated and dried leaves regardless of the solvent used. The use of ultrasound and microwave assisted extraction in combination with industrially applied drying methods, such as air and solar drying, was feasible and effective for the recovery of bioactive compounds.

Keywords: antioxidant potential, drying treatment, olive mill pomace, microwave assisted extraction, ultrasound assisted extraction

Procedia PDF Downloads 308
5041 The Influence of the Variety and Harvesting Date on Haskap Composition and Anti-Diabetic Properties

Authors: Aruma Baduge Kithma Hansanee De Silva

Abstract:

Haskap (Lonicera caerulea L.), also known as blue honeysuckle, is a recently commercialized berry crop in Canada. Haskap berries are rich in polyphenols, including anthocyanins, which are known for potential health-promoting effects. Cyanidin-3-O-glucoside (C3G) is the most prominent anthocyanin of haskap berries. Recent literature reveals the efficacy of C3G in reducing the risk of type 2 diabetes (T2D), which has become an increasingly common health issue around the world. The T2D is characterized as a metabolic disorder of hyperglycemia and insulin resistance. It has been demonstrated that C3G has anti-diabetic effects in various ways, including improvement in insulin sensitivity, and inhibition of activities of carbohydrate-hydrolyzing enzymes, including alpha-amylase and alpha-glucosidase. The goal of this study was to investigate the influence of variety and harvesting date on haskap composition, biological properties, and antidiabetic properties. The polyphenolic compounds present in four commercially grown haskap cultivars, Aurora, Rebecca, Larissa and Evie among five harvesting stages (H1-H5), were extracted separately in 80% ethanol and analyzed to characterize their phenolic profiles. The haskap berries contain different types of polyphenols including flavonoids and phenolic acids. Anthocyanin is the major type of flavonoid. C3G is the most prominent type of anthocyanin, which accounts for 79% of total anthocyanin in all extracts. The variety Larissa at H5 contained the highest average C3G content, and its ethanol extract had the highest (1212.3±63.9 mg/100g FW) while, Evie at H1 contained the lowest C3G content (96.9±40.4 mg/100g FW). The average C3G content of Larissa from H1 – H5 varies from 208 – 1212 mg/100g FW. Quarcetin-3-Rutinoside (Q3Rut) is the major type of flavonol and highest is observed in Rebecca at H4 (47.81 mg/100g FW). The haskap berries also contained phenolic acids, but approximately 95% of the phenolic acids consisted of chlorogenic acid. The cultivar Larissa has a higher level of anthocyanin than the other four cultivars. The highest total phenolic content is observed in Evie at H5 (2.97±1.03 mg/g DW) while the lowest in Rebecca at H1 (1.47±0.96 mg/g DW). The antioxidant capacity of Evie at H5 was higher (14.40±2.21 µmol TE/ g DW) among other cultivars and the lowest observed in Aurora at H3 (5.69±0.34 µmol TE/ g DW). Furthermore, Larissa H5 shows the greatest inhibition of carbohydrate-hydrolyzing enzymes including alpha-glucosidase and alpha-amylase. In conclusion Larissa, at H5 demonstrated highest polyphenol composition and antidiabetic properties.

Keywords: anthocyanin, cyanidin-3-O-glucoside, haskap, type 2 diabetes

Procedia PDF Downloads 463
5040 Tree Resistance to Wind Storm: The Effects of Soil Saturation on Tree Anchorage of Young Pinus pinaster

Authors: P. Defossez, J. M. Bonnefond, D. Garrigou, P. Trichet, F. Danjon

Abstract:

Windstorm damage to European forests has ecological, social and economic consequences of major importance. Most trees during storms are uprooted. While a large amount of work has been done over the last decade on understanding the aerial tree response to turbulent wind flow, much less is known about the root-soil interface, and the impact of soil moisture and root-soil system fatiguing on tree uprooting. Anchorage strength is expected to be reduced by water-logging and heavy rain during storms due to soil strength decrease with soil water content. Our paper is focused on the maritime pine cultivated on sandy soil, as a representative species of the Forêt des Landes, the largest cultivated forest in Europe. This study aims at providing knowledge on the effects of soil saturation on root anchorage. Pulling experiments on trees were performed to characterize the resistance to wind by measuring the critical bending moment (Mc). Pulling tests were performed on 12 maritime pines of 13-years old for two unsaturated soil conditions that represent the soil conditions expected in winter when wind storms occur in France (w=11.46 to 23.34 % gg⁻¹). A magnetic field digitizing technique was used to characterize the three-dimensional architecture of root systems. The soil mechanical properties as function of soil water content were characterized by laboratory mechanical measurements as function of soil water content and soil porosity on remolded samples using direct shear tests at low confining pressure ( < 15 kPa). Remarkably Mc did not depend on w but mainly on the root system morphology. We suggested that the importance of soil water conditions on tree anchorage depends on the tree size. This study gives a new insight on young tree anchorage: roots may sustain by themselves anchorage, whereas adhesion between roots and surrounding soil may be negligible in sandy soil.

Keywords: roots, sandy soil, shear strength, tree anchorage, unsaturated soil

Procedia PDF Downloads 299
5039 Photovoice-Through Photographs to Feelings: Investigation of Experience Reporting in a Randomized Controlled Study

Authors: Selina Studer, Maria Kleinstäuber, Cornelia Weise

Abstract:

Background: Finding words to report what you have been through may be challenging, especially when dealing with stressful or highly emotional experiences. Photovoice (PV) represents a possible way of facilitating experience reporting. In this approach, people take photos about a particular topic (in our study: worries about the future) and talk about the topic based on the photos. So far, the benefits of Photovoice have been quantitatively insufficiently tested. There is a lack of randomized controlled trials investigating PV in comparison to other methods. This study aimed to fill this research gap. Methods: 65 participants took part in the study and were randomly assigned to the PV group, the writing group (WG), or the control group (CG). The PV group received the task to take photos of worries regarding the future for one week and send max. 5 of them to the interviewer before the interview. The WG had to write down the worries about the future and send max. 5 of them to the interviewer before the interview. The control group did not receive a specific assignment. The semi-structured interview consisted of six open-ended questions and was applied to all future worries. The questions included the content of the future worries, the meaning, and how the worry expressed itself emotionally and physically. The interview was recorded and later transcribed. After the interview, online questionnaires were filled out. They covered a range of variables such as access to emotional content, ability to describe feelings, the extent of self-disclosure, and relationship quality. Results: Contrary to our hypotheses, one-way ANOVA revealed no differences between the three conditions concerning all variables (access to emotional content, ability to describe feelings, the extent of self-disclosure, and so on), all p's > 0.14, BF₀₁ = 1.78-7.66. In a subsequent step, the words in the transcribed interviews were analyzed. The LIWC program counted how many emotional words occurred in the text and assigned them to predefined categories. Planned contrasts revealed that the PV reported more negative emotional words compared to the two groups t(62) = 2.62, p = .011, and also compared to the WG only, t(62) = 2.36, p = .022, BF₀₁ = 0.62. Conclusions and implications: The applied self-report instruments did not reveal any differences between the groups. However, the PV group used more negative emotional words than the other two groups. The discrepancy between self-report and observation variables regarding emotionality is noticeable. It is suggested that the highly educated and above-average female sample may not have needed PV to access emotional content. It is possible that the approach would yield clearer results in a clinical sample. This and other approaches are currently being investigated in a follow-up study.

Keywords: photovoice, controlled randomized study, online intervention, emotional awareness, self-disclosure, data triangulation, interviews

Procedia PDF Downloads 75
5038 Calculation of Effective Masses and Curie Temperature of (Ga, Mn) as Diluted Magnetic Semiconductor from the Eight-band k.p Model

Authors: Khawlh A. Alzubaidi, Khadijah B. Alziyadi, Amor M. Alsayari

Abstract:

The discovery of a dilute magnetic semiconductor (DMS) in which ferromagnetism is carrier-mediated and persists above room temperature is a major step toward the implementation of spintronic devices for processing, transferring, and storing of information. Among the many types of DMS materials which have been investigated, Mn-doped GaAs has become one of the best candidates for technological application. However, despite major developments over the last few decades, the maximum Curie temperature (~200 K) remains well below room temperature. In this work, we have studied the effect of Mn content and strain on the GaMnAs effective masses of electron, heavy and light holes calculated in the different crystallographic direction. Also, the Curie temperature in the DMS GaMnAs alloy is determined. Compilation of GaMnAs band parameters have been carried out using the 8-band k.p model based on Lowdin perturbation theory where spin orbit, sp-d exchange interaction, and biaxial strain are taken into account. Our results show that effective masses, calculated along the different crystallographic directions, have a strong dependence on strain, ranging from -2% (tensile strain) to 2% (compressive strain), and Mn content increased from 1 to 5%. The Curie temperature is determined within the mean-field approach based on the Zener model.

Keywords: diluted magnetic semiconductors, k.p method, effective masses, curie temperature, strain

Procedia PDF Downloads 101
5037 Kinetics and Adsorption Studies of Tetracycline from Aqueous Solution Using Melon Husk

Authors: Ungwanen John Ahile, Sylvester Obaike Adejo, Simon Terver Ubwa, Raymond Lubem Tyohemba, Pius Utange, Mnena G. Ikyagh

Abstract:

The adsorption of tetracycline from aqueous solution was carried out using melon husk as a low-cost adsorbent. The adsorption was characterized using standard methods and values obtained were; pH = 7.80, bulk density = 0.43 g/mL, ash content = 2.2 %, moisture content = 8.27 %, attrition = 1%, and iodine number = 552 mg/g. Adsorption capacity was found to vary with initial concentration, adsorbent dosage, pH, contact time and temperature, the maximum adsorption capacity in each case was found to be at; 30 mg/L for concentration, 0.8 g for adsorbent dose, 5 for pH, 60 minutes for time and 30 °C for temperature. FTIR analysis was done to analyses the surface functional groups which shows the presence of O-H stretch, at 3743.92 corresponding to alcohol, phenols, C-H stretch at 2923.27 indicative of alkanes, H-C=O: C-H stretch at 2725.76 corresponding to aldehyde, C-C stretch at 1462.72 corresponding to aromatic, SEM analysis carried out revealed a rough and smooth morphology of the uncontacted and contacted adsorbent respectively. The experimental data judging from the R2 values fitted best into the Temkin isotherm. The fitting of tetracycline adsorption into the pseudo second order kinetic model (R2 of 0.9992) is suggestive of chemisorption for the adsorbent.

Keywords: adsorption, adsorbent isotherm, antibiotics, tertracycline

Procedia PDF Downloads 268
5036 Nanoporous Activated Carbons for Fuel Cells and Supercapacitors

Authors: A. Volperts, G. Dobele, A. Zhurinsh, I. Kruusenberg, A. Plavniece, J. Locs

Abstract:

Nowadays energy consumption constantly increases and development of effective and cheap electrochemical sources of power, such as fuel cells and electrochemical capacitors, is topical. Due to their high specific power, charge and discharge rates, working lifetime supercapacitor based energy accumulation systems are more and more extensively being used in mobile and stationary devices. Lignocellulosic materials are widely used as precursors and account for around 45% of the total raw materials used for the manufacture of activated carbon which is the most suitable material for supercapacitors. First part of our research is devoted to study of influence of main stages of wood thermochemical activation parameters on activated carbons porous structure formation. It was found that the main factors governing the properties of carbon materials are specific surface area, volume and pore size distribution, particles dispersity, ash content and oxygen containing groups content. Influence of activated carbons attributes on capacitance and working properties of supercapacitor are demonstrated. The correlation between activated carbons porous structure indices and electrochemical specifications of supercapacitors with electrodes made from these materials has been determined. It is shown that if synthesized activated carbons are used in supercapacitors then high specific capacitances can be reached – more than 380 F/g in 4.9M sulfuric acid based electrolytes and more than 170 F/g in 1 M tetraethylammonium tetrafluoroborate in acetonitrile electrolyte. Power specifications and minimal price of H₂-O₂ fuel cells are limited by the expensive platinum-based catalysts. The main direction in development of non-platinum catalysts for the oxygen reduction is the study of cheap porous carbonaceous materials which can be obtained by the pyrolysis of polymers including renewable biomass. It is known that nitrogen atoms in carbon materials to a high degree determine properties of the doped activated carbons, such as high electrochemical stability, hardness, electric resistance, etc. The lack of sufficient knowledge on the doping of the carbon materials calls for the ongoing researches of properties and structure of modified carbon matrix. In the second part of this study, highly porous activated carbons were synthesized using alkali thermochemical activation from wood, cellulose and cellulose production residues – craft lignin and sewage sludge. Activated carbon samples were doped with dicyandiamide and melamine for the application as fuel cell cathodes. Conditions of nitrogen introduction (solvent, treatment temperature) and its content in the carbonaceous material, as well as porous structure characteristics, such as specific surface and pore size distribution, were studied. It was found that efficiency of doping reaction depends on the elemental oxygen content in the activated carbon. Relationships between nitrogen content, porous structure characteristics and electrodes electrochemical properties are demonstrated.

Keywords: activated carbons, low-temperature fuel cells, nitrogen doping, porous structure, supercapacitors

Procedia PDF Downloads 123
5035 Media Coverage of the Turkish Armenian Journalist Hrant Dink Assassination: The Analysis of Media News in the Aftermath of the Assassination

Authors: Nusret Mesut Sahin

Abstract:

Hrant Dink, a prominent Turkish-Armenian journalist, and editor-in-chief of the bilingual Turkish-Armenian newspaper Agos, was assassinated in Istanbul on January 19th, 2007 by a nationalist extremist, Ogun Samast. Dink had been voicing the atrocities against the Armenians between 1915 and 1922 during the Ottoman rule, and his comments on the issue appeared in the Turkish media many times before his assassination. Despite intensive media coverage of his assassination, there is not enough research analyzing how national and international media presented Dink’s assassination. In this research, a content analysis of national and international news articles (N= 139) is conducted to identify whether there is a significant difference in national and international media’s coverage of the assassination. The content of the newspaper articles is categorized and coded according to the topics covered. The findings of this research suggested that Dink’s assassination wounded Turkey’s image as a democratic country. It has also been found that the Turkish media focused on security forces and their responsibility in Dink’s assassination, whereas international media focused more on the Article 301 of the Turkish penal code, freedom of expression, and atrocities against the Armenians during the Ottoman rule.

Keywords: Hrant Dink, Armenian, journalist, assassination

Procedia PDF Downloads 155
5034 Boosting Economic Value in Ghana’s Film Industry: Rethinking Media Policy, Regulation and Copyright Law

Authors: Sela Adjei

Abstract:

This paper aims to rationalize the need for media policy implementation and copyright enforcement to address various challenges faced within Ghana’s film industry. After Ghana transitioned to democratic rule in 1992, critics and media professionals advocated a national media policy. This advocacy subsequently resulted in agitation for media deregulation and loosening of grip on state-owned media organizations. The reinstatement of constitutional rule in 1992 paved the way for the state to lax its monopoly of the media within the democratic context of a free market economy. The National Media Commission proposed a media policy and broadcast bill which was presented to parliament but has still not been passed into law. This legislative lapse partly contributed to the influx of unregulated foreign content. Accessible foreign media content subsequently promoted a system of unfair competition that radically undermined locally produced content, putting a generation of thriving film producers out of work. Drawing on reflections from a series of structured interviews, focus group discussions and creative workshops, the findings of this study maintain that the various challenges confronting Ghanaian filmmakers is centred around inadequate funding opportunities, copyright violation and policy implementation issues. Using the film industry structure and value chain analysis, the various challenges faced by the selected film producers were discussed and critically analyzed. A significant aspect of this study is the solution-driven approach adopted in outlining the practical recommendations that will boost the aesthetic, cultural and economic value of Ghanaian film productions. Based on the discussions and conclusions drawn with the various stakeholders within Ghana’s creative industries, the paper makes a strong case for firm state regulation, copyright enforcement and policy implementation to grow Ghana’s film industry.

Keywords: film, value, copyright, media, policy, culture, regulation, economy

Procedia PDF Downloads 73
5033 Performance and Nutritional Evaluation of Moringa Leaves Dried in a Solar-Assisted Heat Pump Dryer Integrated with Thermal Energy Storage

Authors: Aldé Belgard Tchicaya Loemba, Baraka Kichonge, Thomas Kivevele, Juma Rajabu Selemani

Abstract:

Plants used for medicinal purposes are extremely perishable, owing to moisture-enhanced enzymatic and microorganism activity, climate change, and improper handling and storage. Experiments have shown that drying the medicinal plant without affecting the active nutrients and controlling the moisture content as much as possible can extend its shelf life. Different traditional and modern drying techniques for preserving medicinal plants have been developed, with some still being improved in Sub-Saharan Africa. However, many of these methods fail to address the most common issues encountered when drying medicinal plants, such as nutrient loss, long drying times, and a limited capacity to dry during the evening or cloudy hours. Heat pump drying is an alternate drying method that results in no nutritional loss. Furthermore, combining a heat pump dryer with a solar energy storage system appears to be a viable option for all-weather drying without affecting the nutritional values of dried products. In this study, a solar-assisted heat pump dryer integrated with thermal energy storage is developed for drying moringa leaves. The study also discusses the performance analysis of the developed dryer as well as the proximate analysis of the dried moringa leaves. All experiments were conducted from 11 a.m. to 4 p.m. to assess the dryer's performance in “daytime mode”. Experiment results show that the drying time was significantly reduced, and the dryer demonstrated high performance in preserving all of the nutrients. In 5 hours of the drying process, the moisture content was reduced from 75.7 to 3.3%. The average COP value was 3.36, confirming the dryer's low energy consumption. The findings also revealed that after drying, the content of protein, carbohydrates, fats, fiber, and ash greatly increased.

