Search results for: score prediction
3132 Challenges and Implications for Choice of Caesarian Section and Natural Birth in Pregnant Women with Pre-Eclampsia in Western Nigeria
Authors: F. O. Adeosun, I. O. Orubuloye, O. O. Babalola
Abstract:
Although caesarean section has greatly improved obstetric care throughout the world, in developing countries there is a great aversion to caesarean section. This study was carried out to examine the rate at which pregnant women with pre-eclampsia choose caesarean section over natural birth. A cross-sectional study was conducted among 500 pre-eclampsia antenatal clients seen at the States University Teaching Hospitals in the last one year. The sample selection was purposive. Information on their educational background, beliefs and attitudes were collected. Data analysis was presented using simple percentages. Out of 500 women studied, 38% favored caesarean section while 62% were against it. About 89% of them understood what caesarean section is, 57.3% of those who understood what caesarean section is will still not choose it as an option. Over 85% of the women believed caesarean section is done for medical reasons. If caesarean section is given as an option for childbirth, 38% would go for it, 29% would try religious intervention, 5.5% would not choose it because of fear, while 27.5% would reject it because they believe it is culturally wrong. Majority of respondents (85%) who favored caesarean delivery are aware of the risk attached to choosing virginal birth but go an extra mile in sourcing funds for a caesarean session while over 64% cannot afford the cost of caesarean delivery. It is therefore pertinent to encourage research in prediction methods and prevention of occurrence, since this would assist patients to plan on how to finance treatment.Keywords: caesarean section, choice, cost, pre eclampsia, prediction methods
Procedia PDF Downloads 3223131 Solar Radiation Time Series Prediction
Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs
Abstract:
A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled DNI field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.Keywords: artificial neural networks, resilient propagation, solar radiation, time series forecasting
Procedia PDF Downloads 3853130 The Non-Motor Symptoms of Filipino Patients with Parkinson’s Disease
Authors: Cherrie Mae S. Sia, Noel J. Belonguel, Jarungchai Anton S. Vatanagul
Abstract:
Background: Parkinson’s disease (PD) is a chronic progressive, neurodegenerative disorder known for its motor symptoms such as bradykinesia, resting tremor, muscle rigidity, and postural instability. Patients with PD also experience non-motor symptoms (NMS) such as depression, fatigue, and sleep disturbances that are most of the time unrecognized by clinicians. This may be due to the lack of spontaneous reports from the patients or partly because of the lack of systematic questioning from the healthcare professional. There is limited data with regards to these NMS especially that of Filipino patients with PD. Objectives: This study aims to determine the non-motor symptoms of Filipino patients with Parkinson’s disease. Materials and Methods: This is a prospective, cohort study involving thirty-four patients of Filipino-descent diagnosed with PD in three out-patient clinics in Cebu City from April to September 2014. Each patient was interviewed using the Non-Motor Symptom Scale (NMSS). A Cebuano version of the NMSS was also provided for the non-English speaking patients. Interview time was approximately ten to fifteen minutes for each respondent. Results: Of the thirty-four patients with Parkinson’s disease, majority was noted to be males (N=19) and the disease was noted to be more prevalent in patients with a mean age of 62 (SD±9) years old. Hypertension (59%) and diabetes mellitus (29%) were the common co-morbidities in the study population. All patients presented more than one NMS, with insomnia (41.2%), poor memory (23.5%) and depression (14.7%) being the first non-motor symptoms to occur. Symptoms involving mood/cognition (mean=2.21), and attention/memory (mean=2.05) were noted to be the most frequent and of moderate severity. Based on the NMSS, the symptoms that were noted to be mild and often to occur were those that involved the mood/cognition (score=3.84), attention/memory (score=3.50), and sleep/fatigue (score=3.00) domains. Levodopa-Carbidopa, Ropinirole, and Pramipexole were the most frequently used medications in the study population. Conclusion: Non-motor symptoms (NMS) are common in patients with Parkinson’s disease (PD). They appear at the time of diagnosis of PD or even before the motor symptoms manifest. The earliest non-motor symptoms to occur are insomnia, poor memory, and depression. Those pertaining to mood/cognition and attention/memory are the most frequent NMS and they are of moderate severity. Identifying these NMS by doing a questionnaire-guided interview such as the Non-Motor Symptom Scale (NMSS) before they can become more severe and affect the patient’s quality of life is a must for every clinician caring for a PD patient. Early treatment and control of these NMS can then be given, hence, improving the patient’s outcome and prognosis.Keywords: non motor symptoms, Parkinson's Disease, insomnia, depression
Procedia PDF Downloads 4483129 Combining Multiscale Patterns of Weather and Sea States into a Machine Learning Classifier for Mid-Term Prediction of Extreme Rainfall in North-Western Mediterranean Sea
Authors: Pinel Sebastien, Bourrin François, De Madron Du Rieu Xavier, Ludwig Wolfgang, Arnau Pedro
Abstract:
Heavy precipitation constitutes a major meteorological threat in the western Mediterranean. Research has investigated the relationship between the states of the Mediterranean Sea and the atmosphere with the precipitation for short temporal windows. However, at a larger temporal scale, the precursor signals of heavy rainfall in the sea and atmosphere have drawn little attention. Moreover, despite ongoing improvements in numerical weather prediction, the medium-term forecasting of rainfall events remains a difficult task. Here, we aim to investigate the influence of early-spring environmental parameters on the following autumnal heavy precipitations. Hence, we develop a machine learning model to predict extreme autumnal rainfall with a 6-month lead time over the Spanish Catalan coastal area, based on i) the sea pattern (main current-LPC and Sea Surface Temperature-SST) at the mesoscale scale, ii) 4 European weather teleconnection patterns (NAO, WeMo, SCAND, MO) at synoptic scale, and iii) the hydrological regime of the main local river (Rhône River). The accuracy of the developed model classifier is evaluated via statistical analysis based on classification accuracy, logarithmic and confusion matrix by comparing with rainfall estimates from rain gauges and satellite observations (CHIRPS-2.0). Sensitivity tests are carried out by changing the model configuration, such as sea SST, sea LPC, river regime, and synoptic atmosphere configuration. The sensitivity analysis suggests a negligible influence from the hydrological regime, unlike SST, LPC, and specific teleconnection weather patterns. At last, this study illustrates how public datasets can be integrated into a machine learning model for heavy rainfall prediction and can interest local policies for management purposes.Keywords: extreme hazards, sensitivity analysis, heavy rainfall, machine learning, sea-atmosphere modeling, precipitation forecasting
