Search results for: insurance estimation
1151 Predicting Provider Service Time in Outpatient Clinics Using Artificial Intelligence-Based Models
Authors: Haya Salah, Srinivas Sharan
Abstract:
Healthcare facilities use appointment systems to schedule their appointments and to manage access to their medical services. With the growing demand for outpatient care, it is now imperative to manage physician's time effectively. However, high variation in consultation duration affects the clinical scheduler's ability to estimate the appointment duration and allocate provider time appropriately. Underestimating consultation times can lead to physician's burnout, misdiagnosis, and patient dissatisfaction. On the other hand, appointment durations that are longer than required lead to doctor idle time and fewer patient visits. Therefore, a good estimation of consultation duration has the potential to improve timely access to care, resource utilization, quality of care, and patient satisfaction. Although the literature on factors influencing consultation length abound, little work has done to predict it using based data-driven approaches. Therefore, this study aims to predict consultation duration using supervised machine learning algorithms (ML), which predicts an outcome variable (e.g., consultation) based on potential features that influence the outcome. In particular, ML algorithms learn from a historical dataset without explicitly being programmed and uncover the relationship between the features and outcome variable. A subset of the data used in this study has been obtained from the electronic medical records (EMR) of four different outpatient clinics located in central Pennsylvania, USA. Also, publicly available information on doctor's characteristics such as gender and experience has been extracted from online sources. This research develops three popular ML algorithms (deep learning, random forest, gradient boosting machine) to predict the treatment time required for a patient and conducts a comparative analysis of these algorithms with respect to predictive performance. The findings of this study indicate that ML algorithms have the potential to predict the provider service time with superior accuracy. While the current approach of experience-based appointment duration estimation adopted by the clinic resulted in a mean absolute percentage error of 25.8%, the Deep learning algorithm developed in this study yielded the best performance with a MAPE of 12.24%, followed by gradient boosting machine (13.26%) and random forests (14.71%). Besides, this research also identified the critical variables affecting consultation duration to be patient type (new vs. established), doctor's experience, zip code, appointment day, and doctor's specialty. Moreover, several practical insights are obtained based on the comparative analysis of the ML algorithms. The machine learning approach presented in this study can serve as a decision support tool and could be integrated into the appointment system for effectively managing patient scheduling.Keywords: clinical decision support system, machine learning algorithms, patient scheduling, prediction models, provider service time
Procedia PDF Downloads 1201150 Remote Radiation Mapping Based on UAV Formation
Authors: Martin Arguelles Perez, Woosoon Yim, Alexander Barzilov
Abstract:
High-fidelity radiation monitoring is an essential component in the enhancement of the situational awareness capabilities of the Department of Energy’s Office of Environmental Management (DOE-EM) personnel. In this paper, multiple units of unmanned aerial vehicles (UAVs) each equipped with a cadmium zinc telluride (CZT) gamma-ray sensor are used for radiation source localization, which can provide vital real-time data for the EM tasks. To achieve this goal, a fully autonomous system of multicopter-based UAV swarm in 3D tetrahedron formation is used for surveying the area of interest and performing radiation source localization. The CZT sensor used in this study is suitable for small-size multicopter UAVs due to its small size and ease of interfacing with the UAV’s onboard electronics for high-resolution gamma spectroscopy enabling the characterization of radiation hazards. The multicopter platform with a fully autonomous flight feature is suitable for low-altitude applications such as radiation contamination sites. The conventional approach uses a single UAV mapping in a predefined waypoint path to predict the relative location and strength of the source, which can be time-consuming for radiation localization tasks. The proposed UAV swarm-based approach can significantly improve its ability to search for and track radiation sources. In this paper, two approaches are developed using (a) 2D planar circular (3 UAVs) and (b) 3D tetrahedron formation (4 UAVs). In both approaches, accurate estimation of the gradient vector is crucial for heading angle calculation. Each UAV carries the CZT sensor; the real-time radiation data are used for the calculation of a bulk heading vector for the swarm to achieve a UAV swarm’s source-seeking behavior. Also, a spinning formation is studied for both cases to improve gradient estimation near a radiation source. In the 3D tetrahedron formation, a UAV located closest to the source is designated as a lead unit to maintain the tetrahedron formation in space. Such a formation demonstrated a collective and coordinated movement for estimating a gradient vector for the radiation source and determining an optimal heading direction of the swarm. The proposed radiation localization technique is studied by computer simulation and validated experimentally in the indoor flight testbed using gamma sources. The technology presented in this paper provides the capability to readily add/replace radiation sensors to the UAV platforms in the field conditions enabling extensive condition measurement and greatly improving situational awareness and event management. Furthermore, the proposed radiation localization approach allows long-term measurements to be efficiently performed at wide areas of interest to prevent disasters and reduce dose risks to people and infrastructure.Keywords: radiation, unmanned aerial system(UAV), source localization, UAV swarm, tetrahedron formation