Keywords: heat pump dryer, efficiency, moringa leaves, proximate analysis

Procedia PDF Downloads 89
5032 Proximate Analysis of Muscle of Helix aspersa Living in Konya, Turkey

Authors: Ozcan Baris Citil

Abstract:

The aim of the present study is the determination of the effects of variations in the proximate analysis, cholesterol content and fatty acid compositions of Helix aspersa. Garden snails (Helix aspersa) were picked up by hand from the Central Anatolia Region of Turkey, in autumn (November) in 2015. Fatty acid methyl esters (FAMEs) and cholesterol analysis were analyzed by gas chromatography (GC). The protein contents of snail muscle were determined with Kjeldahl distillation units. Statistical comparisons were made by using SPSS Software (version 16.0). Thirty different fatty acids of different saturation levels were detected. As the predominant fatty acids, stearic acid (C18:0), oleic acid (C18:1ω9), linoleic acid (C18:2ω6), palmitic acid (C16:0), arachidonic acid (C20:4ω6), eicosadienoic acid (C20:2) and linolenic acid (C18:3ω3) were found in Helix aspersa. Palmitic acid (C16:0) was identified as the major SFA in autumn. Linoleic acid (C18:2ω6), eicosadienoic acid (C20:2) and arachidonic acid (C20:4ω6) have the highest levels among the PUFAs. In the present study, ω3 were found 5.48% in autumn. Linolenic acid and omega-3 fatty acid amounts in the autumn decreased significantly but cholesterol content was not affected in Helix aspersa in autumn (November) in 2015.

Keywords: Helix aspersa, fatty acid, SFA, PUFA, cholesterol

Procedia PDF Downloads 346
5031 Accessing Properties of Alkali Activated Ground Granulated Blast Furnace Slag Based Self Compacting Geopolymer Concrete Incorporating Nano Silica

Authors: Guneet Saini, Uthej Vattipalli

Abstract:

In a world with increased demand for sustainable construction, waste product of one industry could be a boon to the other in reducing the carbon footprint. Usage of industrial waste such as fly ash and ground granulated blast furnace slag have become the epicenter of curbing the use of cement, one of the major contributors of greenhouse gases. In this paper, empirical studies have been done to develop alkali activated self-compacting geopolymer concrete (GPC) using ground granulated blast furnace slag (GGBS), incorporated with 2% nano-silica by weight, through evaluation of its fresh and hardening properties. Experimental investigation on 6 mix designs of varying molarity of 10M, 12M and 16M of the alkaline solution and a binder content of 450 kg/m³ and 500 kg/m³ has been done and juxtaposed with GPC mix design composed of 16M alkaline solution concentration and 500 kg/m³ binder content without nano-silica. The sodium silicate to sodium hydroxide ratio (SS/SH), alkaline activator liquid to binder ratio (AAL/B) and water to binder ratio (W/B), which significantly affect the performance and mechanical properties of GPC, were fixed at 2.5, 0.45 and 0.4 respectively. To catalyze the early stage geopolymerisation, oven curing is done maintaining the temperature at 60˚C. This paper also elucidates the test results for fresh self-compacting concrete (SCC) done as per EFNARC guidelines. The mechanical properties tests conducted were: compressive strength test after 7 days, 28 days, 56 days and 90 days; flexure test; split tensile strength test after 28 days, 56 days and 90 days; X-ray diffraction test to analyze the mechanical performance and sorptivity test for testing of permeability. The study revealed that the sample of 16M concentration of alkaline solution with 500 Kg/m³ binder content containing 2% nano silica produced the highest compressive, flexural and split tensile strength of 81.33 MPa, 7.875 MPa, and 6.398 MPa respectively, at the end of 90 days.

Keywords: alkaline activator liquid, geopolymer concrete, ground granulated blast furnace slag, nano silica, self compacting

Procedia PDF Downloads 153
5030 Progressive Type-I Interval Censoring with Binomial Removal-Estimation and Its Properties

Authors: Sonal Budhiraja, Biswabrata Pradhan

Abstract:

This work considers statistical inference based on progressive Type-I interval censored data with random removal. The scheme of progressive Type-I interval censoring with random removal can be described as follows. Suppose n identical items are placed on a test at time T0 = 0 under k pre-fixed inspection times at pre-specified times T1 < T2 < . . . < Tk, where Tk is the scheduled termination time of the experiment. At inspection time Ti, Ri of the remaining surviving units Si, are randomly removed from the experiment. The removal follows a binomial distribution with parameters Si and pi for i = 1, . . . , k, with pk = 1. In this censoring scheme, the number of failures in different inspection intervals and the number of randomly removed items at pre-specified inspection times are observed. Asymptotic properties of the maximum likelihood estimators (MLEs) are established under some regularity conditions. A β-content γ-level tolerance interval (TI) is determined for two parameters Weibull lifetime model using the asymptotic properties of MLEs. The minimum sample size required to achieve the desired β-content γ-level TI is determined. The performance of the MLEs and TI is studied via simulation.

