Search results for: nutrients biomass
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1504

Search results for: nutrients biomass

484 Multi-Criteria Optimal Management Strategy for in-situ Bioremediation of LNAPL Contaminated Aquifer Using Particle Swarm Optimization

Authors: Deepak Kumar, Jahangeer, Brijesh Kumar Yadav, Shashi Mathur

Abstract:

In-situ remediation is a technique which can remediate either surface or groundwater at the site of contamination. In the present study, simulation optimization approach has been used to develop management strategy for remediating LNAPL (Light Non-Aqueous Phase Liquid) contaminated aquifers. Benzene, toluene, ethyl benzene and xylene are the main component of LNAPL contaminant. Collectively, these contaminants are known as BTEX. In in-situ bioremediation process, a set of injection and extraction wells are installed. Injection wells supply oxygen and other nutrient which convert BTEX into carbon dioxide and water with the help of indigenous soil bacteria. On the other hand, extraction wells check the movement of plume along downstream. In this study, optimal design of the system has been done using PSO (Particle Swarm Optimization) algorithm. A comprehensive management strategy for pumping of injection and extraction wells has been done to attain a maximum allowable concentration of 5 ppm and 4.5 ppm. The management strategy comprises determination of pumping rates, the total pumping volume and the total running cost incurred for each potential injection and extraction well. The results indicate a high pumping rate for injection wells during the initial management period since it facilitates the availability of oxygen and other nutrients necessary for biodegradation, however it is low during the third year on account of sufficient oxygen availability. This is because the contaminant is assumed to have biodegraded by the end of the third year when the concentration drops to a permissible level.

Keywords: groundwater, in-situ bioremediation, light non-aqueous phase liquid, BTEX, particle swarm optimization

Procedia PDF Downloads 417
483 Characterization of the Corn Cob to Know Its Potential as a Source of Biosilica to Be Used in Sustainable Cementitious Mixtures

Authors: Sandra C. L. Dorea, Joann K. Whalen, Yixin Shao, Oumarou Savadogo

Abstract:

The major challenge for industries that rely on fossil fuels in manufacturing processes or to provide goods and services is to lower their CO2 emissions, as the case for the manufacture of Portland cement. Feasible materials for this purpose can include agro-industrial or agricultural wastes, which are termed 'biosilica' since the silica was contained in a biological matrix (biomass). Corn cob (CC) has some characteristics that make it a good candidate as biosilica source: 1) it is an abundant grain crop produced around the world; 2) more production means more available residues is left in the field to be used. This work aims to evaluate the CC collected from different farms in Canada during the corn harvest in order to see if they can be used together as a biosilica source. The characterization of the raw CC was made in the physical, chemical, and thermal way. The moisture content, the granulometry, and the morphology were also analyzed. The ash content measured was 2,1%. The Thermogravimetric Analysis (TGA) and its Derivative (DTG) evaluated of CC as a function of weight loss with temperature variation ranging between 30°C and 800°C in an atmosphere of N2. The chemical composition and the presence of silica revealed that the different sources of the CC do not interfere in its basic chemical composition, which means that this kind of waste can be used together as a source of biosilica no matter where they come from. Then, this biosilica can partially replace the cement Portland making sustainable cementitious mixtures and contributing to reduce the CO2 emissions.

Keywords: biosilica, characterization, corn cob, sustainable cementitious materials

Procedia PDF Downloads 241
482 The Effects of Organic or Inorganic Zinc and Microbial Phytase, Alone or in Combination, on the Performance, Biochemical Parameters and Nutrient Utilization of Broilers Fed a Diet Low in Available Phosphorus

Authors: Mustafa Midilli, Mustafa Salman, Omer Hakan Muglali, Tülay Ögretmen, Sena Cenesiz, Neslihan Ormanci

Abstract:

This study examined the effects of zinc (Zn) from different sources and microbial phytase on the broiler performance, biochemical parameters and digestibility of nutrients when they were added to broiler diets containing low available phosphorus. A total of 875, 1-day-old male broilers of the Ross 308 strain were randomly separated into two control groups (positive and negative) and five treatment groups each containing 125 birds; each group was divided into 5 replicates of 25 birds. The positive control (PC) group was fed a diet containing adequate concentration (0.45%) of available phosphorus due to mineral premix (except zinc) and feeds. The negative control (NC) group was fed a basal diet including low concentration (0.30%) of available phosphorus due to mineral premix (except zinc) and feeds. The basal diet was supplemented with 0.30% phosphorus and 500 FTU phytase (PH); 0.30% phosphorus and organic zinc (OZ; 75mg/kg of Zn from Zn-proteinate); 0.30% phosphorus and inorganic zinc (IZ; 75 mg/kg of Zn from ZnSO4); 0.30% phosphorus, organic zinc and 500 FTU phytase (OZ + PH); and 0.30% phosphorus, inorganic zinc and 500 FTU phytase (IZ + PH) in the treatment groups 1, 2, 3, 4 and 5, respectively. The lowest value for mean body weight was in the negative control group on a diet containing low available phosphorus. The use of supplementation with organic and inorganic zinc alone or in combination with microbial phytase significantly (P<0.05) increased the digestibility of Zn in the male broilers. Supplementation of those diets with OZ + PH or IZ + PH was very effective for increasing the body weight, body weight gain and the feed conversion ratio. In conclusion, the effects on broilers of diets with low phosphorus levels may be overcome by the addition of inorganic or organic zinc compounds in combination with microbial phytase.

Keywords: broiler, performance, phytase, phosphorus, zinc

Procedia PDF Downloads 412
481 An Examination of Changes on Natural Vegetation due to Charcoal Production Using Multi Temporal Land SAT Data

Authors: T. Garba, Y. Y. Babanyara, M. Isah, A. K. Muktari, R. Y. Abdullahi

Abstract:

The increased in demand of fuel wood for heating, cooking and sometimes bakery has continued to exert appreciable impact on natural vegetation. This study focus on the use of multi-temporal data from land sat TM of 1986, land sat EMT of 1999 and lands sat ETM of 2006 to investigate the changes of Natural Vegetation resulting from charcoal production activities. The three images were classified based on bare soil, built up areas, cultivated land, and natural vegetation, Rock out crop and water bodies. From the classified images Land sat TM of 1986 it shows natural vegetation of the study area to be 308,941.48 hectares equivalent to 50% of the area it then reduces to 278,061.21 which is 42.92% in 1999 it again depreciated to 199,647.81 in 2006 equivalent to 30.83% of the area. Consequently cultivated continue increasing from 259,346.80 hectares (42%) in 1986 to 312,966.27 hectares (48.3%) in 1999 and then to 341.719.92 hectares (52.78%). These show that within the span of 20 years (1986 to 2006) the natural vegetation is depreciated by 119,293.81 hectares. This implies that if the menace is not control the natural might likely be lost in another twenty years. This is because forest cleared for charcoal production is normally converted to farmland. The study therefore concluded that there is the need for alternatives source of domestic energy such as the use of biomass which can easily be accessible and affordable to people. In addition, the study recommended that there should be strong policies enforcement for the protection forest reserved.