Procedia PDF Downloads 971149 Forecasting Models for Steel Demand Uncertainty Using Bayesian Methods
Authors: Watcharin Sangma, Onsiri Chanmuang, Pitsanu Tongkhow
Abstract:
A forecasting model for steel demand uncertainty in Thailand is proposed. It consists of trend, autocorrelation, and outliers in a hierarchical Bayesian frame work. The proposed model uses a cumulative Weibull distribution function, latent first-order autocorrelation, and binary selection, to account for trend, time-varying autocorrelation, and outliers, respectively. The Gibbs sampling Markov Chain Monte Carlo (MCMC) is used for parameter estimation. The proposed model is applied to steel demand index data in Thailand. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) criteria are used for model comparison. The study reveals that the proposed model is more appropriate than the exponential smoothing method.Keywords: forecasting model, steel demand uncertainty, hierarchical Bayesian framework, exponential smoothing method
Procedia PDF Downloads 3491148 Effect of Leadership Style on Organizational Performance
Authors: Khadija Mushtaq, Mian Saqib Mehmood
Abstract:
This paper attempts to determine the impact of leadership style and learning orientation on organizational performance in Pakistan. A sample of 158 middle managers selected from sports and surgical factories from Sialkot. The empirical estimation is based on a multiple linear regression analysis of the relationship between leadership style, learning orientation and organizational performance. Leadership style is measure through transformational leadership and transactional leadership. The transformational leadership has insignificant impact on organizational performance. The transactional leadership has positive and significant relation with organizational performance. Learning orientation also has positive and significant relation with organizational performance. Linear regression used to estimate the relation between dependent and independent variables. This study suggests top manger should prefer continuous process for improvement for any change in system rather radical change.Keywords: transformational leadership, transactional leadership, learning orientation, organizational performance, Pakistan
Procedia PDF Downloads 4021147 Risk of Androgen Deprivation Therapy-Induced Metabolic Syndrome-Related Complications for Prostate Cancer in Taiwan
Authors: Olivia Rachel Hwang, Yu-Hsuan Joni Shao
Abstract:
Androgen Deprivation Therapy (ADT) has been a primary treatment for patients with advanced prostate cancer. However, it is associated with numerous adverse effects related to Metabolic Syndrome (MetS), including hypertension, diabetes, hyperlipidaemia, heart diseases and ischemic strokes. However, complications associated with ADT for prostate cancer in Taiwan is not well documented. The purpose of this study is to utilize the data from NHIRD (National Health Insurance Research Database) to examine the trajectory changes of MetS-related complications in men receiving ADT. The risks of developing complications after the treatment were analyzed with multivariate Cox regression model. Covariates including in the model were the complications before the diagnosis of prostate cancer, the age, and the year at cancer diagnosis. A total number of 17268 patients from 1997-2013 were included in this study. The exclusion criteria were patients with any other types of cancer or with the existing MetS-related complications. Changes in MetS-related complications were observed among two treatment groups: 1) ADT (n=9042), and 2) non-ADT (n=8226). The ADT group appeared to have an increased risk in hypertension (hazard ratio 1.08, 95% confidence interval 1.03-1.13, P = 0.001) and hyperlipidemia (hazard ratio 1.09, 95% confidence interval 1.01-1.17, P = 0.02) when compared with non-ADT group in the multivariate Cox regression analyses. In the risk of diabetes, heart diseases, and ischemic strokes, ADT group appeared to have an increased but not significant hazard ratio. In conclusion, ADT was associated with an increased risk in hypertension and hyperlipidemia in prostate cancer patients in Taiwan. The risk of hypertension and hyperlipidemia should be considered while deciding on ADT, especially those with the known history of hypertension and hyperlipidemia.Keywords: androgen deprivation therapy, ADT, complications, metabolic syndrome, MetS, prostate cancer
Procedia PDF Downloads 2861146 Nonparametric Estimation of Risk-Neutral Densities via Empirical Esscher Transform
Authors: Manoel Pereira, Alvaro Veiga, Camila Epprecht, Renato Costa
Abstract:
This paper introduces an empirical version of the Esscher transform for risk-neutral option pricing. Traditional parametric methods require the formulation of an explicit risk-neutral model and are operational only for a few probability distributions for the returns of the underlying. In our proposal, we make only mild assumptions on the pricing kernel and there is no need for the formulation of the risk-neutral model for the returns. First, we simulate sample paths for the returns under the physical distribution. Then, based on the empirical Esscher transform, the sample is reweighted, giving rise to a risk-neutralized sample from which derivative prices can be obtained by a weighted sum of the options pay-offs in each path. We compare our proposal with some traditional parametric pricing methods in four experiments with artificial and real data.Keywords: esscher transform, generalized autoregressive Conditional Heteroscedastic (GARCH), nonparametric option pricing
Procedia PDF Downloads 4871145 Overview of Time, Resource and Cost Planning Techniques in Construction Management Research