Keywords: asymptotic normality, consistency, regularity conditions, simulation study, tolerance interval

Procedia PDF Downloads 253
5029 Investigation of Supercapacitor Properties of Nanocomposites Obtained from Acid and Base-functionalized Multi-walled Carbon Nanotube (MWCNT) and Polypyrrole (PPy)

Authors: Feridun Demir, Pelin Okdem

Abstract:

Polymers are versatile materials with many unique properties, such as low density, reasonable strength, flexibility, and easy processability. However, the mechanical properties of these materials are insufficient for many engineering applications. Therefore, there is a continuous search for new polymeric materials with improved properties. Polymeric nanocomposites are an advanced class of composite materials that have attracted great attention in both academic and industrial fields. Since nano-reinforcement materials are very small in size, they provide ultra-large interfacial area per volume between the nano-element and the polymer matrix. This allows the nano-reinforcement composites to exhibit enhanced toughness without compromising hardness or optical clarity. PPy and MWCNT/PPy nanocomposites were synthesized by the chemical oxidative polymerization method and the supercapacitor properties of the obtained nanocomposites were investigated. In addition, pure MWCNT was functionalized with acid (H₂SO₄/H₂O₂) and base (NH₄OH/H₂O₂) solutions at a ratio of 3:1 and a-MWCNT/d-PPy, and b-MWCNT/d-PPy nanocomposites were obtained. The homogeneous distribution of MWCNTs in the polypyrrole matrix and shell-core type morphological structures of the nanocomposites was observed with SEM images. It was observed with SEM, FTIR and XRD analyses that the functional groups formed by the functionalization of MWCNTs caused the MWCNTs to come together and partially agglomerate. It was found that the conductivity of the nanocomposites consisting of MWCNT and d-PPy was higher than that of pure d-PPy. CV, GCD and EIS results show that the use of a-MWCNT and b-MWCNTs in nanocomposites with low particle content positively affects the supercapacitor properties of the materials but negatively at high particle content. It was revealed that the functional MWCNT particles combined in nanocomposites with high particle content cause a decrease in the conductivity and distribution of ions in the electrodes and, thus, a decrease in their energy storage capacity.

Keywords: polypyrrole, multi-walled carbon nanotube (MWCNT), conducting polymer, chemical oxidative polymerization, nanocomposite, supercapacitor

Procedia PDF Downloads 28
5028 Construction and Validation of Allied Bank-Teller Aptitude Test

Authors: Muhammad Kashif Fida

Abstract:

In the bank, teller’s job (cash officer) is highly important and critical as at one end it requires soft and brisk customer services and on the other side, handling cash with integrity. It is always challenging for recruiters to hire competent and trustworthy tellers. According to author’s knowledge, there is no comprehensive test available that may provide assistance in recruitment in Pakistan. So there is a dire need of a psychometric battery that could provide support in recruitment of potential candidates for the teller’ position. So, the aim of the present study was to construct ABL-Teller Aptitude Test (ABL-TApT). Three major phases have been designed by following American Psychological Association’s guidelines. The first phase was qualitative, indicators of the test have been explored by content analysis of the a) teller’s job descriptions (n=3), b) interview with senior tellers (n=6) and c) interview with HR personals (n=4). Content analysis of above yielded three border constructs; i). Personality, ii). Integrity/honesty, iii). Professional Work Aptitude. Identified indicators operationalized and statements (k=170) were generated using verbatim. It was then forwarded to the five experts for review of content validity. They finalized 156 items. In the second phase; ABL-TApT (k=156) administered on 323 participants through a computer application. The overall reliability of the test shows significant alpha coefficient (α=.81). Reliability of subscales have also significant alpha coefficients. Confirmatory Factor Analysis (CFA) performed to estimate the construct validity, confirms four main factors comprising of eight personality traits (Confidence, Organized, Compliance, Goal-oriented, Persistent, Forecasting, Patience, Caution), one Integrity/honesty factor, four factors of professional work aptitude (basic numerical ability and perceptual accuracy of letters, numbers and signature) and two factors for customer services (customer services, emotional maturity). Values of GFI, AGFI, NNFI, CFI, RFI and RMSEA are in recommended range depicting significant model fit. In third phase concurrent validity evidences have been pursued. Personality and integrity part of this scale has significant correlations with ‘conscientiousness’ factor of NEO-PI-R, reflecting strong concurrent validity. Customer services and emotional maturity have significant correlations with ‘Bar-On EQI’ showing another evidence of strong concurrent validity. It is concluded that ABL-TAPT is significantly reliable and valid battery of tests, will assist in objective recruitment of tellers and help recruiters in finding a more suitable human resource.

Keywords: concurrent validity, construct validity, content validity, reliability, teller aptitude test, objective recruitment

Procedia PDF Downloads 233
5027 An Experimental Investigation in Effect of Confining Stress and Matric Suction on the Mechanical Behavior of Sand with Different Fine Content

Authors: S. Asreazad

Abstract:

This paper presents the results that the soil volumetric strain and shear strength are closely related to the confining stress and initial matric suction under constant water content testing on the specimens of unsaturated sand with clay and silt fines contents. The silty sand specimens reached their peak strength after a very small axial strain followed by a post-peak softening towards an ultimate value. The post-peak drop in stress increased by an increment of the suction, while there is no peak strength for clayey sand specimens. The clayey sand shows compressibility and possesses ductile stress-strain behaviour. Shear strength increased nonlinearly with respect to matric suction for both soil types. When suction exceeds a certain range, the effect of suction on shear strength increment weakens gradually. Under the same confining stress, the dilatant tendencies in the silty sand increased under lower values of suction and decreased for higher suction values under the same confining stress. However, the amount of contraction increased with increasing initial suction for clayey sand specimens.

Keywords: unsaturated soils, silty sand, clayey sand, triaxial test

Procedia PDF Downloads 337
5026 Electronic Nose for Monitoring Fungal Deterioration of Stored Rapeseed

Authors: Robert Rusinek, Marek Gancarz, Jolanta Wawrzyniak, Marzena Gawrysiak-Witulska, Dariusz Wiącek, Agnieszka Nawrocka

Abstract:

Investigations were performed to examine the possibility of using an electronic nose to monitor the development of fungal microflora during the first eighteen days of rapeseed storage. The Cyranose 320 device with polymer-composite sensors was used. Each sample of infected material was divided into three parts, and the degree of spoilage was measured in three ways: analysis of colony forming units (CFU), determination of ergosterol content (ERG), and measurement with the eNose. Principal component analysis (PCA) was performed on the generated patterns of signals, and six groups of different spoilage levels were isolated. The electronic nose with polymer-composite sensors under laboratory conditions distinguished between species of spoiled and unspoiled seeds with 100% accuracy. Despite some minor differences in the CFU and ergosterol content, the electronic nose provided responses correctly corresponding to the level of spoilage with 85% accuracy. Therefore, the main conclusion from the study is that the electronic nose is a promising tool for quick and non-destructive detection of the level of oil seed spoilage. The research was supported by the National Centre for Research and Development (NCBR), Grant No. PBS2/A8/22/2013.