Keywords: charcoal, classification, data, images, land use, natural vegetation

Procedia PDF Downloads 350
480 Is there Anything Useful in That? High Value Product Extraction from Artemisia annua L. in the Spent Leaf and Waste Streams

Authors: Anike Akinrinlade

Abstract:

The world population is estimated to grow from 7.1 billion to 9.22 billion by 2075, increasing therefore by 23% from the current global population. Much of the demographic changes up to 2075 will take place in the less developed regions. There are currently 54 countries which fall under the bracket of being defined as having ‘low-middle income’ economies and need new ways to generate valuable products from current resources that is available. Artemisia annua L is well used for the extraction of the phytochemical artemisinin, which accounts for around 0.01 to 1.4 % dry weight of the plant. Artemisinin is used in the treatment of malaria, a disease rampart in sub-Saharan Africa and in many other countries. Once artemisinin has been extracted the spent leaf and waste streams are disposed of as waste. A feasibility study was carried out looking at increasing the biomass value of A. annua, by designing a biorefinery where spent leaf and waste streams are utilized for high product generation. Quercetin, ferulic acid, dihydroartemisinic acid, artemisinic acid and artemsinin were screened for in the waste stream samples and the spent leaf. The analytical results showed that artemisinin, artemisinic acid and dihydroartemisinic acid were present in the waste extracts as well as camphor and arteannuin b. Ongoing effects are looking at using more industrially relevant solvents to extract the phytochemicals from the waste fractions and investigate how microwave pyrolysis of spent leaf can be utilized to generate bio-products.

Keywords: high value product generation, bioinformatics, biomedicine, waste streams, spent leaf

Procedia PDF Downloads 325
479 Management Effects on Different Sustainable Agricultural with Diverse Topography

Authors: Kusay Wheib, Alexandra Krvchenko

Abstract:

Crop yields are influenced by many factors, including natural ones, such as soil and environmental characteristics of the agricultural land, as well as manmade ones, such as management applications. One of the factors that frequently affect crop yields in undulating Midwest landscapes is topography, which controls the movement of water and nutrients necessary for plant life. The main objective of this study is to examine how field topography influences performance of different management practices in undulated terrain of southwest Michigan. A total of 26 agricultural fields, ranging in size from 1.1 to 7.4 ha, from the Scale-Up at Kellogg Biological Station were included in the study. The two studied factors were crop species with three levels, i.e., corn (Zea mays L.) soybean (Glycine max L.), and wheat (Triticum aestivum L.), and management practice with three levels, i.e., conventional, low input, and organic managements. They were compared under three contrasting topographical settings, namely, summit (includes summits and shoulders), slope (includes backslopes), and depression (includes footslope and toeslope). Yield data of years 2007 through 2012 was processed, cleaned, and filtered, average yield then was calculated for each field, topographic setting, and year. Topography parameters, including terrain, slope, curvature, flow direction and wetness index were computed under ArcGIS environment for each topographic class of each field to seek their effects on yield. Results showed that topographical depressions produced greatest yields in most studied fields, while managements with chemical inputs, both low input and conventional, resulted in higher yields than the organic management.

Keywords: sustainable agriculture, precision agriculture, topography, yield

Procedia PDF Downloads 96
478 Phytoplankton Community and Saprobic Pollution Index of Warm Water Fishes Ponds at East of Golestan Province: Case Study: Gonbade Kavous City

Authors: Mehrdad Kamali-Sanzighi, Maziar Kamali-Sanzighi

Abstract:

The aim of this investigation is to study the phytoplankton and saprobic index at warm water fish ponds in the East of Golestan province, Gonbade Kavous city. Phytoplankton and ciliate sampling were done monthly during one season of culture. Finally, 39 genera from 7 classes of phytoplankton and 4 genera from the ciliate group were identified. Although, among different classes, Chlorophyceae, Cyanophyceae, Bacillariophyceae, Charophyceae, Chrysophyceae, Dinophyceae, and Euglenophyceae had the highest and lowest frequency percent of phytoplankton community with 23, 21, 20, 14, 11, 6 and 5 percent respectively. The results show that there are no significant differences between the saprobic index of different ponds (P > 0.05). But there are significant differences between the saprobic index value of different months and seasons during season culture (P < 0.05). Also, in current research, the saprobic index indicated the ß-mesosaprob water quality level. There was a general tends of decrease in the saprobic index value from the beginning to the end of the culture season. Parameters such as biomass increase of grower fishes, an increase of introduced chemical fertilizer and manure sedimentation, uneaten fish feed, fish fecal, and no regular exchangeable water resources are some of these changes' reasons.

Keywords: fish pond, Golestan Province, saprobi index, phytoplankton, water quality

Procedia PDF Downloads 114
477 Determination of Polycyclic Aromatic Hydrocarbons in Rivers, Sediments and Wastewater Effluents in Vhembe District of South Africa Using GC-TOF-MS

Authors: Joshua N. Edokpayi, John O. Odiyo, Titus A. M. Msagati, Elizabeth O. Popoola

Abstract:

Polycyclic aromatic hydrocarbons (PAHs) are very toxic and persistent environmental contaminants. This study was undertaken to assess the concentrations and possible sources of 16 PAHs classified by the United State Environmental Protection Agency as priority pollutants in Mvudi and Nzhelele Rivers and sediments. Effluents from Thohoyandou wastewater treatment plant and Siloam waste stabilization ponds were also investigated. Diagnostic ratios were used to evaluate the possible sources of PAHs. PAHs in the water samples were extracted using 1:1 dichloromethane and n-hexane mixtures, while those in the sediment samples were extracted with 1:1 acetone and dichloromethane using ultrasonication method. The extracts were purified using SPE technique and reconstituted in n-hexane before analyses with GC-TOF-MS. The results obtained indicate the prevalence of high molecular weight PAHs in all the samples. PAHs concentrations in water and sediment samples from all the sampling sites were in the range of 13.174-26.382 mg/L and 27.10-55.93 mg/kg, respectively. Combustion of biomass was identified as the major possible source of PAHs. Effluents from wastewater treatment facilities were also considered as major anthropogenic contributions to the levels of PAHs determined in both river waters and sediments. Mvudi and Nzhelele Rivers show moderate to high contamination level of PAHs.