Authors: R. Gupta, P. Jain, S. Das
Abstract:
One way to approach construction scheduling optimization problem is to focus on the individual aspects of planning, which can be broadly classified as time scheduling, crew and resource management, and cost control. During the last four decades, construction planning has seen a lot of research, but to date, no paper had attempted to summarize the literature available under important heads. This paper addresses each of aspects separately, and presents the findings of an in-depth literature of the various planning techniques. For techniques dealing with time scheduling, the authors have adopted a rough chronological documentation. For crew and resource management, classification has been done on the basis of the different steps involved in the resource planning process. For cost control, techniques dealing with both estimation of costs and the subsequent optimization of costs have been dealt with separately.Keywords: construction planning techniques, time scheduling, resource planning, cost control
Procedia PDF Downloads 4851144 A Comprehensive Procedure of Spatial Panel Modelling with R, A Study of Agricultural Productivity Growth of the 38 East Java’s Regencies/Municipalities
Authors: Rahma Fitriani, Zerlita Fahdha Pusdiktasari, Herman Cahyo Diartho
Abstract:
Spatial panel model is commonly used to specify more complicated behavior of economic agent distributed in space at an individual-spatial unit level. There are several spatial panel models which can be adapted based on certain assumptions. A package called splm in R has several functions, ranging from the estimation procedure, specification tests, and model selection tests. In the absence of prior assumptions, a comprehensive procedure which utilizes the available functions in splm must be formed, which is the objective of this study. In this way, the best specification and model can be fitted based on data. The implementation of the procedure works well. It specifies SARAR-FE as the best model for agricultural productivity growth of the 38 East Java’s Regencies/Municipalities.Keywords: spatial panel, specification, splm, agricultural productivity growth
Procedia PDF Downloads 1691143 Overconfidence and Self-Attribution Bias: The Difference among Economic Students at Different Stage of the Study and Non-Economic Students
Authors: Vera Jancurova
Abstract:
People are, in general, exposed to behavioral biases, however, the degree and impact are affected by experience, knowledge, and other characteristics. The purpose of this article is to study two of defined behavioral biases, the overconfidence and self-attribution bias, and its impact on economic and non-economic students at different stage of the study. The research method used for the purpose of this study is a controlled field study that contains questions on perception of own confidence and self-attribution and estimation of limits to analyse actual abilities. The results of the research show that economic students seem to be more overconfident than their non–economic colleagues, which seems to be caused by the fact the questionnaire was asking for predicting economic indexes and own knowledge and abilities in financial environment. Surprisingly, the most overconfidence was detected by the students at the beginning of their study (1st-semester students). However, the estimations of real numbers do not point out, that economic students have better results by the prediction itself. The study confirmed the presence of self-attribution bias at all of the respondents.Keywords: behavioral finance, overconfidence, self-attribution, heuristics and biases
Procedia PDF Downloads 2571142 Building Carbon Footprint Comparison between Building Permit, as Built, as Built with Circular Material Usage
Authors: Kadri-Ann Kertsmik, Martin Talvik, Kimmo Lylykangas, Simo Ilomets, Targo Kalamees
Abstract:
This study compares the building carbon footprint (CF) values for a case study of a private house located in a cold climate, using the Level(s) methodology. It provides a framework for measuring the environmental performance of buildings throughout their life cycle, taking into account various factors. The study presents the results of the three scenarios, comparing their carbon emissions and highlighting the benefits of circular material usage. The construction process was thoroughly documented, and all materials and components (including minuscule mechanical fasteners, each meter of cable, a kilogram of mortar, and the component of HVAC systems, among other things) delivered to the construction site were noted. Transportation distances of each delivery, the fuel consumption of construction machines, and electricity consumption for temporary heating and electrical tools were also monitored. Using the detailed data on material and energy resources, the CF was calculated for two scenarios: one where circular material usage was applied and another where virgin materials were used instead of reused ones. The results were compared with the CF calculated based on the building permit design model using the Level(s) methodology. To study the range of possible results in the early stage of CF assessment, the same building permit design was given to several experts. Results showed that embodied carbon values for a built scenario were significantly lower than the values predicted by the building permit stage as a result of more precise material quantities, as the calculation methodology is designed to overestimate the CF. Moreover, designers made an effort to reduce the building's CF by reusing certain materials such as ceramic tiles, lightweight concrete blocks, and timber during the construction process. However, in a cold climate context where operational energy (B6) continues to dominate, the total building CF value changes between the three scenarios were less significant. The calculation for the building permit project was performed by several experts, and CF results were in the same range. It