Procedia PDF Downloads 1383128 Analysis and Prediction of COVID-19 by Using Recurrent LSTM Neural Network Model in Machine Learning
Authors: Grienggrai Rajchakit
Abstract:
As we all know that coronavirus is announced as a pandemic in the world by WHO. It is speeded all over the world with few days of time. To control this spreading, every citizen maintains social distance and self-preventive measures are the best strategies. As of now, many researchers and scientists are continuing their research in finding out the exact vaccine. The machine learning model finds that the coronavirus disease behaves in an exponential manner. To abolish the consequence of this pandemic, an efficient step should be taken to analyze this disease. In this paper, a recurrent neural network model is chosen to predict the number of active cases in a particular state. To make this prediction of active cases, we need a database. The database of COVID-19 is downloaded from the KAGGLE website and is analyzed by applying a recurrent LSTM neural network with univariant features to predict the number of active cases of patients suffering from the corona virus. The downloaded database is divided into training and testing the chosen neural network model. The model is trained with the training data set and tested with a testing dataset to predict the number of active cases in a particular state; here, we have concentrated on Andhra Pradesh state.Keywords: COVID-19, coronavirus, KAGGLE, LSTM neural network, machine learning
Procedia PDF Downloads 1603127 Multivariate Output-Associative RVM for Multi-Dimensional Affect Predictions
Authors: Achut Manandhar, Kenneth D. Morton, Peter A. Torrione, Leslie M. Collins
Abstract:
The current trends in affect recognition research are to consider continuous observations from spontaneous natural interactions in people using multiple feature modalities, and to represent affect in terms of continuous dimensions, incorporate spatio-temporal correlation among affect dimensions, and provide fast affect predictions. These research efforts have been propelled by a growing effort to develop affect recognition system that can be implemented to enable seamless real-time human-computer interaction in a wide variety of applications. Motivated by these desired attributes of an affect recognition system, in this work a multi-dimensional affect prediction approach is proposed by integrating multivariate Relevance Vector Machine (MVRVM) with a recently developed Output-associative Relevance Vector Machine (OARVM) approach. The resulting approach can provide fast continuous affect predictions by jointly modeling the multiple affect dimensions and their correlations. Experiments on the RECOLA database show that the proposed approach performs competitively with the OARVM while providing faster predictions during testing.Keywords: dimensional affect prediction, output-associative RVM, multivariate regression, fast testing
Procedia PDF Downloads 2863126 Transition Pay vs. Liquidity Holdings: A Comparative Analysis on Consumption Smoothing using Bank Transaction Data
Authors: Nora Neuteboom
Abstract:
This study investigates household financial behaviors during unemployment spells in the Netherlands using high-frequency transaction data through a event study specification integrating propensity score matching. In our specification, we contrasted treated individuals, who underwent job loss, with non-treated individuals possessing comparable financial characteristics. The initial onset of unemployment triggers a substantial surge in income, primarily attributed to transition payments, but swiftly drops post-unemployment, with unemployment benefits covering slightly over half of former salary earnings. Despite a re-employment rate of around half within six months, the treatment group experiences a persistent average monthly earnings reduction of approximately 600 EUR by month. Spending patterns fluctuate significantly, surging before unemployment due to transition payments and declining below non-treated individuals post-unemployment, indicating challenges to fully smooth consumption after job loss. Furthermore, our study disentangles the effects of transition payments and liquidity holdings on spending, revealing that transition payments exert a more pronounced and prolonged impact on consumption smoothing than liquidity holdings. Transition payments significantly stimulate spending, particularly in pin and iDEAL categories, contrasting a much smaller relative spending impact of liquidity holdings.Keywords: household consumption, transaction data, big data, propensity score matching
Procedia PDF Downloads 253125 Clinical Risk Score for Mortality and Predictors of Severe Disease in Adult Patients with Dengue
Authors: Siddharth Jain, Abhenil Mittal, Surendra Kumar Sharma
Abstract:
Background: With its recent emergence and re-emergence, dengue has become a major international public health concern, imposing significant financial burden especially in developing countries. Despite aggressive control measures in place, India experienced one of its largest outbreaks in 2015 with Delhi being most severely affected. There is a lack of reliable predictors of disease severity and mortality in dengue. The present study was carried out to identify these predictors during the 2015 outbreak. Methods: This prospective observational study conducted at an apex tertiary care center in Delhi, India included confirmed adult dengue patients admitted between August-November 2015. Patient demographics, clinical details, and laboratory findings were recorded in a predesigned proforma. Appropriate statistical tests were used to summarize and compare the clinical and laboratory characteristics and derive predictors of mortality and severe disease, while developing a clinical risk score for mortality. Serotype analysis was also done for 75 representative samples to identify the dominant serotypes. Results: Data of 369 patients were analyzed (mean age 30.9 years; 67% males). Of these, 198 (54%) patients had dengue fever, 125 (34%) had dengue hemorrhagic fever (DHF Grade 1,2)and 46 (12%) developed dengue shock syndrome (DSS). Twenty two (6%) patients died. Late presentation to the hospital (≥5 days after onset) and dyspnoea at rest were identified as independent predictors of severe disease. Age ≥ 24 years, dyspnoea at rest and altered sensorium were identified as independent predictors of mortality. A clinical risk score was developed (12*age + 14*sensorium + 10*dyspnoea) which, if ≥ 22, predicted mortality with a high sensitivity (81.8%) and specificity (79.2%). The predominant serotypes in Delhi (2015) were DENV-2 and DENV-4. Conclusion: Age ≥ 24 years, dyspnoea at rest and altered sensorium were identified as independent predictors of mortality. Platelet counts did not determine the outcome in dengue patients. Timely referral/access to health care is important. Development and use of validated predictors of disease severity and simple clinical risk scores, which can be applied in all healthcare settings, can help minimize mortality and morbidity, especially in resource limited settings.Keywords: dengue, mortality, predictors, severity