Keywords: polycyclic aromatic hydrocarbon, rivers, sediments, wastewater effluents

Procedia PDF Downloads 315
476 The Nexus between Downstream Supply Chain Losses and Food Security in Nigeria: Empirical Evidence from the Yam Industry

Authors: Alban Igwe, Ijeoma Kalu, Alloy Ezirim

Abstract:

Food insecurity is a global problem, and the search for food security has assumed a central stage in the global development agenda as the United Nations currently placed zero hunger as a goal number in its sustainable development goals. Nigeria currently ranks 107th out of 113 countries in the global food security index (GFSI), a metric that defines a country's ability to furnish its citizens with food and nutrients for healthy living. Paradoxically, Nigeria is a global leader in food production, ranking 1st in yam (over 70% of global output), beans (over 41% of global output), cassava (20% of global output) and shea nuts, where it commands 53% of global output. Furthermore, it ranks 2nd in millet, sweet potatoes, and cashew nuts. It is Africa's largest producer of rice. So, it is apparent that Nigeria's food insecurity woes must relate to a factor other than food production. We investigated the nexus between food security and downstream supply chain losses in the yam industry with secondary data from the Food and Agricultural Organization (FAOSTAT) and the National Bureau of Statics for the decade 2012-2021. In analyzing the data, multiple regression techniques were used, and findings reveal that downstream losses have a strong positive correlation with food security (r = .763*) and a 58.3% variation in food security is explainable by post-downstream supply chain food losses. The study discovered that yam supply chain losses within the period under review averaged 50.6%, suggestive of the fact that downstream supply chain losses are the drainpipe and the major source of food insecurity in Nigeria. Therefore, the study concluded that there is a significant relationship between downstream supply chain losses and food insecurity and recommended the establishment of food supply chain structures and policies to enhance food security in Nigeria.

Keywords: food security, downstream supply chain losses, yam, nigeria, supply chain

Procedia PDF Downloads 70
475 Achieving High Renewable Energy Penetration in Western Australia Using Data Digitisation and Machine Learning

Authors: A. D. Tayal

Abstract:

The energy industry is undergoing significant disruption. This research outlines that, whilst challenging; this disruption is also an emerging opportunity for electricity utilities. One such opportunity is leveraging the developments in data analytics and machine learning. As the uptake of renewable energy technologies and complimentary control systems increases, electricity grids will likely transform towards dense microgrids with high penetration of renewable generation sources, rich in network and customer data, and linked through intelligent, wireless communications. Data digitisation and analytics have already impacted numerous industries, and its influence on the energy sector is growing, as computational capabilities increase to manage big data, and as machines develop algorithms to solve the energy challenges of the future. The objective of this paper is to address how far the uptake of renewable technologies can go given the constraints of existing grid infrastructure and provides a qualitative assessment of how higher levels of renewable energy penetration can be facilitated by incorporating even broader technological advances in the fields of data analytics and machine learning. Western Australia is used as a contextualised case study, given its abundance and diverse renewable resources (solar, wind, biomass, and wave) and isolated networks, making a high penetration of renewables a feasible target for policy makers over coming decades.

Keywords: data, innovation, renewable, solar

Procedia PDF Downloads 345
474 Study of Microbial Diversity Associated with Tarballs and Their Exploitation in Crude Oil Degradation

Authors: Varsha Shinde, Belle Damodara Shenoy

Abstract:

Tarballs are crude oil remnants found in oceans after long term weathering process and are a global concern since several decades as potential marine pollutant. Being complicated in structure microbial remediation of tarballs in natural environment is a slow process. They are rich in high molecular weight alkanes and poly aromatic hydrocarbons which are resistant to microbial attack and other environmental factors, therefore remain in environment for long time. However, it has been found that many bacteria and fungi inhabit on tarballs for nutrients and shelter. Many of them are supposed to be oil degraders, while others are supposed to be getting benefited by byproducts formed during hydrocarbon metabolism. Thus tarballs are forming special interesting ecological niche of microbes. This work aimed to study diversity of bacteria and fungi from tarballs and to see their potential application in crude oil degradation. The samples of tarballs were collected from Betul beach of south Goa (India). Different methods were used to isolate culturable fraction of bacteria and fungi from it. Those were sequenced for 16S rRNA gene and ITS for molecular level identification. The 16S rRNA gene sequence analysis revealed the presence of 13 bacterial genera/clades (Alcanivorax, Brevibacterium, Bacillus, Cellulomonas, Enterobacter, Klebsiella, Marinobacter, Nitratireductor, Pantoea, Pseudomonas, Pseudoxanthomonas, Tistrella and Vibrio), while the ITS sequence analysis placed the fungi in 8 diverse genera/ clades (Aspergillus, Byssochlamys, Monascus, Paecilomyces, Penicillium, Scytalidium/ Xylogone, Talaromyces and Trichoderma). All bacterial isolates were screened for oil degradation capacity. Potential strains were subjected to crude oil degradation experiment for quantification. Results were analyzed by GC-MS-MS.