alludes that, for the first estimation of preliminary building CF, using average values proves to be an appropriate method for the Estonian national carbon footprint estimation phase during building permit application. The study also identified several opportunities for reducing the carbon footprint of the building, such as reusing materials from other construction sites, preferring local material producers, and reducing wastage on site. The findings suggest that using circular materials can significantly reduce the carbon footprint of buildings. Overall, the study highlights the importance of using a comprehensive approach to measure the environmental performance of buildings, taking into account both the project and the actually built house. It also emphasises the need for ongoing monitoring for designing the building and construction site waste. The study also gives some examples of how to enable future circularity of building components and materials, e.g., building in layers, using wood as untreated, etc.Keywords: carbon footprint, circular economy, sustainable construction, level(s) methodology
Procedia PDF Downloads 841141 Influence of the Line Parameters in Transmission Line Fault Location
Authors: Marian Dragomir, Alin Dragomir
Abstract:
In the paper, two fault location algorithms are presented for transmission lines which use the line parameters to estimate the distance to the fault. The first algorithm uses only the measurements from one end of the line and the positive and zero sequence parameters of the line, while the second one uses the measurements from both ends of the line and only the positive sequence parameters of the line. The algorithms were tested using a transmission grid transposed in MATLAB. In a first stage it was established a fault location base line, where the algorithms mentioned above estimate the fault locations using the exact line parameters. After that, the positive and zero sequence resistance and reactance of the line were calculated again for different ground resistivity values and then the fault locations were estimated again in order to compare the results with the base line results. The results show that the algorithm which uses the zero sequence impedance of the line is the most sensitive to the line parameters modifications. The other algorithm is less sensitive to the line parameters modification.Keywords: estimation algorithms, fault location, line parameters, simulation tool
Procedia PDF Downloads 3521140 Particle Swarm Optimization Based Method for Minimum Initial Marking in Labeled Petri Nets
Authors: Hichem Kmimech, Achref Jabeur Telmoudi, Lotfi Nabli
Abstract:
The estimation of the initial marking minimum (MIM) is a crucial problem in labeled Petri nets. In the case of multiple choices, the search for the initial marking leads to a problem of optimization of the minimum allocation of resources with two constraints. The first concerns the firing sequence that could be legal on the initial marking with respect to the firing vector. The second deals with the total number of tokens that can be minimal. In this article, the MIM problem is solved by the meta-heuristic particle swarm optimization (PSO). The proposed approach presents the advantages of PSO to satisfy the two previous constraints and find all possible combinations of minimum initial marking with the best computing time. This method, more efficient than conventional ones, has an excellent impact on the resolution of the MIM problem. We prove through a set of definitions, lemmas, and examples, the effectiveness of our approach.Keywords: marking, production system, labeled Petri nets, particle swarm optimization
Procedia PDF Downloads 1761139 Estimation of Location and Scale Parameters of Extended Exponential Distribution Based on Record Statistics
Authors: E. Krishna
Abstract:
An Extended form of exponential distribution using Marshall and Olkin method is introduced.The location scale family of these distributions is considered. For location scale free family, exact expressions for single and product moments of upper record statistics are derived. The mean, variance and covariance of record values are computed for various values of the shape parameter. Using these the BLUE's of location and scale parameters are derived.The variances and covariance of estimates are obtained.Through Monte Carlo simulation the condence intervals for location and scale parameters are constructed.The Best liner unbiased Predictor (BLUP) of future records are also discussed.Keywords: BLUE, BLUP, condence interval, Marshall-Olkin distribution, Monte Carlo simulation, prediction of future records, record statistics
Procedia PDF Downloads 4161138 Conceptual Understanding for the Adoption of Energy Assessment Methods in the United Arab Emirates Built Environment
Authors: Amna I. Shibeika, Batoul Y. Hittini, Tasneem B. Abd Bakri
Abstract:
Regulation and integration of public policy, economy, insurance industry, education, and construction stakeholders are the main contributors to achieve sustainable development. Building environmental assessment methods were introduced in the field to address issues such as global warming and conservation of natural resources. In the UAE, Estidama framework with its associated Pearl Building Rating System (PBRS) has been introduced in 2010 to address and spread sustainability practices within the country’s fast-growing built environment. Based on literature review of relevant studies investigating different project characteristics that influence sustainability outcomes, this paper presents a conceptual framework for understanding the adoption of PBRS in UAE projects. The framework also draws on Diffusion of Innovations theory to address the questions of how the assessment method is chosen in the first place and what is the impact of PBRS on the multi-disciplinary design and construction processes. The study highlights the mandatory nature of the adoption of PBRS for government buildings as well as imbedding Estidama principles within Abu Dhabi building codes as key factors for raising awareness about sustainable practices. Moreover, several project-related elements are addressed to understand their relationship with the adoption process, including project team collaboration; communication and coordination; levels of commitment and engagement; and the involvement of key actors as sustainability champions. This conceptualization of the adoption of PBRS in UAE projects contributes to the growing literature on the adoption of energy assessment tools and addresses the UAE vision is to be at the forefront of innovative sustainable development by 2021.Keywords: adoption, building assessment, design management, innovation, sustainability