Procedia PDF Downloads 3083124 Examining the Relationship between Preferred Leadership Style and Motivation of Female Volleyball Players in Ethiopian Primer League Clubs
Authors: Meseret Mulugeta, Alemmebrat Kiflu, Belaynehchikle
Abstract:
The purpose of the present study was to examine the preferred leadership style and motivation of premier league volleyball players. The sample encompassed 46 female premier league volleyball players whose ages ranged between 15 and 35 years. The data were collected using standardized questionnaires. The questionnaires were distributed to 46 female players from five volleyball clubs in the Premier League. To evaluate the motivational level of the players, the Sports Motivation Scale (SMS-6) was used. The leadership scale for sport was used to evaluate leadership. Descriptive statistics and the person correlation coefficient (P <0.05) were used to validate the relationship between leadership style and motivation. The result showed that there is a meaningful and significant relationship between leadership style and motivation. Concerning preferred coaching styles, the most preferred style was training and instruction, with a mean score of 4.10, and the least preferred style was autocratic, with a mean score of 3.37. The result of the Pearson correlation coefficient showed that the correlation between motivation types and leadership styles showed that motivation was significantly and positively correlated with all independent variables except autocratic leadership style, which is negatively correlated with motivation. This study’s nobility is to provide evidence for the most effective coaching to practice the training and instruction behaviour and social support behaviour leadership styles and refrain from using the autocratic leadership style.Keywords: autocratic, training and instruction, motivation, leadership style
Procedia PDF Downloads 843123 Price Prediction Line, Investment Signals and Limit Conditions Applied for the German Financial Market
Authors: Cristian Păuna
Abstract:
In the first decades of the 21st century, in the electronic trading environment, algorithmic capital investments became the primary tool to make a profit by speculations in financial markets. A significant number of traders, private or institutional investors are participating in the capital markets every day using automated algorithms. The autonomous trading software is today a considerable part in the business intelligence system of any modern financial activity. The trading decisions and orders are made automatically by computers using different mathematical models. This paper will present one of these models called Price Prediction Line. A mathematical algorithm will be revealed to build a reliable trend line, which is the base for limit conditions and automated investment signals, the core for a computerized investment system. The paper will guide how to apply these tools to generate entry and exit investment signals, limit conditions to build a mathematical filter for the investment opportunities, and the methodology to integrate all of these in automated investment software. The paper will also present trading results obtained for the leading German financial market index with the presented methods to analyze and to compare different automated investment algorithms. It was found that a specific mathematical algorithm can be optimized and integrated into an automated trading system with good and sustained results for the leading German Market. Investment results will be compared in order to qualify the presented model. In conclusion, a 1:6.12 risk was obtained to reward ratio applying the trigonometric method to the DAX Deutscher Aktienindex on 24 months investment. These results are superior to those obtained with other similar models as this paper reveal. The general idea sustained by this paper is that the Price Prediction Line model presented is a reliable capital investment methodology that can be successfully applied to build an automated investment system with excellent results.Keywords: algorithmic trading, automated trading systems, high-frequency trading, DAX Deutscher Aktienindex
Procedia PDF Downloads 1313122 Reliability and Construct Validity of the Early Dementia Questionnaire (EDQ)
Authors: A. Zurraini, Syed Alwi Sar, H. Helmy, H. Nazeefah
Abstract:
Early Dementia Questionnaire (EDQ) was developed as a screening tool to detect patients with early dementia in primary care. It was developed based on 20 symptoms of dementia. From a preliminary study, EDQ had been shown to be a promising alternative for screening of early dementia. This study was done to further test on EDQ’s reliability and validity. Using a systematic random sampling, 200 elderly patients attending primary health care centers in Kuching, Sarawak had consented to participate in the study and were administered the EDQ. Geriatric Depression Scale (GDS) was used to exclude patients with depression. Those who scored >21 MMSE, were retested using the EDQ. Reliability was determined by Cronbach’s alpha for internal consistency and construct validity was assessed using confirmatory factor analysis (principle component with varimax rotation). The result showed that the overall Cronbach’s alpha coefficient was good which was 0.874. Confirmatory factor analysis on 4 factors indicated that the Cronbach’s alpha for each domain were acceptable with memory (0.741), concentration (0.764), emotional and physical symptoms (0.754) and lastly sleep and environment (0.720). Pearson correlation coefficient between the first EDQ score and the retest EDQ score among those with MMSE of >21 showed a very strong, positive correlation between the two variables, r = 0.992, N=160, P <0.001. The results of the validation study showed that Early Dementia Questionnaire (EDQ) is a valid and reliable tool to be used as a screening tool to detect early dementia in primary care.Keywords: Early Dementia Questionnaire (EDQ), screening, primary care, construct validity