Keywords: bacteria, biodegradation, crude oil, diversity, fungi, tarballs

Procedia PDF Downloads 202
473 Improvement of Water Quality of Al Asfar Lake Using Constructed Wetland System

Authors: Jamal Radaideh

Abstract:

Al-Asfar Lake is located about 14 km east of Al-Ahsa and is one of the most important wetland lakes in the Al Ahsa/Eastern Province of Saudi Arabia. Al-Ahsa is may be the largest oasis in the world, having an area of 20,000 hectares, in addition, it is of the largest and oldest agricultural centers in the region. The surplus farm irrigation water beside additional water supplied by treated wastewater from Al-Hofuf sewage station is collected by a drainage network and discharged into Al-Asfar Lake. The lake has good wetlands, sand dunes as well as large expanses of open and shallow water. Salt tolerant vegetation is present in some of the shallow areas around the lake, and huge stands of Phragmites reeds occur around the lake. The lake presents an important habitat for wildlife and birds, something not expected to find in a large desert. Although high evaporation rates in the range of 3250 mm are common, the water remains in the evaporation lakes during all seasons of the year is used to supply cattle with drinking water and for aquifer recharge. Investigations showed that high concentrations of nitrogen (N), phosphorus (P), biological oxygen demand (BOD), chemical oxygen demand (COD) and salinity discharge to Al Asfar Lake from the D2 drain exist. It is expected that the majority of BOD, COD and N originates from wastewater discharge and leachate from surplus irrigation water which also contribute to the majority of P and salinity. The significant content of nutrients and biological oxygen demand reduces available oxygen in the water. The present project aimed to improve the water quality of the lake using constructed wetland trains which will be built around the lake. Phragmites reeds, which already occur around the lake, will be used.

Keywords: Al Asfar lake, constructed wetland, water quality, water treatment

Procedia PDF Downloads 417
472 Improving the Feeding Value of Straws with Pleurotus Ostreatus

Authors: S. Hussain, N. Ahmad, S. Alam, M. Bezabhi, W. H. Hendriks, P. Yu, J. W. Cone

Abstract:

The high content of lignin in cell walls is the major limiting factor in the digestion and utilisation of cereal crop residues by ruminants. The aim of this study was to evaluate the effectiveness of the white rot fungus, Pleurotus ostreatus (P. ostreatus), to degrade lignin and to enhance the rumen degradability of maize stover, rice straw, wheat straw and their mixture in equal proportion on a dry-matter (DM) basis. Four samples of each substrate were incubated aerobically in triplicate with P. ostreatus for 0 (Control), 21, 28 and 35 days under solid-state conditions (temperature, 24 ͦ C; humidity, 70± 5%). The changes in chemical composition, DM and nutrient losses, and rumen fermentation characteristics using in vitro DM digestibility (DMD) and the in vitro gas production (GP) technique were measured. The results showed that incubation with P. ostreatus decreased (P < 0.001) the contents of neutral detergent fibre and lignin with a concomitant increase (P < 0.001) in the contents of ash and crude protein. The losses of nutrients differed (P < 0.001) among the straw types, with rice straw and maize stover showing the largest (P < 0.05) lignin degradation compared to wheat and mixed straws. The DMD and 72-h cumulative GP increased (P < 0.001) consistently with increasing fungal incubation period and for all substrates the highest values of DMD and GP were measured after 35 days of incubation with P. ostreatus. The lignin degradation was strongly associated with hemicellulose degradation (r = 0.71) across the various straws. Results of the present study demonstrated that incubation of low-quality crop residues with P. ostreatus under solid-state conditions upgrades their feeding value by reducing the content of lignin and increasing the content of crude protein and ruminal degradation.

Keywords: crop residues, lignin degradation, maize stovers, wheat straws, white rot fungi

Procedia PDF Downloads 40
471 Production of Hydrogen and Carbon Monoxide Fuel Gas From Pine Needles

Authors: Despina Vamvuka, Despina Pentari

Abstract:

Forestry wastes are readily available in large quantities around the world. Based on European Green Deal for the deployment of renewable and decarbonized energy by 2050, as well as global energy crisis, energy recovery from such wastes reducing greenhouse gas emissions is very attractive. Gasification has superior environmental performance to combustion, producing a clean fuel gas utilized in internal combustion engines, gas turbines, solid oxide fuel cells, or for synthesis of liquid bio-fuels and value-added chemicals. In this work, pine needles, which are abundantly found in Mediterranean countries, were gasified by either steam or carbon dioxide via a two-step process to improve reactivity and eliminate tar, employing a fixed bed unit and a thermal analysis system. Solid, liquid and gaseous products from the whole process were characterized and their energy potential was determined. Thermal behaviour, reactivity, conversion and energy recovery were examined. The gasification process took place above 650°C. At 950°C conversion and energy recovery were 77% dry and 2 under a flow of steam and 85% dry and 2.9 under a flow of carbon dioxide, respectively. Organic matter was almost completely converted to syngas, the yield of which varied between 89% and 99%. The higher heating values of biochar, bio-oil and pyrolysis gas were 27.8 MJ/kg, 33.5 MJ/kg and 13.6 MJ/m3. Upon steam or carbon dioxide gasification, the higher heating value of syngas produced was 11.5 MJ/m3 and 12.7 MJ/m3, respectively.

Keywords: gasification, biomass, steam, carbon dioxide

Procedia PDF Downloads 79
470 The Importance of Storage Period on Biogas Potential of Cattle Manure

Authors: Seongwon Im, Jimin Kim, Kyeongcheol Kim, Dong-Hoon Kim

Abstract:

Cattle manure (CM) produced from farmhas been utilized to soils for increasing crop production owing to high nutrients content and effective microorganisms. Some cities with the concentrated activity of livestock industry have suffered from environmental problems, such as odorous gas emissions and soil and water pollution, caused by excessive use of compost. As an alternative option, the anaerobic digestion (AD) process can be utilized, which can reduce the volume of organic waste but also produce energy. According to Korea-Ministry of Trade, Industry, and Energy (KMTIE), the energy potential of CM via biogas production was estimated to be 0.8 million TOE per year, which is higher than that of other organic wastes. However, limited energy is recovered since useful organic matter, capable of converting to biogas, may be degraded during the long storage period (1-6 months).In this study, the effect of storage period on biogas potential of CM was investigated. Compared to fresh CM (VS 14±1 g/L, COD 205±5 g/L, TKN 7.4±0.8 g/L, NH4+-N 1.5±0.1), old CM has higher organic (35-37%) and nitrogen content (50-100%) due to the drying process during storage. After stabilization period, biogas potential of 0.09 L CH4/g VS was obtained in R1 (old CM supplement) at HRT of 150-100 d, and it was decreased further to 0.06 L CH4/g VS at HRT of 80 d. The drop of pH and organic acids accumulation were not observed during the whole operation of R1. Ammonia stripping and pretreatment of CM were found to be not effective to increase CH4 yield. On the other hand, a sudden increase of biogas potential to 0.19-0.22 L CH4/g VS was achieved in R2 after changing feedstock to fresh CM. The expected reason for the low biogas potential of old CM might be related with the composition of organic matters in CM. Easily biodegradable organic matters in the fresh CM were contained in high concentration, butthey were removed by microorganisms during storing CM in a farm, resulting low biogas yield. This study implies that fresh storage is important to make AD process applicable for CM.

