Search results for: imbalanced multiclass classifi-cation
1204 Application of Granular Computing Paradigm in Knowledge Induction
Authors: Iftikhar U. Sikder
Abstract:
This paper illustrates an application of granular computing approach, namely rough set theory in data mining. The paper outlines the formalism of granular computing and elucidates the mathematical underpinning of rough set theory, which has been widely used by the data mining and the machine learning community. A real-world application is illustrated, and the classification performance is compared with other contending machine learning algorithms. The predictive performance of the rough set rule induction model shows comparative success with respect to other contending algorithms.Keywords: concept approximation, granular computing, reducts, rough set theory, rule induction
Procedia PDF Downloads 5311203 EEG Diagnosis Based on Phase Space with Wavelet Transforms for Epilepsy Detection
Authors: Mohmmad A. Obeidat, Amjed Al Fahoum, Ayman M. Mansour
Abstract:
The recognition of an abnormal activity of the brain functionality is a vital issue. To determine the type of the abnormal activity either a brain image or brain signal are usually considered. Imaging localizes the defect within the brain area and relates this area with somebody functionalities. However, some functions may be disturbed without affecting the brain as in epilepsy. In this case, imaging may not provide the symptoms of the problem. A cheaper yet efficient approach that can be utilized to detect abnormal activity is the measurement and analysis of the electroencephalogram (EEG) signals. The main goal of this work is to come up with a new method to facilitate the classification of the abnormal and disorder activities within the brain directly using EEG signal processing, which makes it possible to be applied in an on-line monitoring system.Keywords: EEG, wavelet, epilepsy, detection
Procedia PDF Downloads 5381202 Uses and Gratification with the Website Secret-thai.com
Authors: Siriporn Meenanan
Abstract:
The objective of this study is to study about the uses and gratification of the sample who use the website that named secret-thai.com which provides moral contents, inspires, and builds up the spirit. The study found that the samples mainly use this website to follow up on the dharma activities. They also use the space as the web board to discuss about dharma issues. Moreover, the contents help readers to relax and also provides the guidelines to deal with stress and uncomfortable situations properly. The samples found to be most satisfied. In other words, the samples found the contents of the website are complete, and can cover their needs. Moreover, they found that contents useful in their ways of living. In addition, they are satisfied with the beautiful and interesting design of the website and well classification of the contents that readers can easily find the information that they want.Keywords: uses and gratification, website, Secret-Thai.com, moral contents
Procedia PDF Downloads 2341201 Internalized HIV Stigma, Mental Health, Coping, and Perceived Social Support among People Living with HIV/AIDS in Aizawl District, Mizoram
Authors: Mary Ann L. Halliday, Zoengpari Gohain
Abstract:
The stigma associated with HIV-AIDS negatively affect mental health and ability to effectively manage the disease. While the number of People living with HIV/AIDS (PLHIV) has been increasing day by day in Mizoram (a small north-eastern state in India), research on HIV/AIDS stigma has so far been limited. Despite the potential significance of Internalized HIV Stigma (IHS) in the lives of PLHIV, there has been very limited research in this area. It was therefore, felt necessary to explore the internalized HIV stigma, mental health, coping and perceived social support of PLHIV in Aizawl District, Mizoram. The present study was designed with the objectives to determine the degree of IHS, to study the relationship between the socio-demographic characteristics and level of IHS, to highlight the mental health status, coping strategies and perceived social support of PLHIV and to elucidate the relationship between these psychosocial variables. In order to achieve the objectives of the study, six hypotheses were formulated and statistical analyses conducted accordingly. The sample consisted of 300 PLWHA from Aizawl District, 150 males and 150 females, of the age group 20 to 70 years. Two- way classification of “Gender” (male and female) and three-way classification of “Level of IHS” (High IHS, Moderate IHS, Low IHS) on the dependent variables was employed, to elucidate the relationship between Internalized HIV Stigma, mental health, coping and perceived social support of PLHIV. The overall analysis revealed moderate level of IHS (67.3%) among PLHIV in Aizawl District, with a small proportion of subjects reporting high level of IHS. IHS was