Procedia PDF Downloads 4373121 Mapping of Adrenal Gland Diseases Research in Middle East Countries: A Scientometric Analysis, 2007-2013
Authors: Zahra Emami, Mohammad Ebrahim Khamseh, Nahid Hashemi Madani, Iman Kermani
Abstract:
The aim of the study was to map scientific research on adrenal gland diseases in the Middle East countries through the Web of Science database using scientometric analysis. Data were analyzed with Excel software; and HistCite was used for mapping of the scientific texts. In this study, from a total of 268 retrieved records, 1125 authors from 328 institutions published their texts in 138 journals. Among 17 Middle East countries, Turkey ranked first with 164 documents (61.19%), Israel ranked second with 47 documents (15.53%) and Iran came in the third place with 26 documents. Most of the publications (185 documents, 69.2%) were articles. Among the universities of the Middle East, Istanbul University had the highest science production rate (9.7%). The Journal of Clinical Endocrinology & Metabolism had the highest TGCS (243 citations). In the scientific mapping, 7 clusters were formed based on TLCS (Total Local Citation Score) & TGCS (Total Global Citation Score). considering the study results, establishment of scientific connections and collaboration with other countries and use of publications on adrenal gland diseases from high ranking universities can help in the development of this field and promote the medical practice in this regard. Moreover, investigation of the formed clusters in relation to Congenital Hyperplasia and puberty related disorders can be research priorities for investigators.Keywords: mapping, scientific research, adrenal gland diseases, scientometric
Procedia PDF Downloads 2743120 Long-Term Deformations of Concrete Structures
Authors: Abdelmalk Brahma
Abstract:
Drying is a phenomenon that accompanies the hardening of hydraulic materials. It can, if it is not prevented, lead to significant spontaneous dimensional variations, which the cracking is one of events. In this context, cracking promotes the transport of aggressive agents in the material, which can affect the durability of concrete structures. Drying shrinkage develops over a long period almost 30 years although most occurred during the first three years. Drying shrinkage stabilizes when the material is water balance with the external environment. The drying shrinkage of cementitious materials is due to the formation of capillary tensions in the pores of the material, which has the consequences of bringing the solid walls of each other. Knowledge of the shrinkage characteristics of concrete is a necessary starting point in the design of structures for crack control. Such knowledge will enable the designer to estimate the probable shrinkage movement in reinforced or prestressed concrete and the appropriate steps can be taken in design to accommodate this movement. This study is concerned the modelling of drying shrinkage of the hydraulic materials and the prediction of the rate of spontaneous deformations of hydraulic materials during hardening. The model developed takes in consideration the main factors affecting drying shrinkage. There was agreement between drying shrinkage predicted by the developed model and experimental results. In last we show that developed model describe the evolution of the drying shrinkage of high performances concretes correctly.Keywords: drying, hydraulic concretes, shrinkage, modeling, prediction
Procedia PDF Downloads 2643119 Selection of Designs in Ordinal Regression Models under Linear Predictor Misspecification
Authors: Ishapathik Das
Abstract:
The purpose of this article is to find a method of comparing designs for ordinal regression models using quantile dispersion graphs in the presence of linear predictor misspecification. The true relationship between response variable and the corresponding control variables are usually unknown. Experimenter assumes certain form of the linear predictor of the ordinal regression models. The assumed form of the linear predictor may not be correct always. Thus, the maximum likelihood estimates (MLE) of the unknown parameters of the model may be biased due to misspecification of the linear predictor. In this article, the uncertainty in the linear predictor is represented by an unknown function. An algorithm is provided to estimate the unknown function at the design points where observations are available. The unknown function is estimated at all points in the design region using multivariate parametric kriging. The comparison of the designs are based on a scalar valued function of the mean squared error of prediction (MSEP) matrix, which incorporates both variance and bias of the prediction caused by the misspecification in the linear predictor. The designs are compared using quantile dispersion graphs approach. The graphs also visually depict the robustness of the designs on the changes in the parameter values. Numerical examples are presented to illustrate the proposed methodology.Keywords: model misspecification, multivariate kriging, multivariate logistic link, ordinal response models, quantile dispersion graphs
Procedia PDF Downloads 3933118 Aerodynamic Prediction and Performance Analysis for Mars Science Laboratory Entry Vehicle
Authors: Tang Wei, Yang Xiaofeng, Gui Yewei, Du Yanxia
Abstract:
Complex lifting entry was selected for precise landing performance during the Mars Science Laboratory entry. This study aims to develop the three-dimensional numerical method for precise computation and the surface panel method for rapid engineering prediction. Detailed flow field analysis for Mars exploration mission was performed by carrying on a series of fully three-dimensional Navier-Stokes computations. The static aerodynamic performance was then discussed, including the surface pressure, lift and drag coefficient, lift-to-drag ratio with the numerical and engineering method. Computation results shown that the shock layer is thin because of lower effective specific heat ratio, and that calculated results from both methods agree well with each other, and is consistent with the reference data. Aerodynamic performance analysis shows that CG location determines trim characteristics and pitch stability, and certain radially and axially shift of the CG location can alter the capsule lifting entry performance, which is of vital significance for the aerodynamic configuration des0ign and inner instrument layout of the Mars entry capsule.Keywords: Mars entry capsule, static aerodynamics, computational fluid dynamics, hypersonic
Procedia PDF Downloads 2993117 The Relationship between Caregiver Burden and Life Satisfaction of Caregivers of Elderly Individuals
Authors: Guler Duru Asiret, Cemile Kutmec Yilmaz, Gulcan Bagcivan, Tugce Turten Kaymaz