Keywords: storage period, cattle manure, biogas potential, microbial analysis

Procedia PDF Downloads 148
469 Synthesis and Applications of Biosorbent from Barley Husk for Adsorption of Heavy Metals and Bacteria from Water

Authors: Sudarshan Kalsulkar, Sunil S. Bhagwat

Abstract:

Biosorption is a physiochemical process that occurs naturally in certain biomass which allows it to passively concentrate and bind contaminants onto its cellular structure. Activated carbons (AC) are one such efficient biosorbents made by utilizing lignocellulosic materials from agricultural waste. Steam activated carbon (AC) was synthesized from Barley husk. Its synthesis parameters of time and temperature were optimized. Its physico-chemical properties like density, surface area, pore volume, Methylene blue and Iodine values were characterized. BET surface area was found to be 42 m²/g. Batch Adsorption tests were carried out to determine the maximum adsorption capacity (qmax) for various metal ions. Cd+2 48.74 mg/g, Pb+2 19.28 mg/g, Hg+2 39.1mg/g were the respective qmax values. pH and time were optimized for adsorption of each ion. Column Adsorptions were carried for each to obtain breakthrough data. Microbial adsorption was carried using E. coli K12 strain. 78% reduction in cell count was observed at operating conditions. Thus the synthesized Barley husk AC can be an economically feasible replacement for commercially available AC prepared from the costlier coconut shells. Breweries and malting industries where barley husk is a primary waste generated on a large scale can be a good source for bulk raw material.

Keywords: activated carbon, Barley husk, biosorption, decontamination, heavy metal removal, water treatment

Procedia PDF Downloads 397
468 The Consumption of Sodium and Fat from Processed Foods

Authors: Pil Kyoo Jo, Jee Young Kim, Yu Jin Oh, Sohyun Park, Young Ha Joo, Hye Suk Kim, Semi Kang

Abstract:

When convenience drives daily food choices, the increased consumption of processed foods may be associated with the increased intakes of sodium and fat and further with the onset of chronic diseases. The purpose of this study was to investigate the levels of sodium, saturated fat, and calories intakes through processed foods and the dietary patterns among adult populations in South Korea. We used the nationally representative data from the 5th Korea National Health and Nutrition Examination Survey (KNHANES, 2010-2012) and a cross-sectional survey on the eating behaviors among university students(N=893, 380 men, 513 women) aged from 20 to 24 years. Results showed that South Koreans consumed 43.5% of their total food consumption from processed foods. The 24-hour recalls data showed that 77% of sodium, 60% of fats, 59% of saturated fat, and 44% of calories were consumed from processed food. The intake of processed foods increased by 1.7% in average since 2008 annually. Only 33% of processed food that respondents consumed had nutrition labeling. The data from university students showed that students selected processed foods in convenience store when eating alone compared to eating with someone else. Given the convenience and lack of time, more people will consume processed foods and it may impact their overall dietary intake and further their health. In order to help people to make healthier food choices, regulations and policies to reduce the potentially unhealthy nutrients of processed foods should be strengthened. This research was supported by the National Research Foundation of Korea for 2011 Korea-Japan Basic Scientific Cooperation Program. This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2015S1A5B6037369).

Keywords: sodium, fat, processed foods, diet trends

Procedia PDF Downloads 233
467 Influence of Culture Conditions on the Growth and Fatty Acid Composition of Green Microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa

Authors: Tatyana A. Karpenyuk, Saltanat B. Orazova, Yana S. Tzurkan, Alla V. Goncharova, Bakytzhan K. Kairat, Togzhan D. Mukasheva, Ludmila V. Ignatova, Ramza Z. Berzhanova

Abstract:

Microalgae due to the ability to accumulate high levels of practically valuable polyunsaturated fatty acids attract attention as a promising raw material for commercial products. It were defined the features of the growth processes of cells green protococcal microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa at cultivation in different nutritional mediums. For the rapid accumulation of biomass, combined with high productivity of total lipids fraction yield recommended to use the Fitzgerald medium (Scenodesmus obliquus, Oocystis rhomboideus) and/or Bold medium (Dictyochlorella globosa). Productivity of lipids decreased in sequence Dictyochlorella globosa > Scenodesmus obliquus > Oocystis rhomboideus. The bulk of fatty acids fraction of the total lipids is unsaturated fatty acids, which accounts for 70 to 83% of the total number of fatty acids. The share of monoenic acids varies from 16 to 36 %, the share of unsaturated fatty acids - from 44 to 65% of total fatty acids fraction. Among the unsaturated acids dominate α-linolenic acid (C18:3n-3), hexadecatetraenic acid (C16:4) and linoleic acid (C18:2).

Keywords: microalgae, lipids, fatty acids, culture conditions

Procedia PDF Downloads 432
466 Contribution of the Cogeneration Systems to Environment and Sustainability

Authors: Kemal Çomakli, Uğur Çakir, Ayşegül Çokgez Kuş, Erol Şahin

Abstract:

Kind of energy that buildings need changes in various types, like heating energy, cooling energy, electrical energy and thermal energy for hot top water. Usually the processes or systems produce thermal energy causes emitting pollutant emissions while they produce heat because of fossil fuels they use. A lower consumption of thermal energy will contribute not only to a reduction in the running costs, but also in the reduction of pollutant emissions that contribute to the greenhouse effect and a lesser dependence of the hospital on the external power supply. Cogeneration or CHP (Combined heat and Power) is the system that produces power and usable heat simultaneously. Combined production of mechanical or electrical and thermal energy using a simple energy source, such as oil, coal, natural or liquefied gas, biomass or the sun; affords remarkable energy savings and frequently makes it possible to operate with greater efficiency when compared to a system producing heat and power separately. Because of the life standard of humanity in new age, energy sources must be continually and best qualified. For this reason the installation of a system for the simultaneous generation of electrical, heating and cooling energy would be one of the best solutions if we want to have qualified energy and reduce investment and operating costs and meet ecological requirements. This study aims to bring out the contributions of cogeneration systems to the environment and sustainability by saving the energy and reducing the emissions.