Keywords: colony forming units, electronic nose, ergosterol, rapeseed

Procedia PDF Downloads 326
5025 Modeling of Nitrogen Solubility in Stainless Steel

Authors: Saeed Ghali, Hoda El-Faramawy, Mamdouh Eissa, Michael Mishreky

Abstract:

Scale-resistant austenitic stainless steel, X45CrNiW 18-9, has been developed, and modified steels produced through partial and total nickel replacement by nitrogen. These modified steels were produced in a 10 kg induction furnace under different nitrogen pressures and were cast into ingots. The produced modified stainless steels were forged, followed by air cooling. The phases of modified stainless steels have been investigated using the Schaeffler diagram, dilatometer, and microstructure observations. Both partial and total replacement of nickel using 0.33-0.50% nitrogen are effective in producing fully austenitic stainless steels. The nitrogen contents were determined and compared with those calculated using the Institute of Metal Science (IMS) equation. The results showed great deviations between the actual nitrogen contents and predicted values through IMS equation. So, an equation has been derived based on chemical composition, pressure, and temperature at 1600oC. [N%] = 0.0078 + 0.0406*X, where X is a function of chemical composition and nitrogen pressure. The derived equation has been used to calculate the nitrogen content of different steels using published data. The results reveal the difficulty of deriving a general equation for the prediction of nitrogen content covering different steel compositions. So, it is necessary to use a narrow composition range.

Keywords: solubility, nitrogen, stainless steel, Schaeffler

Procedia PDF Downloads 242
5024 Treatment of Rice Industry Waste Water by Flotation-Flocculation Method

Authors: J. K. Kapoor, Shagufta Jabin, H. S. Bhatia

Abstract:

Polyamine flocculants were synthesized by poly-condensation of diphenylamine and epichlorohydrin using 1, 2-diaminoethane as modifying agent. The polyelectrolytes were prepared by taking epichlohydrin-diphenylamine in a molar ratio of 1:1, 1.5:1, 2:1, and 2.5:1. The flocculation performance of these polyelectrolytes was evaluated with rice industry waste water. The polyelectrolytes have been used in conjunction with alum for coagulation- flocculation process. Prior to the coagulation- flocculation process, air flotation technique was used with the aim to remove oil and grease content from waste water. Significant improvement was observed in the removal of oil and grease content after the air flotation technique. It has been able to remove 91.7% oil and grease from rice industry waste water. After coagulation-flocculation method, it has been observed that polyelectrolyte with epichlohydrin-diphenylamine molar ratio of 1.5:1 showed best results for the removal of pollutants from rice industry waste water. The highest efficiency of turbidity and TSS removal with polyelectrolyte has been found to be 97.5% and 98.2%, respectively. Results of these evaluations also reveal 86.8% removal of COD and 87.5% removal of BOD from rice industry waste water. Thus, we demonstrate optimization of coagulation–flocculation technique which is appropriate for waste water treatment.

Keywords: coagulation, flocculation, air flotation technique, polyelectrolyte, turbidity

Procedia PDF Downloads 485
5023 Estimation of Opc, Fly Ash and Slag Contents in Blended and Composite Cements by Selective Dissolution Method

Authors: Suresh Palla

Abstract:

This research paper presents the results of the study on the estimation of fly ash, slag and cement contents in blended and composite cements by novel selective dissolution method. Types of cement samples investigated include OPC with fly ash as performance improver, OPC with slag as performance improver, PPC, PSC and Composite cement confirming to respective Indian Standards. Slag and OPC contents in PSC were estimated by selectively dissolving OPC in stage 1 and selectively dissolving slag in stage 2. In the case of composite cement sample, the percentage of cement, slag and fly ash were estimated systematically by selective dissolution of cement, slag and fly ash in three stages. In the first stage, cement dissolved and separated by leaving the residue of slag and fly ash, designated as R1. The second stage involves gravimetric estimation of fractions of OPC, residue and selective dissolution of fly ash and slag contents. Fly ash content, R2 was estimated through gravimetric analysis. Thereafter, the difference between the R1 and R2 is considered as slag content. The obtained results of cement, fly ash and slag using selective dissolution method showed 10% of standard deviation with the corresponding percentage of respective constituents. The results suggest that this novel selective dissolution method can be successfully used for estimation of OPC and SCMs contents in different types of cements.

Keywords: selective dissolution method , fly ash, ggbfs slag, edta

Procedia PDF Downloads 160
5022 Reducing Total Harmonic Content of 9-Level Inverter by Use of Cuckoo Algorithm

Authors: Mahmoud Enayati, Sirous Mohammadi

Abstract:

In this paper, a novel procedure to find the firing angles of the multilevel inverters of supply voltage and, consequently, to decline the total harmonic distortion (THD), has been presented. In order to eliminate more harmonics in the multilevel inverters, its number of levels can be lessened or pulse width modulation waveform, in which more than one switching occur in each level, be used. Both cases complicate the non-algebraic equations and their solution cannot be performed by the conventional methods for the numerical solution of nonlinear equations such as Newton-Raphson method. In this paper, Cuckoo algorithm is used to compute the optimal firing angle of the pulse width modulation voltage waveform in the multilevel inverter. These angles should be calculated in such a way that the voltage amplitude of the fundamental frequency be generated while the total harmonic distortion of the output voltage be small. The simulation and theoretical results for the 9-levels inverter offer the high applicability of the proposed algorithm to identify the suitable firing angles for declining the low order harmonics and generate a waveform whose total harmonic distortion is very small and it is almost a sinusoidal waveform.