Abstract:
This descriptive study was conducted to determine the relationship between caregiver burden and life satisfaction who give home care to elderly individuals. The sample was recruited from the internal medicine unit and palliative unit of a state hospital located in Turkey on June 2016-2017. The study sample consisted of 231 primary caregiver family member, who met the eligibility criteria and agreed to participate in the study. The inclusion criteria were as follows: inpatient’s caregiver, primary caregiver for at least 3 months, at least 18 years of age, no communication problem or mental disorder. Data were gathered using an Information Form prepared by the researchers based on previous literature, the Zarit Burden Interview (ZBI), and the Satisfaction with Life Scale (SWLS). The data were analyzed using IBM SPSS Statistics software version 20.0 (SPSS, Chicago, IL). The descriptive characteristics of the participant were analyzed using number, percentage, mean and standard deviation. The suitability of normal distribution of scale scores was analyzed using Kolmogorov-Smirnov and Shapiro-Wilk test. Relationships between scales were analyzed using Spearman’s rank-correlation coefficient. P values less than 0.05 were considered to be significant. The average age of the caregivers was 50.11±13.46 (mean±SD) years. Of the caregivers, 76.2% were women, 45% were primary school graduates, 89.2% were married, 38.1% were the daughters of their patients. Among these, 52.4% evaluated their income level to be good. Of them, 53.6% had been giving care less than 2 years. The patients’ average age was 77.1±8.0 years. Of the patients, 55.8% were women, 56.3% were illeterate, 70.6% were married, and 97.4% had at least one chronic disease. The mean Zarit Burden Interview score was 35.4±1.5 and the Satisfaction with Life Scale score was 20.6±6.8. A negative relationship was found between the patients’ score average on the ZBI, and on the SWLS (r= -0.438, p=0.000). The present study determined that the caregivers have a moderate caregiver burden and the life satisfaction. And the life satisfaction of caregivers decreased as their caregiver burden increase. In line with the results obtained from the research, it is recommended that to increase the effectiveness of discharge training, to arrange training and counseling programs for caregivers to cope with the problems they experienced, to monitor the caregivers at regular intervals and to provide necessary institutional support.Keywords: caregiver burden, family caregivers, nurses, satisfaction
Procedia PDF Downloads 1763116 Developing a Staff Education Program on Subglottic Suction Endotracheal Tubes
Authors: Emily Toon
Abstract:
Nurses play a critical role in the prevention of ventilator-associated pneumonia through the maintenance of endotracheal tubes and use of subglottic secretion drainage via subglottic suctioning endotracheal tubes. The purpose of this evidence based practice project is to develop a staff education program on subglottic suctioning endotracheal tubes for critical care nurses at Middlesex Health with the aim of determining and documenting increased knowledge and/or practice change. The setting included registered nurses within Middlesex Health’s critical care unit who were recruited to complete a pre-test (n=14), view a presentation, and complete a post-test (n=10). Average pre-test scores were compared to average post-test scores to determine an increase in knowledge and/or practice change. The overall mean pre-test score was 59.7 percent, compared with the mean post-test score of 88.1 percent. Pre- and post-test scores were unmatched, so statistical significance could not be determined. The hypothesis that a staff education program on subglottic suctioning endotracheal tubes would demonstrate an increase in knowledge was supported, but not statistically. By integrating a pre-test/post-test design into educational presentations to evaluate increased knowledge, data generated may be used to improve methods and practices of delivering education and enhance staff learning.Keywords: endotracheal tubes, staff education, subglottic secretion drainage, ventilator-associated pneumonia
Procedia PDF Downloads 1153115 Effect of Different Chemical Concentrations on Control of Dodder (Cuscuta campestris Yunck.) in Vitex (Agnus castus)
Authors: Aliyu B. Mustapha, Poul A. Gida
Abstract:
Pot experiment was conducted at the landscape unit of Modibbo Adama University of Technology, Yola in 2015 and 2016 to determine the effect of some chemicals namely glyphosate, salt and detergent on Golden dodder (Cuscuta campestris Yunk). The experiment was laid in a completely randomized design (CRD) with three replications. The treatments include the following: glyphosate-T0= (control),(Og a.i/ha-1) T1=35g a.i/ha-1, T2=70g a.i/ha-1, T3=105g a.i/ha-1, T4=140 a.i/ha-1 and T5=175g a.i/ha-1: Salt (T0=control O mole/ha-1 T1=1mole/ha-1 T2=2mole/ha-1, T3=3mole/ha-1 , T4=4mole/ha-1 and T5=5mole/ha-1:washing detergent T0=Og/ha-1(control), T1=30ml detergent +70ml distilled water T2=45ml detergent+65ml distilled water T3=60ml detergent+40ml distilled water, T4=75ml detergent+25ml distilled water and T5=90ml detergent +10mldistilled water, the treatments were replicated three times. Data were collected include: plant height, number of leaves, leaf area, leaf area index and Cuscuta cover score at 3,6,9and 12 weeks after sprouting(WAS). Biomas of Vitex was also collected at the end of the experiment. Data collected were analyzed using software Genstat version 8.0. Results showed that glyphosate gave the least Cuscuta cover score and the tallest Vitex plant. However, detergent mildly controlled Cuscuta, while salt has no effect on Cuscuta campestris indicating that glyphosate could be used in the control of parasitic dodder (Cuscuta campestris) on Vitex plant.Keywords: chemical, control, dudder, Vitex
Procedia PDF Downloads 1923114 Architectural and Sedimentological Parameterization for Reservoir Quality of Miocene Onshore Sandstone, Borneo
Authors: Numair A. Siddiqui, Usman Muhammad, Manoj J. Mathew, Ramkumar M., Benjamin Sautter, Muhammad A. K. El-Ghali, David Menier, Shiqi Zhang
Abstract:
The sedimentological parameterization of shallow-marine siliciclastic reservoirs in terms of reservoir quality and heterogeneity from outcrop study can help improve the subsurface reservoir prediction. An architectural analysis has documented variations in sandstone geometry and rock properties within shallow-marine sandstone exposed in the Miocene Sandakan Formation of Sabah, Borneo. This study demonstrates reservoir sandstone quality assessment for subsurface rock evaluation, from well-exposed successions of the Sandakan Formation, Borneo, with which applicable analogues can be identified. The analyses were based on traditional conventional field investigation of outcrops, grain-size and petrographic studies of hand specimens of different sandstone facies and gamma-ray and permeability measurements. On the bases of these evaluations, the studied sandstone was grouped into three qualitative reservoir rock classes; high (Ø=18.10 – 43.60%; k=1265.20 – 5986.25 mD), moderate (Ø=17.60 – 37%; k=21.36 – 568 mD) and low quality (Ø=3.4 – 15.7%; k=3.21 – 201.30 mD) for visualization and prediction of subsurface reservoir quality. These results provided analogy for shallow marine sandstone reservoir complexity that can be utilized in the evaluation of reservoir quality of regional and subsurface analogues.Keywords: architecture and sedimentology, subsurface rock evaluation, reservoir quality, borneo
Procedia PDF Downloads 1423113 Assessing the Walkability and Urban Design Qualities of Campus Streets
Authors: Zhehao Zhang
Abstract:
Walking has become an indispensable and sustainable way of travel for college students in their daily lives; campus street is an important carrier for students to walk and take part in a variety of activities, improving the walkability of campus streets plays an important role in optimizing the quality of campus space environment, promoting the campus walking system and inducing multiple walking behaviors. The purpose of this paper is to explore the effect of campus layout, facility distribution, and location site selection on the walkability of campus streets, and assess the street design qualities from the elements of imageability, enclosure, complexity, transparency, and human scale, and further examines the relationship between street-level urban design perceptual qualities and walkability and its effect on walking behavior in the campus. Taking Tianjin University as the research object, this paper uses the optimized walk score method based on walking frequency, variety, and distance to evaluate the walkability of streets from a macro perspective and measures the urban design qualities in terms of the calculation of street physical environment characteristics, as well as uses behavior annotation and street image data to establish temporal and spatial behavior database to analyze walking activity from the microscopic view. In addition, based on the conclusions, the improvement and design strategy will be presented from the aspects of the built walking environment, street vitality, and walking behavior.Keywords: walkability, streetscapes, pedestrian activity, walk score
Procedia PDF Downloads 1463112 An Analytical Approach to Assess and Compare the Vulnerability Risk of Operating Systems
Authors: Pubudu K. Hitigala Kaluarachchilage, Champike Attanayake, Sasith Rajasooriya, Chris P. Tsokos
Abstract:
Operating system (OS) security is a key component of computer security. Assessing and improving OSs strength to resist against vulnerabilities and attacks is a mandatory requirement given the rate of new vulnerabilities discovered and attacks occurring. Frequency and the number of different kinds of vulnerabilities found in an OS can be considered an index of its information security level. In the present study five mostly used OSs, Microsoft Windows (windows 7, windows 8 and windows 10), Apple’s Mac and Linux are assessed for their discovered vulnerabilities and the risk associated with each. Each discovered and reported vulnerability has an exploitability score assigned in CVSS score of the national vulnerability database. In this study the risk from vulnerabilities in each of the five Operating Systems is compared. Risk Indexes used are developed based on the Markov model to evaluate the risk of each vulnerability. Statistical methodology and underlying mathematical approach is described. Initially, parametric procedures are conducted and measured. There were, however, violations of some statistical assumptions observed. Therefore the need for non-parametric approaches was recognized. 6838 vulnerabilities recorded were considered in the analysis. According to the risk associated with all the vulnerabilities considered, it was found that there is a statistically significant difference among average risk levels for some operating systems, indicating that according to our method some operating systems have been more risk vulnerable than others given the assumptions and limitations. Relevant test results revealing a statistically significant difference in the Risk levels of different OSs are presented.Keywords: cybersecurity, Markov chain, non-parametric analysis, vulnerability, operating system
Procedia PDF Downloads 1833111 Full Mini Nutritional Assessment Questionnaire and the Risk of Malnutrition and Mortality in Elderly, Hospitalized Patients: A Cross-Sectional Study
Authors: Christos E. Lampropoulos, Maria Konsta, Tamta Sirbilatze, Ifigenia Apostolou, Vicky Dradaki, Konstantina Panouria, Irini Dri, Christina Kordali, Vaggelis Lambas, Georgios Mavras
Abstract:
Objectives: Full Mini Nutritional Assessment (MNA) questionnaire is one of the most useful tools in diagnosis of malnutrition in hospitalized patients, which is related to increased morbidity and mortality. The purpose of our study was to assess the nutritional status of elderly, hospitalized patients and examine the hypothesis that MNA may predict mortality and extension of hospitalization. Methods: One hundred fifty patients (78 men, 72 women, mean age 80±8.2) were included in this cross-sectional study. The following data were taken into account in analysis: anthropometric and laboratory data, physical activity (International Physical Activity Questionnaires, IPAQ), smoking status, dietary habits, cause and duration of current admission, medical history (co-morbidities, previous admissions). Primary endpoints were mortality (from admission until 6 months afterwards) and duration of admission. The latter was compared to national guidelines for closed consolidated medical expenses. Logistic regression and linear regression analysis were performed in order to identify independent predictors for mortality and extended hospitalization respectively. Results: According to MNA, nutrition was normal in 54/150 (36%) of patients, 46/150 (30.7%) of them were at risk of malnutrition and the rest 50/150 (33.3%) were malnourished. After performing multivariate logistic regression analysis we found that the odds of death decreased 20% per each unit increase of full MNA score (OR=0.8, 95% CI 0.74-0.89, p < 0.0001). Patients who admitted due to cancer were 23 times more likely to die, compared to those with infection (OR=23, 95% CI 3.8-141.6, p=0.001). Similarly, patients who admitted due to stroke were 7 times more likely to die (OR=7, 95% CI 1.4-34.5, p=0.02), while these with all other causes of admission were less likely (OR=0.2, 95% CI 0.06-0.8, p=0.03), compared to patients with infection. According to multivariate linear regression analysis, each increase of unit of full MNA, decreased the admission duration on average 0.3 days (b:-0.3, 95% CI -0.45 - -0.15, p < 0.0001). Patients admitted due to cancer had on average 6.8 days higher extension of hospitalization, compared to those admitted for infection (b:6.8, 95% CI 3.2-10.3, p < 0.0001). Conclusion: Mortality and extension of hospitalization is significantly increased in elderly, malnourished patients. Full MNA score is a useful diagnostic tool of malnutrition.Keywords: duration of admission, malnutrition, mini nutritional assessment score, prognostic factors for mortality