Procedia PDF Downloads 1471137 The Opportunities and Challenges of Adopting International Financial Reporting Standards in Saudi Capital Market
Authors: Abdullah Almulhim
Abstract:
The International Accounting Standards Board (IASB) was established in 2001 to develop International Financial Reporting Standards (IFRS) that bring transparency, accountability, and efficiency to financial markets around the world. In addition, the IFRS provide a unified accounting language, which is especially important in the era of globalization. However, the establishment of a single set of high-quality international accounting standards is a matter of growing importance, as participants in the increasingly integrated world capital market demand comparability and transparency of financial reporting worldwide. Saudi Arabia became the 149th member of the World Trade Organization (WTO) on 11 December 2005, which has increased the need to convert to IFRS. Currently, the Saudi Arabian Monetary Authority (SAMA) requires banks and insurance companies in Saudi Arabia to report under IFRS Standards. However, until the end of 2016, SOCPA standards were applied to all other companies, listed and unlisted. From 2017, listed Saudi companies would be required to report under IFRS Standards as adopted by SOCPA effective 2017. This paper is to investigate the expected benefits gained and highlight the challenges faced by adopting IFRS by the listed companies in the Saudi Stock Exchange. Questionnaires were used as the main method of data collection. They were distributed to listed companies in the Saudi Capital Market. Data obtained through the questionnaires have been imported into SPSS statistical software for analysis. The expected results of this study will show the benefits of adopting IFRS by Saudi Listed Companies. However, this study will investigate the challenges faced by adopting IFRS by the listed companies in the Saudi Arabian Stock Market. Findings will be discussed later upon completion of initial analysis.Keywords: challenges, IAS, IFRS, opportunities, Saudi, SOCPA
Procedia PDF Downloads 2441136 Poisoning Admission in Pediatrics Benghazi Hospital in Libya: Three Years Review of Medical Record
Authors: Mudafara Bengleil
Abstract:
Estimation of the magnitude and causes of poisoning was the objective of the current study. A retrospective study of medical records of all poisoning children admitted to Benghazi Children Hospital in Libya from January 2008 up to December 2010. Number of children admitted was 244; the age ranged from less than one to 13 years old. Most of cases were admitted with mild symptom and the majority of them were boys. Only few cases admitted to intensive care unit and there was no mortality recorded through the period of study. Age group 1 to 3 years (50.8%) had the highest frequency of admission and the peak of admission was during summer. The most common cause of admission was due to ingestion of medication (53.69%), House hold product exposure (26.64%) was the second causes of admission while, 19.67% of admissions were due to Food poisoning. Almost all admitted cases were accidental and medicines were the most consumed substances in addition, improper storage of toxic agents were the first risk factor of poisoning. Present results indicated that, children poisoning seems to be a common pediatric care problem which need to control and prevent.Keywords: poisoning, children, hospital, medical
Procedia PDF Downloads 4191135 The Effect of a New Reimbursement Policy for Discharge Planning Service
Authors: Chueh Chi-An, Chan Hui-Ya
Abstract:
Background and Aim: National Health Insurance (NHI) Administration released a new reimbursement policy for hospital patients who received a superior discharge plan on April 1, 2016. Each case could be claimed 1,500 points for fee-of service with related documents. The policy is considered a solution to help reducing the crowding in the emergency department, the length of stay of hospital, unplanned readmission rate and unplanned ER visit. This study aim is to explore the effect of the new reimbursement policy for discharge planning service in a medical center. Methods: The discharge team explained to general wards the new policy and encouraged early assessment, communication and connecting to community care for patients. They stated the benefit from the policy and asked documenting for reimbursement claiming from April to May 2016. The imbursement fee of NHI declaration from June 2015 to October 2017 was collected. The indicators included hospital occupancy rate, hospital bed turnover rate, long-term hospitalization rate, and patients’ satisfaction were analyzed after the policy implemented. Results: The results showed that the amount of service declaration was increasing from 2 cases in February 2016 to 110 cases in October 2017, the application rate was increasing from 0.029% to 1.576% of all inpatient cases, and the average payment from NHI was around 148,500 NT dollars per month in 2017. There are no significant differences in the indicators among hospital occupancy rate, hospital bed turnover rate, long-term hospitalization rate, and patients’ satisfaction. Conclusion: To provide a good discharge plan require a specialized case manager, the new reimbursement policy is too complicated and the total fee-of-service hospital could claim is too limited to hiring one. The results suggest more strategies combine with the new reimbursement policy will be needed.Keywords: discharge planning, reimbursement, unplanned ER visit, readmission rate