Keywords: sustainability, cogeneration systems, energy economy, energy saving

Procedia PDF Downloads 498
465 Genomic and Transcriptomic Analysis of Antibiotic Resistance Genes in Biological Wastewater Treatment Systems Treating Domestic and Hospital Effluents

Authors: Thobela Conco, Sheena Kumari, Chika Nnadozie, Mahmoud Nasr, Thor A. Stenström, Mushal Ali, Arshad Ismail, Faizal Bux

Abstract:

The discharge of antibiotics and its residues into the wastewater treatment plants (WWTP’s) create a conducive environment for the development of antibiotic resistant pathogens. This presents a risk of potential dissemination of antibiotic resistant pathogens and antibiotic resistance genes into the environment. It is, therefore, necessary to study the level of antibiotic resistance genes (ARG’s) among bacterial pathogens that proliferate in biological wastewater treatment systems. In the current study, metagenomic and meta-transcriptomic sequences of samples collected from the influents, secondary effluents and post chlorinated effluents of three wastewater treatment plants treating domestic and hospital effluents in Durban, South Africa, were analyzed for profiling of ARG’s among bacterial pathogens. Results show that a variety of ARG’s, mostly, aminoglycoside, β-lactamases, tetracycline and sulfonamide resistance genes were harbored by diverse bacterial genera found at different stages of treatment. A significant variation in diversity of pathogen and ARGs between the treatment plant was observed; however, treated final effluent samples from all three plants showed a significant reduction in bacterial pathogens and detected ARG’s. Both pre- and post-chlorinated samples showed the presence of mobile genetic elements (MGE’s), indicating the inefficiency of chlorination to remove of ARG’s integrated with MGE’s. In conclusion, the study showed the wastewater treatment plant efficiently caused the reduction and removal of certain ARG’s, even though the initial focus was the removal of biological nutrients.

Keywords: antibiotic resistance, mobile genetic elements, wastewater, wastewater treatment plants

Procedia PDF Downloads 200
464 Impact of Fly Ash on Soil Quality in Semi-Arid Region

Authors: Anjuri Srivastava, Akhouri Nishant Bhanu

Abstract:

Soil is a natural material with a distinctive form. It is regarded to be a natural source of nutrients and minerals for plants. It meets many of our needs through the crops, trees, and inhabited places that have grown on or underneath it. Productive and rich soil plays a crucial role in both its wealth and well-being. If any external substance changes the soil's composition, it directly impacts the plant that was grown in that soil. If the soil is deficient in one or more essential components, fly ash can be utilized as fertilizer by incorporating it into the soil. This can also increase the porosity of the soil. Fly ash has a sufficient concentration of essential components to promote the growth of plants. The high concentration of elements in fly ash, including C, Na, K, Fe, and Zn, increases crop yields. Hazardous compounds harm plant life as soon as they get into the soil. The US Environmental Protection Agency and other regulatory agencies have found it as non-hazardous. By employing fly ash as a potential fertilizer supplement for degraded soils, the problem of disposing of solid waste can be partially handled. Fly ash's rapid growth can slow down mineralization because it contains a higher proportion of harmful heavy metals. The chemical characteristics, inclusion ratio, and composting process of fly ash have a significant impact on the fly ash compost’s potential to improve soil nutrition. Research institutions and regulatory agencies have been thoroughly investigating fly ash for a long time. Guard cells on plant leaves that accumulate fly ash trigger the regulatory system. Fly ash increases both chemical and physical damage at certain humidity levels. The lengthy sowing period is caused by the high levels of fly ash in the soil, which also slows down seedling germination and growth. For the sake of human health, it is crucial to consider the bioaccumulation of dangerous heavy metals and their necessary concentrations in plant tissues and soil.

Keywords: soil, fly ash, plant, fertilizer, composts

Procedia PDF Downloads 74
463 Sustainability of Environment and Green Energy Strategies Comprehensive Analysis

Authors: Vahid Pirooznia

Abstract:

In this think about we propose a few green vitality procedures for feasible advancement. In this respect, seven green energy methodologies are taken into thought to decide the sectoral, innovative, and application affect proportions. Based on these proportions, we determine a modern parameter as the green energy affect proportion. In expansion, the green energy-based supportability proportion is gotten by depending upon the green energy affect proportion, and the green energy utilization proportion that's calculated utilizing real vitality information taken from literature. In arrange to confirm these parameters, three cases are considered. Subsequently, it can be considered that the sectoral affect proportion is more imperative and ought to be kept consistent as much as conceivable in a green vitality arrangement usage. In addition, the green energy-based supportability proportion increments with an increment of mechanical, sectoral, and application affect proportions. This implies that all negative impacts on the mechanical, innovative, sectoral and social improvements mostly and/or totally diminish all through the move and utilization to and of green energy and advances when conceivable feasible sustainable economic feasible maintainable energy techniques are favored and connected. Hence, the economical energy methodologies can make an imperative commitment to the economies of the nations where green energy (e.g., wind, sun based, tidal, biomass) is inexhaustibly created. Hence, the speculation in green energy supply and advance ought to be energized by governments and other specialists for a green energy substitution of fossil powers for more ecologically generous and feasible future.

Keywords: green energy, environment, sustainable, development

Procedia PDF Downloads 52
462 Assessment of Soil Contamination on the Content of Macro and Microelements and the Quality of Grass Pea Seeds (Lathyrus sativus L.)

Authors: Violina R. Angelova

Abstract:

Comparative research has been conducted to allow us to determine the content of macro and microelements in the vegetative and reproductive organs of grass pea and the quality of grass pea seeds, as well as to identify the possibility of grass pea growth on soils contaminated by heavy metals. The experiment was conducted on an agricultural field subjected to contamination from the Non-Ferrous-Metal Works (MFMW) near Plovdiv, Bulgaria. The experimental plots were situated at different distances of 0.5 km and 8 km, respectively, from the source of pollution. On reaching commercial ripeness the grass pea plants were gathered. The composition of the macro and microelements in plant materials (roots, stems, leaves, seeds), and the dry matter content, sugars, proteins, fats and ash contained in the grass pea seeds were determined. Translocation factors (TF) and bioaccumulation factor (BCF) were also determined. The quantitative measurements were carried out through inductively-coupled plasma (ICP). The grass pea plant can successfully be grown on soils contaminated by heavy metals. Soil pollution with heavy metals does not affect the quality of the grass pea seeds. The seeds of the grass pea contain significant amounts of nutrients (K, P, Cu, Fe Mn, Zn) and protein (23.18-29.54%). The distribution of heavy metals in the organs of the grass pea has a selective character, which reduces in the following order: leaves > roots > stems > seeds. BCF and TF values were greater than one suggesting efficient accumulation in the above ground parts of grass pea plant. Grass pea is a plant that is tolerant to heavy metals and can be referred to the accumulator plants. The results provide valuable information about the chemical and nutritional composition of the seeds of the grass pea grown on contaminated soils in Bulgaria. The high content of macro and microelements and the low concentrations of toxic elements in the grass pea grown in contaminated soil make it possible to use the seeds of the grass pea as animal feed.