Procedia PDF Downloads 3133110 Correlation between Overweightness and the Extent of Coronary Atherosclerosis among the South Caspian Population
Authors: Maryam Nabati, Mahmood Moosazadeh, Ehsan Soroosh, Hanieh Shiraj, Mahnaneh Gholami, Ali Ghaemian
Abstract:
Background: Reported effects of obesity on the extent of angiographic coronary artery disease(CAD) have beeninconsistent. The present study aimed to investigate the relationships between the indices of obesity and otheranthropometric markers with the extent of CAD. Methods: This study was conducted on 1008 consecutive patients who underwent coronary angiography. Bodymass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR) wereseparately calculated for each patient. Extent, severity, and complexity of CAD were determined by the Gensini andSYNTAX scores. Results: According to the results, there was a significant inverse correlation between the SYNTAX score with BMI(r = − 0.110; P < 0.001), WC (r = − 0.074; P = 0.018), and WHtR (r = − 0.089; P = 0.005). Furthermore, a significant inversecorrelation was observed between the Gensini score with BMI (r = − 0.090; P = 0.004) and WHtR (r = − 0.065; P =0.041). However, the results of multivariate linear regression analysis did not show any association between theSYNTAX and Gensini scores with the indices of obesity and overweight. On the other hand, the patients with anunhealthy WC had a higher prevalence of diabetes mellitus (DM) (P = 0.004) and hypertension (HTN) (P < 0.001) compared to the patients with healthy values. Coexistence of HTN and DM was more prevalent in subjects with anunhealthy WC and WHR compared to that in those with healthy values (P = 0.002 and P = 0.032, respectively). Conclusion: It seems that the anthropometric indices of obesity are not the predictors of the angiographic severityof CAD. However, they are associated with an increased risk of cardiovascular risk factors and higher risk profile.Keywords: body mass index, BMI, coronary artery disease, waist circumference
Procedia PDF Downloads 1403109 Predicting Relative Performance of Sector Exchange Traded Funds Using Machine Learning
Abstract:
Machine learning has been used in many areas today. It thrives at reviewing large volumes of data and identifying patterns and trends that might not be apparent to a human. Given the huge potential benefit and the amount of data available in the financial market, it is not surprising to see machine learning applied to various financial products. While future prices of financial securities are extremely difficult to forecast, we study them from a different angle. Instead of trying to forecast future prices, we apply machine learning algorithms to predict the direction of future price movement, in particular, whether a sector Exchange Traded Fund (ETF) would outperform or underperform the market in the next week or in the next month. We apply several machine learning algorithms for this prediction. The algorithms are Linear Discriminant Analysis (LDA), k-Nearest Neighbors (KNN), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Neural Networks (NN). We show that these machine learning algorithms, most notably GNB and NN, have some predictive power in forecasting out-performance and under-performance out of sample. We also try to explore whether it is possible to utilize the predictions from these algorithms to outperform the buy-and-hold strategy of the S&P 500 index. The trading strategy to explore out-performance predictions does not perform very well, but the trading strategy to explore under-performance predictions can earn higher returns than simply holding the S&P 500 index out of sample.Keywords: machine learning, ETF prediction, dynamic trading, asset allocation
Procedia PDF Downloads 1003108 Groundwater Flow Assessment Based on Numerical Simulation at Omdurman Area, Khartoum State, Sudan
Authors: Adil Balla Elkrail
Abstract:
Visual MODFLOW computer codes were selected to simulate head distribution, calculate the groundwater budgets of the area, and evaluate the effect of external stresses on the groundwater head and to demonstrate how the groundwater model can be used as a comparative technique in order to optimize utilization of the groundwater resource. A conceptual model of the study area, aquifer parameters, boundary, and initial conditions were used to simulate the flow model. The trial-and-error technique was used to calibrate the model. The most important criteria used to check the calibrated model were Root Mean Square error (RMS), Mean Absolute error (AM), Normalized Root Mean Square error (NRMS) and mass balance. The maps of the simulated heads elaborated acceptable model calibration compared to observed heads map. A time length of eight years and the observed heads of the year 2004 were used for model prediction. The predictive simulation showed that the continuation of pumping will cause relatively high changes in head distribution and components of groundwater budget whereas, the low deficit computed (7122 m3/d) between inflows and outflows cannot create a significant drawdown of the potentiometric level. Hence, the area under consideration may represent a high permeability and productive zone and strongly recommended for further groundwater development.Keywords: aquifers, model simulation, groundwater, calibrations, trail-and- error, prediction
Procedia PDF Downloads 2443107 The Estimation of Bird Diversity Loss and Gain as an Impact of Oil Palm Plantation: Study Case in KJNP Estate Riau Province
Authors: Yanto Santosa, Catharina Yudea
Abstract:
The rapid growth of oil palm industry in Indonesia raised many negative accusations from various parties, who said that oil palm plantation is damaging the environment and biodiversity, including birds. Since research on oil palm plantation impacts on bird diversity is still limited, this study needs to be developed in order to gain further learning and understanding. Data on bird diversity were collected in March 2018 in KJNP Estate, Riau Province using strip transect method on five different land cover types (young, intermediate, and old growth of oil palm plantation, high conservation value area, and crops field or the baseline). The observations were conducted simultaneously, with three repetitions. The result shows that the baseline has 19 species of birds and land cover after the oil palm plantation has 39 species. HCV (high conservation value) area has the highest increase in diversity value. Oil palm plantation has changed the composition of bird species. The highest similarity index is shown by young growth oil palm land cover with total score 0.65, meanwhile the lowest similarity index with total score 0.43 is shown by HCV area. Overall, the existence of oil palm plantation made a positive impact by increasing bird species diversity, with total 23 species gained and 3 species lost.Keywords: bird diversity, crops field, impact of oil palm plantation, KJNP estate