Procedia PDF Downloads 1731134 Mixed Treatment (Physical-Chemical and Biological) of Ouled Fayet Landfill Leachates
Authors: O. Balamane-Zizi, L. M. Rouidi, A. Boukhrissa, N. Daas, H. Ait-amar
Abstract:
The objective of this study was to test the possibility of a mixed treatment (physical-chemical and biological) of Ouled Fayet leachates which date of 10 years and has a large fraction of hard COD that can be reduced by coagulation-flocculation. Previous batch tests showed the possibility of applying the physical-chemical and biological treatments separately; the removal efficiencies obtained in this case were not interesting. We propose, therefore, to test the possibility of a combined treatment, in order to improve the quality of the leachates. Estimation of the treatment’s effectiveness was done by analysis of some pollution parameters such as COD, suspended solids, and heavy metals (particularly iron and nickel). The main results obtained after the combination of treatments, show reduction rate of about 63% for COD, 73% for suspended solids and 80% for iron and nickel. We also noted an improvement in the turbidity of treated leachates.Keywords: landfill leachates, COD, physical-chemical treatment, biological treatment
Procedia PDF Downloads 4701133 Measuring Banking Risk
Authors: Mike Tsionas
Abstract:
The paper develops new indices of financial stability based on an explicit model of expected utility maximization by financial institutions subject to the classical technology restrictions of neoclassical production theory. The model can be estimated using standard econometric techniques, like GMM for dynamic panel data and latent factor analysis for the estimation of co-variance matrices. An explicit functional form for the utility function is not needed and we show how measures of risk aversion and prudence (downside risk aversion) can be derived and estimated from the model. The model is estimated using data for Eurozone countries and we focus particularly on (i) the use of the modeling approach as an “early warning mechanism”, (ii) the bank- and country-specific estimates of risk aversion and prudence (downside risk aversion), and (iii) the derivation of a generalized measure of risk that relies on loan-price uncertainty.Keywords: financial stability, banking, expected utility maximization, sub-prime crisis, financial crisis, eurozone, PIIGS
Procedia PDF Downloads 3481132 Localization Mobile Beacon Using RSSI
Authors: Sallama Resen, Celal Öztürk
Abstract:
Distance estimation between tow nodes has wide scope of surveillance and tracking applications. This paper suggests a Bluetooth Low Energy (BLE) technology as a media for transceiver and receiver signal in small indoor areas. As an example, BLE communication technologies used in child safety domains. Local network is designed to detect child position in indoor school area consisting Mobile Beacons (MB), Access Points (AP) and Smart Phones (SP) where MBs stuck in children’s shoes as wearable sensors. This paper presents a technique that can detect mobile beacons’ position and help finding children’s location within dynamic environment. By means of bluetooth beacons that are attached to child’s shoes, the distance between the MB and teachers SP is estimated with an accuracy of less than one meter. From the simulation results, it is shown that high accuracy of position coordinates are achieved for multi-mobile beacons in different environments.Keywords: bluetooth low energy, child safety, mobile beacons, received signal strength
Procedia PDF Downloads 3431131 Robot Movement Using the Trust Region Policy Optimization
Authors: Romisaa Ali
Abstract:
The Policy Gradient approach is one of the deep reinforcement learning families that combines deep neural networks (DNN) with reinforcement learning RL to discover the optimum of the control problem through experience gained from the interaction between the robot and its surroundings. In contrast to earlier policy gradient algorithms, which were unable to handle these two types of error because of over-or under-estimation introduced by the deep neural network model, this article will discuss the state-of-the-art SOTA policy gradient technique, trust region policy optimization (TRPO), by applying this method in various environments compared to another policy gradient method, the Proximal Policy Optimization (PPO), to explain their robust optimization, using this SOTA to gather experience data during various training phases after observing the impact of hyper-parameters on neural network performance.Keywords: deep neural networks, deep reinforcement learning, proximal policy optimization, state-of-the-art, trust region policy optimization
Procedia PDF Downloads 1681130 Nonparametric Specification Testing for the Drift of the Short Rate Diffusion Process Using a Panel of Yields
Authors: John Knight, Fuchun Li, Yan Xu
Abstract:
Based on a new method of the nonparametric estimator of the drift function, we propose a consistent test for the parametric specification of the drift function in the short rate diffusion process using observations from a panel of yields. The test statistic is shown to follow an asymptotic normal distribution under the null hypothesis that the parametric drift function is correctly specified, and converges to infinity under the alternative. Taking the daily 7-day European rates as a proxy of the short rate, we use our test to examine whether the drift of the short rate diffusion process is linear or nonlinear, which is an unresolved important issue in the short rate modeling literature. The testing results indicate that none of the drift functions in this literature adequately captures the dynamics of the drift, but nonlinear specification performs better than the linear specification.Keywords: diffusion process, nonparametric estimation, derivative security price, drift function and volatility function