Keywords: Lathyrus sativus L, macroelements, microelements, quality

Procedia PDF Downloads 117
461 Evaluation of Biological Seed Coating Technology On-Field Performance of Wheat in Regenerative Agriculture and Conventional Systems

Authors: S. Brain, P. J. Storer, H. Strydom, Z. M. Solaiman

Abstract:

Increasing farmer awareness of soil health, the impact of agricultural management practices, and the requirement for high-quality agricultural produce are major factors driving the rapid adoption of biological seed treatments - currently valued globally at USD 1.5 billion. Biological seed coatings with multistrain plant beneficial microbial technology have the capability to affect plant establishment, growth, and development positively. These beneficial plant microbes can potentially increase soil health, plant yield, and nutrition – acting as bio fertilisers, rhizoremediators, phytostimulators, and stress modulators, and can ultimately reduce the overall use of agrichemicals. A field trial was conducted on MACE wheat in the central wheat belt of Western Australia to evaluate a proprietary seed coating technology (Langleys Bio-EnergeticTM Microbe blend (BMB)) on a conventional program (+/- BMB microbes) and a Regenerative Biomineral fertiliser program (+/- BMB microbes). The Conventional (+BMB) and Biomineral (+BMB) treated plants had no fungicide treatments and had no disease issues. Control (No fertiliser, No microbes), Conventional (No Microbes), and Biomineral (No Microbes) were treated with fungicides (seed dressing and foliar). From the research findings, compared to control and no microbe treatments, both the Conventional (+ BMB) and Biomineral (+ BMB) showed significant increases in Soil Carbon (SOC), Seed germination, nutrient use efficiency (NUE) of nitrogen, phosphate and mineral nutrients, grain mineral nutrient uptake, protein %, hectolitre weight, and fewer screenings, yield, and gross margins.

Keywords: biological seed coating, biomineral fertiliser, plant nutrition, regenerative and conventional agriculture

Procedia PDF Downloads 56
460 Impact of Totiviridae L-A dsRNA Virus on Saccharomyces Cerevisiae Host: Transcriptomic and Proteomic Approach

Authors: Juliana Lukša, Bazilė Ravoitytė, Elena Servienė, Saulius Serva

Abstract:

Totiviridae L-A virus is a persistent Saccharomyces cerevisiae dsRNA virus. It encodes the major structural capsid protein Gag and Gag-Pol fusion protein, responsible for virus replication and encapsulation. These features also enable the copying of satellite dsRNAs (called M dsRNAs) encoding a secreted toxin and immunity to it (known as killer toxin). Viral capsid pore presumably functions in nucleotide uptake and viral mRNA release. During cell division, sporogenesis, and cell fusion, the virions remain intracellular and are transferred to daughter cells. By employing high throughput RNA sequencing data analysis, we describe the influence of solely L-A virus on the expression of genes in three different S. cerevisiae hosts. We provide a new perception into Totiviridae L-A virus-related transcriptional regulation, encompassing multiple bioinformatics analyses. Transcriptional responses to L-A infection were similar to those induced upon stress or availability of nutrients. It also delves into the connection between the cell metabolism and L-A virus-conferred demands to the host transcriptome by uncovering host proteins that may be associated with intact virions. To better understand the virus-host interaction, we applied differential proteomic analysis of virus particle-enriched fractions of yeast strains that harboreither complete killer system (L-A-lus and M-2 virus), M-2 depleted orvirus-free. Our analysis resulted in the identification of host proteins, associated with structural proteins of the virus (Gag and Gag-Pol). This research was funded by the European Social Fund under the No.09.3.3-LMT-K-712-19-0157“Development of Competences of Scientists, other Researchers, and Students through Practical Research Activities” measure.

Keywords: totiviridae, killer virus, proteomics, transcriptomics

Procedia PDF Downloads 120
459 Enhancement in Digester Efficiency and Numerical Analysis for Optimal Design Parameters of Biogas Plant Using Design of Experiment Approach

Authors: Rajneesh, Priyanka Singh

Abstract:

Biomass resources have been one of the main energy sources for mankind since the dawn of civilization. There is a vast scope to convert these energy sources into biogas which is a clean, low carbon technology for efficient management and conversion of fermentable organic wastes into a cheap and versatile fuel and bio/organic manure. Thus, in order to enhance the performance of anaerobic digester, an optimizing analysis of resultant parameters (organic dry matter (oDM) content, methane percentage, and biogas yield) has been done for a plug flow anaerobic digester having mesophilic conditions (20-40°C) with the wet fermentation process. Based on the analysis, correlations for oDM, methane percentage, and biogas yield are derived using multiple regression analysis. A statistical model is developed to correlate the operating variables using the design of experiment approach by selecting central composite design (CCD) of a response surface methodology. Results shown in the paper indicates that as the operating temperature increases the efficiency of digester gets improved provided that the pH and hydraulic retention time (HRT) remains constant. Working in an optimized range of carbon-nitrogen ratio for the plug flow digester, the output parameters show a positive change with the variation of dry matter content (DM).