Procedia PDF Downloads 1243106 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach
Authors: Rajvir Kaur, Jeewani Anupama Ginige
Abstract:
With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.Keywords: artificial neural networks, breast cancer, classifiers, cervical cancer, f-score, machine learning, precision, recall
Procedia PDF Downloads 2783105 Exploring the Applications of Neural Networks in the Adaptive Learning Environment
Authors: Baladitya Swaika, Rahul Khatry
Abstract:
Computer Adaptive Tests (CATs) is one of the most efficient ways for testing the cognitive abilities of students. CATs are based on Item Response Theory (IRT) which is based on item selection and ability estimation using statistical methods of maximum information selection/selection from posterior and maximum-likelihood (ML)/maximum a posteriori (MAP) estimators respectively. This study aims at combining both classical and Bayesian approaches to IRT to create a dataset which is then fed to a neural network which automates the process of ability estimation and then comparing it to traditional CAT models designed using IRT. This study uses python as the base coding language, pymc for statistical modelling of the IRT and scikit-learn for neural network implementations. On creation of the model and on comparison, it is found that the Neural Network based model performs 7-10% worse than the IRT model for score estimations. Although performing poorly, compared to the IRT model, the neural network model can be beneficially used in back-ends for reducing time complexity as the IRT model would have to re-calculate the ability every-time it gets a request whereas the prediction from a neural network could be done in a single step for an existing trained Regressor. This study also proposes a new kind of framework whereby the neural network model could be used to incorporate feature sets, other than the normal IRT feature set and use a neural network’s capacity of learning unknown functions to give rise to better CAT models. Categorical features like test type, etc. could be learnt and incorporated in IRT functions with the help of techniques like logistic regression and can be used to learn functions and expressed as models which may not be trivial to be expressed via equations. This kind of a framework, when implemented would be highly advantageous in psychometrics and cognitive assessments. This study gives a brief overview as to how neural networks can be used in adaptive testing, not only by reducing time-complexity but also by being able to incorporate newer and better datasets which would eventually lead to higher quality testing.Keywords: computer adaptive tests, item response theory, machine learning, neural networks
Procedia PDF Downloads 1763104 Quality of Life of Elderly People in Urban West Bengal, India
Authors: Debalina Datta, Pratyaypratim Datta, Kunal Kanti Majumdar
Abstract:
Introduction: In India 8.1% of total population is elderly. The standard of living and meaningfulness of life are indirectly measured by assessing quality of life of elderly. So, it is important to improve quality of life. Quality of life is an individual’s understanding of his/ her life situation with respect to his/ her values and cultural context as well as in relation to his/her goals, expectations and concerns. The present study was planned to assess the quality of life of geriatric people in urban West Bengal, India. Materials and methods: It was a community based cross sectional observational study conducted among people aged 60 years and above in Kolkata and Sonarpur region of West Bengal, India. Data collection was done by house to house visit using Quality of Life- BREF questionnaire (WHOQOL-BERF) developed by WHO. Analysis of quality of life of physical, psychological, social relationship and environmental domain was done using SPSS (version 16.0). Results: Transformed score (0-100 scale) was used for each domain. Mean of physical, psychological, social relationship and environmental domain were found to be 42.25, 40.84, 39.62 and 48.36 respectively. There was no significant difference in score between Kolkata and Sonarpur people in any domain except social relationship domain, where people living at Sonarpur scored significantly better. Conclusion: Rehabilitation of old age people can be done by improving their quality of life. Social interaction with people of all ages, allowing them to take important family decision, engaging them in different social activities can help a lot.Keywords: quality of life, elderly, Urban West Bengal, India
Procedia PDF Downloads 6063103 Evaluation of Coastal Erosion in the Jurisdiction of the Municipalities of Puerto Colombia and Tubará, Atlántico – Colombia in Google Earth Engine with Landsat and Sentinel 2 Images
Authors: Francisco Reyes, Hector Ramirez
Abstract:
In the coastal zones are home to mangrove swamps, coral reefs, and seagrass ecosystems, which are the most biodiverse and fragile on the planet. These areas support a great diversity of marine life; they are also extraordinarily important for humans in the provision of food, water, wood, and other associated goods and services; they also contribute to climate regulation. The lack of an automated model that generates information on the dynamics of changes in coastlines and coastal erosion is identified as a central problem. Coastlines were determined from 1984 to 2020 on the Google Earth platform Engine from Landsat and Sentinel images, using the Normalized Differential Water Index (MNDWI) and Digital Shoreline Analysis System (DSAS) v5.0. Starting from the 2020 coastline, the 10-year prediction (Year 2031) was determined with the erosion of 238.32 hectares and an accretion of 181.96 hectares, while the 20-year prediction (Year 2041) will be presented an erosion of 544.04 hectares and an accretion of 133.94 hectares. The erosion and accretion of Playa Muelle in the municipality of Puerto Colombia were established, which will register the highest value of erosion. The coverage that presented the greatest change was that of artificialized Territories.Keywords: coastline, coastal erosion, MNDWI, Google Earth Engine, Colombia
Procedia PDF Downloads 123