Procedia PDF Downloads 3661129 Special Case of Trip Distribution Model and Its Use for Estimation of Detailed Transport Demand in the Czech Republic
Authors: Jiri Dufek
Abstract:
The national model of the Czech Republic has been modified in a detailed way to get detailed travel demand in the municipality level (cities, villages over 300 inhabitants). As a technique for this detailed modelling, three-dimensional procedure for calibrating gravity models, was used. Besides of zone production and attraction, which is usual in gravity models, the next additional parameter for trip distribution was introduced. Usually it is called by “third dimension”. In the model, this parameter is a demand between regions. The distribution procedure involved calculation of appropriate skim matrices and its multiplication by three coefficients obtained by iterative balancing of production, attraction and third dimension. This type of trip distribution was processed in R-project and the results were used in the Czech Republic transport model, created in PTV Vision. This process generated more precise results in local level od the model (towns, villages)Keywords: trip distribution, three dimension, transport model, municipalities
Procedia PDF Downloads 1251128 Estimation of PM2.5 Emissions and Source Apportionment Using Receptor and Dispersion Models
Authors: Swetha Priya Darshini Thammadi, Sateesh Kumar Pisini, Sanjay Kumar Shukla
Abstract:
Source apportionment using Dispersion model depends primarily on the quality of Emission Inventory. In the present study, a CMB receptor model has been used to identify the sources of PM2.5, while the AERMOD dispersion model has been used to account for missing sources of PM2.5 in the Emission Inventory. A statistical approach has been developed to quantify the missing sources not considered in the Emission Inventory. The inventory of each grid was improved by adjusting emissions based on road lengths and deficit in measured and modelled concentrations. The results showed that in CMB analyses, fugitive sources - soil and road dust - contribute significantly to ambient PM2.5 pollution. As a result, AERMOD significantly underestimated the ambient air concentration at most locations. The revised Emission Inventory showed a significant improvement in AERMOD performance which is evident through statistical tests.Keywords: CMB, GIS, AERMOD, PM₂.₅, fugitive, emission inventory
Procedia PDF Downloads 3371127 Short and Long Crack Growth Behavior in Ferrite Bainite Dual Phase Steels
Authors: Ashok Kumar, Shiv Brat Singh, Kalyan Kumar Ray
Abstract:
There is growing awareness to design steels against fatigue damage Ferrite martensite dual-phase steels are known to exhibit favourable mechanical properties like good strength, ductility, toughness, continuous yielding, and high work hardening rate. However, dual-phase steels containing bainite as second phase are potential alternatives for ferrite martensite steels for certain applications where good fatigue property is required. Fatigue properties of dual phase steels are popularly assessed by the nature of variation of crack growth rate (da/dN) with stress intensity factor range (∆K), and the magnitude of fatigue threshold (∆Kth) for long cracks. There exists an increased emphasis to understand not only the long crack fatigue behavior but also short crack growth behavior of ferrite bainite dual phase steels. The major objective of this report is to examine the influence of microstructures on the short and long crack growth behavior of a series of developed dual-phase steels with varying amounts of bainite and. Three low carbon steels containing Nb, Cr and Mo as microalloying elements steels were selected for making ferrite-bainite dual-phase microstructures by suitable heat treatments. The heat treatment consisted of austenitizing the steel at 1100°C for 20 min, cooling at different rates in air prior to soaking these in a salt bath at 500°C for one hour, and finally quenching in water. Tensile tests were carried out on 25 mm gauge length specimens with 5 mm diameter using nominal strain rate 0.6x10⁻³ s⁻¹ at room temperature. Fatigue crack growth studies were made on a recently developed specimen configuration using a rotating bending machine. The crack growth was monitored by interrupting the test and observing the specimens under an optical microscope connected to an Image analyzer. The estimated crack lengths (a) at varying number of cycles (N) in different fatigue experiments were analyzed to obtain log da/dN vs. log °∆K curves for determining ∆Kthsc. The microstructural features of these steels have been characterized and their influence on the near threshold crack growth has been examined. This investigation, in brief, involves (i) the estimation of ∆Kthsc and (ii) the examination of the influence of microstructure on short and long crack fatigue threshold. The maximum fatigue threshold values obtained from short crack growth experiments on various specimens of dual-phase steels containing different amounts of bainite are found to increase with increasing bainite content in all the investigated steels. The variations of fatigue behavior of the selected steel samples have been explained with the consideration of varying amounts of the constituent phases and their interactions with the generated microstructures during cyclic loading. Quantitative estimation of the different types of fatigue crack paths indicates that the propensity of a crack to pass through the interfaces depends on the relative amount of the microstructural constituents. The fatigue crack path is found to be predominantly intra-granular except for the ones containing > 70% bainite in which it is predominantly inter-granular.Keywords: bainite, dual phase steel, fatigue crack growth rate, long crack fatigue threshold, short crack fatigue threshold