Keywords: biogas, digester efficiency, design of experiment, plug flow digester

Procedia PDF Downloads 357
458 Analysis of Impact of Air Pollution over Megacity Delhi Due to Agricultural Biomass Burning in the Neighbouring States

Authors: Ankur P. Sati, Manju Mohan

Abstract:

The hazardous combination of smoke and pollutant gases, smog, is harmful for health. There are strong evidences that the Agricultural waste burning (AWB) in the Northern India leads to adverse air quality in Delhi and its surrounding regions. A severe smog episode was observed over Delhi, India during November 2012 which resulted in very low visibility and various respiratory problems. Very high values of pollutants (PM10 as high as 989 µg m-3, PM2.5 as high as 585 µg m-3 an NO2 as high as 540 µg m-3) were measured all over Delhi during the smog episode. Ultra Violet Aerosol Index (UVAI) from Aura satellite and Aerosol Optical Depth (AOD) are used in the present study along with the output trajectories from HYSPLIT model and the in-situ data. Satellite data also reveal that AOD, UVAI are always at its highest during the farmfires duration in Punjab region of India and the extent of these farmfires may be increasing. It is observed that during the smog episode all the AOD, UVAI, PM2.5 and PM10 values surpassed those of the Diwali period (one of the most polluted events in the city) by a considerable amount at all stations across Delhi. The parameters used from the remote sensing data and the ground based observations at various stations across Delhi are very well in agreement about the intensity of Smog episode. The analysis clearly shows that regional pollution can have greater contributions in deteriorating the air quality than the local under adverse meteorological conditions.

Keywords: smog, farmfires, AOD, remote sensing

Procedia PDF Downloads 224
457 Effect of a GABA/5-HTP Mixture on Behavioral Changes and Biomodulation in an Invertebrate Model

Authors: Kyungae Jo, Eun Young Kim, Byungsoo Shin, Kwang Soon Shin, Hyung Joo Suh

Abstract:

Gamma-aminobutyric acid (GABA) and 5-hydroxytryptophan (5-HTP) are amino acids of digested nutrients or food ingredients and these can possibly be utilized as non-pharmacologic treatment for sleep disorder. We previously investigated the GABA/5-HTP mixture is the principal concept of sleep-promoting and activity-repressing management in nervous system of D. melanogaster. Two experiments in this study were designed to evaluate sleep-promoting effect of GABA/5-HTP mixture, to clarify the possible ratio of sleep-promoting action in the Drosophila invertebrate model system. Behavioral assays were applied to investigate distance traveled, velocity, movement, mobility, turn angle, angular velocity and meander of two amino acids and GABA/5-HTP mixture with caffeine treated flies. In addition, differentially expressed gene (DEG) analyses from next generation sequencing (NGS) were applied to investigate the signaling pathway and functional interaction network of GABA/5-HTP mixture administration. GABA/5-HTP mixture resulted in significant differences between groups related to behavior (p < 0.01) and significantly induced locomotor activity in the awake model (p < 0.05). As a result of the sequencing, the molecular function of various genes has relationship with motor activity and biological regulation. These results showed that GABA/5-HTP mixture administration significantly involved the inhibition of motor behavior. In this regard, we successfully demonstrated that using a GABA/5-HTP mixture modulates locomotor activity to a greater extent than single administration of each amino acid, and that this modulation occurs via the neuronal system, neurotransmitter release cycle and transmission across chemical synapses.

Keywords: sleep, γ-aminobutyric acid, 5-hydroxytryptophan, Drosophila melanogaster

Procedia PDF Downloads 292
456 Fruit and Vegetable Consumption in High School Students in Bandar Abbas, Iran: An Application of the Trans-Theoretical Model

Authors: Aghamolaei Teamur, Hosseini Zahra, Ghanbarnejad Amin

Abstract:

Introduction: A diet rich in fruits and vegetables, especially for adolescents is of a great importance due to the need for nutrients and the rapid growth of this age group. The aim of this study was to investigate the relationship between decisional balance and self-efficacy with stages of change for fruit and vegetable consumption in high school students in Bandar Abbas, Iran. Methods: In this descriptive-analytical study, the data were collected from 345 students studying in 8 high schools of Bandar Abbas were selected through multistage sampling. To collect data, separate questionnaires were designed for evaluating each of the variables including the stages of change, perceived benefits, perceived barriers, and self-efficacy of fruit and vegetable consumption. Decisional balance was estimated by subtracting the perceived benefits and barriers. The data were analyzed using SPSS19 and one-way ANOVA. Results: The results of this study indicated that individuals’ progress along the stages of change from pre-contemplation to maintenance level was associated with a significant increase in their decisional balance and self-efficacy for fruit and vegetable consumption. (P < 0.001). The lowest level of decisional balance and self-efficacy regarding for fruit showed up in the pre-contemplation stage, and the highest level of decisional balance and self-efficacy was in the maintenance stage. The same trends were observed in the case of vegetable consumption. Conclusion: Decisional balance and self-efficacy should be considered in designing interventions to increase consumption of fruits and vegetables. There needs to be more emphasis in educational programs based on the Trans-theoretical Model (TTM) on the enhancement of perceived benefits and elimination of perceived barriers regarding consumption of fruits and vegetables.

Keywords: fruit, vegetable, decision balance, self-efficacy, trans-theoretical model

Procedia PDF Downloads 273
455 A Feasibility Study of Producing Biofuels from Textile Sludge by Torrefaction Technology

Authors: Hua-Shan Tai, Yu-Ting Zeng

Abstract:

In modern and industrial society, enormous amounts of sludge from various of industries are constantly produced; currently, most of the sludge are treated by landfill and incineration. However, both treatments are not ideal because of the limited land for landfill and the secondary pollution caused by incineration. Consequently, treating industrial sludge appropriately has become an urgent issue of environmental protection. In order to solve the problem of the massive sludge, this study uses textile sludge which is the major source of waste sludge in Taiwan as raw material for torrefaction treatments. To investigate the feasibility of producing biofuels from textile sludge by torrefaction, the experiments were conducted with temperatures at 150, 200, 250, 300, and 350°C, with heating rates of 15, 20, 25 and 30°C/min, and with residence time of 30 and 60 minutes. The results revealed that the mass yields after torrefaction were approximately in the range of 54.9 to 93.4%. The energy densification ratios were approximately in the range of 0.84 to 1.10, and the energy yields were approximately in the range of 45.9 to 98.3%. The volumetric densities were approximately in the range of 0.78 to 1.14, and the volumetric energy densities were approximately in the range of 0.65 to 1.18. To sum up, the optimum energy yield (98.3%) can be reached with terminal temperature at 150 °C, heating rate of 20°C/min, and residence time of 30 minutes, and the mass yield, energy densification ratio as well as volumetric energy density were 92.2%, 1.07, and 1.15, respectively. These results indicated that the solid products after torrefaction are easy to preserve, which not only enhance the quality of the product, but also achieve the purpose of developing the material into fuel.

Keywords: biofuel, biomass energy, textile sludge, torrefaction

Procedia PDF Downloads 304