Keywords: evolutionary algorithms, multilevel inverters, total harmonic content, Cuckoo Algorithm

Procedia PDF Downloads 535
5021 Fluidized-Bed Combustion of Biomass with Elevated Alkali Content: A Comparative Study between Two Alternative Bed Materials

Authors: P. Ninduangdee, V. I. Kuprianov

Abstract:

Palm kernel shell is an important bioenergy resource in Thailand. However, due to elevated alkali content in biomass ash, this oil palm residue shows high tendency to bed agglomeration in a fluidized-bed combustion system using conventional bed material (silica sand). In this study, palm kernel shell was burned in the conical fluidized-bed combustor (FBC) using alumina and dolomite as alternative bed materials to prevent bed agglomeration. For each bed material, the combustion tests were performed at 45kg/h fuel feed rate with excess air within 20–80%. Experimental results revealed rather weak effects of the bed material type but substantial influence of excess air on the behaviour of temperature, O2, CO, CxHy, and NO inside the reactor, as well as on the combustion efficiency and major gaseous emissions of the conical FBC. The optimal level of excess air ensuring high combustion efficiency (about 98.5%) and acceptable level of the emissions was found to be about 40% when using alumina and 60% with dolomite. By using these alternative bed materials, bed agglomeration can be prevented when burning the shell in the proposed conical FBC. However, both bed materials exhibited significant changes in their morphological, physical and chemical properties in the course of the time.

Keywords: palm kernel shell, fluidized-bed combustion, alternative bed materials, combustion and emission performance, bed agglomeration prevention

Procedia PDF Downloads 253
5020 Investigation of Alfa Fibers Reinforced Epoxy-Amine Composites Properties

Authors: Amar Boukerrou, Ouerdia Belhadj, Dalila Hammiche, Jean Francois Gerard, Jannick Rumeau

Abstract:

The main goal of this study is the investigation of alfa fiber content, treated with alkali treatment, on the thermal and mechanical properties of epoxy-amine matrix-based composites. The fibers were treated with 5% of sodium hydroxide solution and varied between 10% to 30% weight fractions. The tensile, flexural, and hardness tests are carried out to investigate the mechanical properties of composites. The results show those composites’ mechanical properties are higher than the neat epoxy-amine. It was noticed that the alkali treatment is more effective in the case of the tensile and flexural modulus than the tensile and flexural strength. The decline of both the tensile and flexural behavior of all composites with the increasing of the filler content was due probably to the random dispersion of the fibers in the epoxy resin The Fourier transform infrared (FTIR) was employed to analyze the chemical structure of epoxy resin before and after curing with amine hardener. FTIR and DSC analysis confirmed that epoxy resin was completely cured with amine hardener at room temperature. SEM analysis has highlighted the microstructure of epoxy matrix and its composites.

Keywords: alfa fiber, epoxy resin, alkali treatment, mechanical properties

Procedia PDF Downloads 114
5019 Nutritional Potentials of Two Nigerian Green Leafy Vegetables

Authors: Philippa C. Ojimelukwe, Felix C. Okpalanma, Emmanuel A. Mazi

Abstract:

The carotenoid content, vitamins (ascorbic acid, riboflavin, thiamin, niacin and vitamin K) and mineral contents (K, Ca, Mg, Zn and Fe) of raw, cooked (moist heat treatment) and stored Gnetum africanum and Pterocarpus mildbraedii leaves were investigated in the present research. Raw G. africanum contained higher total carotenoids (246.93µg/g edible portion) than P. mildbraedii (83.53µg/g edible portion) However, moist heat treatment significantly improved the total carotenoid content of P. mildbraedii. The carotenoid profiles of P. mildbraedii and G. africanum showed improved contents of beta cryptoxanthin , 9-cis, 11-cis and 13 cis beta carotenes due to moist heat treatment. Lutein contents of the two green leafy vegetables were quite high in raw, heat treated and stored samples. The two green leafy vegetables were good sources of vitamin K (118-120 µg). Moist heat treatment significantly (p < 0.05) increased the mineral contents of P.mildbraedii and G. africanum. The vitamin contents were reduced. Storage at ambient temperature (30oC) in the dark led to good retention of the minerals but not the vitamins.

Keywords: Gnetum africanum, Pterocarpus mildbraedii, carotenoid profile, vitamins, minerals

Procedia PDF Downloads 496
5018 Effect of Changing Iron Content and Excitation Frequency on Magnetic Particle Imaging Signal: A Comparative Study of Synomag® Nanoparticles

Authors: Kalthoum Riahi, Max T. Rietberg, Javier Perez y Perez, Corné Dijkstra, Bennie ten Haken, Lejla Alic

Abstract:

Magnetic nanoparticles (MNPs) are widely used to facilitate magnetic particle imaging (MPI) which has the potential to become the leading diagnostic instrument for biomedical imaging. This comparative study assesses the effects of changing iron content and excitation frequency on point-spread function (PSF) representing the effect of magnetization reversal. PSF is quantified by features of interest for MPI: i.e., drive field amplitude and full-width-at-half-maximum (FWHM). A superparamagnetic quantifier (SPaQ) is used to assess differential magnetic susceptibility of two commercially available MNPs: Synomag®-D50 and Synomag®-D70. For both MNPs, the signal output depends on increase in drive field frequency and amount of iron-oxide, which might be hampering the sensitivity of MPI systems that perform on higher frequencies. Nevertheless, there is a clear potential of Synomag®-D for a stable MPI resolution, especially in case of 70 nm version, that is independent of either drive field frequency or amount of iron-oxide.