Procedia PDF Downloads 2011126 Estimating Tree Height and Forest Classification from Multi Temporal Risat-1 HH and HV Polarized Satellite Aperture Radar Interferometric Phase Data
Authors: Saurav Kumar Suman, P. Karthigayani
Abstract:
In this paper the height of the tree is estimated and forest types is classified from the multi temporal RISAT-1 Horizontal-Horizontal (HH) and Horizontal-Vertical (HV) Polarised Satellite Aperture Radar (SAR) data. The novelty of the proposed project is combined use of the Back-scattering Coefficients (Sigma Naught) and the Coherence. It uses Water Cloud Model (WCM). The approaches use two main steps. (a) Extraction of the different forest parameter data from the Product.xml, BAND-META file and from Grid-xxx.txt file come with the HH & HV polarized data from the ISRO (Indian Space Research Centre). These file contains the required parameter during height estimation. (b) Calculation of the Vegetation and Ground Backscattering, Coherence and other Forest Parameters. (c) Classification of Forest Types using the ENVI 5.0 Tool and ROI (Region of Interest) calculation.Keywords: RISAT-1, classification, forest, SAR data
Procedia PDF Downloads 4041125 Axle Load Estimation of Moving Vehicles Using BWIM Technique
Authors: Changgil Lee, Seunghee Park
Abstract:
Although vehicle driving test for the development of BWIM system is necessary, but it needs much cost and time in addition application of various driving condition. Thus, we need the numerical-simulation method resolving the cost and time problems of vehicle driving test and the way of measuring response of bridge according to the various driving condition. Using the precision analysis model reflecting the dynamic characteristic is contributed to increase accuracy in numerical simulation. In this paper, we conduct a numerical simulation to apply precision analysis model, which reflects the dynamic characteristic of bridge using Bridge Weigh-in-Motion technique and suggest overload vehicle enforcement technology using precision analysis model.Keywords: bridge weigh-in-motion(BWIM) system, precision analysis model, dynamic characteristic of bridge, numerical simulation
Procedia PDF Downloads 2901124 Optical Flow Localisation and Appearance Mapping (OFLAAM) for Long-Term Navigation
Authors: Daniel Pastor, Hyo-Sang Shin
Abstract:
This paper presents a novel method to use optical flow navigation for long-term navigation. Unlike standard SLAM approaches for augmented reality, OFLAAM is designed for Micro Air Vehicles (MAV). It uses an optical flow camera pointing downwards, an IMU and a monocular camera pointing frontwards. That configuration avoids the expensive mapping and tracking of the 3D features. It only maps these features in a vocabulary list by a localization module to tackle the loss of the navigation estimation. That module, based on the well-established algorithm DBoW2, will be also used to close the loop and allow long-term navigation in confined areas. That combination of high-speed optical flow navigation with a low rate localization algorithm allows fully autonomous navigation for MAV, at the same time it reduces the overall computational load. This framework is implemented in ROS (Robot Operating System) and tested attached to a laptop. A representative scenarios is used to analyse the performance of the system.Keywords: vision, UAV, navigation, SLAM
Procedia PDF Downloads 6051123 The Competitive Newsvendor Game with Overestimated Demand
Authors: Chengli Liu, C. K. M. Lee
Abstract:
The tradition competitive newsvendor game assumes decision makers are rational. However, there are behavioral biases when people make decisions, such as loss aversion, mental accounting and overconfidence. Overestimation of a subject’s own performance is one type of overconfidence. The objective of this research is to analyze the impact of the overestimated demand in the newsvendor competitive game with two players. This study builds a competitive newsvendor game model where newsvendors have private information of their demands, which is overestimated. At the same time, demands of each newsvendor forecasted by a third party institution are available. This research shows that the overestimation leads to demand steal effect, which reduces the competitor’s order quantity. However, the overall supply of the product increases due to overestimation. This study illustrates the boundary condition for the overestimated newsvendor to have the equilibrium order drop due to the demand steal effect from the other newsvendor. A newsvendor who has higher critical fractile will see its equilibrium order decrease with the drop of estimation level from the other newsvendor.Keywords: bias, competing newsvendor, Nash equilibrium, overestimation
Procedia PDF Downloads 2591122 Diffusion Adaptation Strategies for Distributed Estimation Based on the Family of Affine Projection Algorithms
Authors: Mohammad Shams Esfand Abadi, Mohammad Ranjbar, Reza Ebrahimpour
Abstract:
This work presents the distributed processing solution problem in a diffusion network based on the adapt then combine (ATC) and combine then adapt (CTA)selective partial update normalized least mean squares (SPU-NLMS) algorithms. Also, we extend this approach to dynamic selection affine projection algorithm (DS-APA) and ATC-DS-APA and CTA-DS-APA are established. The purpose of ATC-SPU-NLMS and CTA-SPU-NLMS algorithm is to reduce the computational complexity by updating the selected blocks of weight coefficients at every iteration. In CTA-DS-APA and ATC-DS-APA, the number of the input vectors is selected dynamically. Diffusion cooperation strategies have been shown to provide good performance based on these algorithms. The good performance of introduced algorithm is illustrated with various experimental results.Keywords: selective partial update, affine projection, dynamic selection, diffusion, adaptive distributed networks
Procedia PDF Downloads 705