Keywords: magnetic nanoparticles, MNPs, differential magnetic susceptibility, DMS, magnetic particle imaging, MPI, magnetic relaxation, Synomag®-D

Procedia PDF Downloads 145
5017 Improving the Strength Characteristics of Soil Using Cotton Fibers

Authors: Bindhu Lal, Karnika Kochal

Abstract:

Clayey soil contains clay minerals with traces of metal oxides and organic matter, which exhibits properties like low drainage, high plasticity, and shrinkage. To overcome these issues, various soil reinforcement techniques are used to elevate the stiffness, water tightness, and bearing capacity of the soil. Such techniques include cementation, bituminization, freezing, fiber inclusion, geo-synthetics, nailing, etc. Reinforcement of soil with fibers has been a cost-effective solution to soil improvement problems. An experimental study was undertaken involving the inclusion of cotton waste fibers in clayey soil as reinforcement with different fiber contents (1%, 1.5%, 2%, and 2.5% by weight) and analyzing its effects on the unconfined compressive strength of the soil. Two categories of soil were taken, comprising of natural clay and clay mixed with 5% sodium bentonite by weight. The soil specimens were subjected to proctor compaction and unconfined compression tests. The validated outcome shows that fiber inclusion has a strikingly positive impact on the compressive strength and axial strain at failure of the soil. Based on the commendatory results procured, compressive strength was found to be directly proportional to the fiber content, with the effect being more pronounced at lower water content.

Keywords: bentonite clay, clay, cotton fibers, unconfined compressive strength

Procedia PDF Downloads 185
5016 Comparison of the Oxidative Stability of Chinese Vegetable Oils during Repeated Deep-Frying of French Fries

Authors: TranThi Ly, Ligang Yang, Hechun Liu, Dengfeng Xu, Haiteng Zhou, Shaokang Wang, Shiqing Chen, Guiju Sun

Abstract:

This study aims to evaluate the oxidative stability of Chinese vegetable oils during repeated deep-frying. For frying media, palm oil (PO), sunflower oil (SFO), soybean oil (SBO), and canola oil (CO) were used. French fries were fried in oils heated to 180 ± 50℃. The temperature was kept constant during the eight h of the frying process. The oil quality was measured according to the fatty acid (FA) content, trans fatty acid (TFA) compounds, and chemical properties such as peroxide value (PV), acid value (AV), anisidine value (AnV), and malondialdehyde (MDA). Additionally, the sensory characteristics such as color, flavor, greasiness, crispiness, and overall acceptability of the French fries were assessed. Results showed that the PV, AV, AnV, MDA, and TFA content of SFO, CO, and SBO significantly increased in conjunction with prolonged frying time. During the deep-frying process, the SBO showed the lowest oxidative stability at all indices, while PO retained oxidative stability and generated the lowest level of TFA. The French fries fried in PO also offered better sensory properties than the other oils. Therefore, results regarding oxidative stability and sensory attributes suggested that among the examined vegetable oils, PO appeared to be the best oil for frying food products.

Keywords: vegetable oils, French fries, oxidative stability, sensory properties, frying oil

Procedia PDF Downloads 122
5015 Feed Value of Selected Nigerian Browse Plants: Chemical Composition and in vitro Digestibility

Authors: Isaac Samuel

Abstract:

A study was conducted to determine the in-vitro degradation of selected Nigerian browse plants consumed by small ruminants on free range in northern guinea savannah region of Nigeria using in vitro gas production, proximate composition, fibre components, methane gas production and dry matter degradation as tools. The leaves samples of the selected browse plants were collected, processed and incubated using in vitro gas dry matter degradation techniques. Results obtained showed variation in the rate of degradation. The result obtained from chemical analysis showed that the CP content of A. occidentale (26.49%) was higher than F. thonningi (23.58%), M. indica (20.58%) and T. catappa (18.61%). Both ADF and NDF of A. occidentale (40.00 and 50.00) were as well higher than F. thonningi (20.00 and 40.00), M. indica (20.00 and 40.00) and T.catappa (20.00 and 42.00). Results from in vitro gas production however showed that T. catappa (23.67ml/DM) has a significantly higher (p<0.05) value than F.thonningi (20.67ml/DM), A. occidentale (16.67ml/DM), and M. indica(14.00ml/DM) at 72 hours of incubation. Methane gas production and in vitro gas production can be used to predict dry matter degradation and nutritive value of feedstuff for small ruminants. A. occidentale with the least methane gas production and highest crude protein (CP) content might have the most nutritive value among the browse plants investigated.

Keywords: in vitro, degradation, browse, gas production

Procedia PDF Downloads 362
5014 Antioxidant and Anti-Inflammatory Activities of Bioactive Compounds Derived from Thunbergia laurifolia Aqueous Leave Extract

Authors: Marasri Junsi, Sunisa Siripongvutikorn, Chutha Takahashi Yupanqui, Worrapong Usawakesmanee

Abstract:

Thunbergia laurifolia has been used for folklore medicine purposes and consumed in the form of herbal tea in Thailand since ancient times. To evaluate the bioactive compounds of aqueous leave extract possessed antioxidant and anti-inflammatory activities. The antioxidant activities were examined by total extractable phenolic content (TPC), total extractable flavonoid content (TFC), ABTS radical scavenging, DPPH radical scavenging, FRAP reducing antioxidant power expressed as mg of gallic acid trolox and caffeic acid for the equivalents. Results indicated that the extract had high TPC and antioxidant activities. In addition, the HPLC-DAD analysis of phenolics and flavonoids indicated the presence of caffeic acid and rutin as bioactive compounds. Exposure of cells with the extract using nitric oxide (NO) production in RAW 264.7 murine macrophage cell line induced by lipopolysaccharide (LPS) was significantly reduced NO production and increased cell proliferation. The obtained results demonstrated that the extract contains a high potential to be used as anti-inflammatory and antioxidant substances.

Keywords: Thunbergia laurifolia, anti-inflammatory, antioxidant activities, RAW264.7

Procedia PDF Downloads 315