found to be significantly different on the basis of disclosure status, with the disclosure status of PLHIV accounting for 9% variability in IHS. Results also revealed more or less good mental health among the participants, which was assessed by minimal depression (50.3%) and minimal anxiety (45%), with females with high IHS scoring significantly higher in both depression and anxiety (p<.01). Examination of the coping strategies of PLHIV found that the most frequently used coping styles were Acceptance (91%), Religion (84.3%), Planning (74.7%), Active Coping (66%) and Emotional Support (52.7%). High perception of perceived social support (48%) was found in the present study. Correlation analysis revealed significant positive relationships between IHS and depression as well as anxiety (p<.01), thus revealing that IHS negatively affects the mental health of PLHIV. Results however revealed that this effect may be lessened by the use of various coping strategies by PLHIV as well as their perception of social support.Keywords: Aizawl, anxiety, depression, internalized HIV stigma, HIV/AIDS, mental health, mizoram, perceived social support
Procedia PDF Downloads 2621200 Performance Analysis of Ad-Hoc Network Routing Protocols
Authors: I. Baddari, A. Riahla, M. Mezghich
Abstract:
Today in the literature, we discover a lot of routing algorithms which some have been the subject of normalization. Two great classes Routing algorithms are defined, the first is the class reactive algorithms and the second that of algorithms proactive. The aim of this work is to make a comparative study between some routing algorithms. Two comparisons are considered. The first will focus on the protocols of the same class and second class on algorithms of different classes (one reactive and the other proactive). Since they are not based on analytical models, the exact evaluation of some aspects of these protocols is challenging. Simulations have to be done in order to study their performances. Our simulation is performed in NS2 (Network Simulator 2). It identified a classification of the different routing algorithms studied in a metrics such as loss of message, the time transmission, mobility, etc.Keywords: ad-hoc network routing protocol, simulation, NS2, delay, packet loss, wideband, mobility
Procedia PDF Downloads 4001199 Tumor Size and Lymph Node Metastasis Detection in Colon Cancer Patients Using MR Images
Authors: Mohammadreza Hedyehzadeh, Mahdi Yousefi
Abstract:
Colon cancer is one of the most common cancer, which predicted to increase its prevalence due to the bad eating habits of peoples. Nowadays, due to the busyness of people, the use of fast foods is increasing, and therefore, diagnosis of this disease and its treatment are of particular importance. To determine the best treatment approach for each specific colon cancer patients, the oncologist should be known the stage of the tumor. The most common method to determine the tumor stage is TNM staging system. In this system, M indicates the presence of metastasis, N indicates the extent of spread to the lymph nodes, and T indicates the size of the tumor. It is clear that in order to determine all three of these parameters, an imaging method must be used, and the gold standard imaging protocols for this purpose are CT and PET/CT. In CT imaging, due to the use of X-rays, the risk of cancer and the absorbed dose of the patient is high, while in the PET/CT method, there is a lack of access to the device due to its high cost. Therefore, in this study, we aimed to estimate the tumor size and the extent of its spread to the lymph nodes using MR images. More than 1300 MR images collected from the TCIA portal, and in the first step (pre-processing), histogram equalization to improve image qualities and resizing to get the same image size was done. Two expert radiologists, which work more than 21 years on colon cancer cases, segmented the images and extracted the tumor region from the images. The next step is feature extraction from segmented images and then classify the data into three classes: T0N0، T3N1 و T3N2. In this article, the VGG-16 convolutional neural network has been used to perform both of the above-mentioned tasks, i.e., feature extraction and classification. This network has 13 convolution layers for feature extraction and three fully connected layers with the softmax activation function for classification. In order to validate the proposed method, the 10-fold cross validation method used in such a way that the data was randomly divided into three parts: training (70% of data), validation (10% of data) and the rest for testing. It is repeated 10 times, each time, the accuracy, sensitivity and specificity of the model are calculated and the average of ten repetitions is reported as the result. The accuracy, specificity and sensitivity of the proposed method for testing dataset was 89/09%, 95/8% and 96/4%. Compared to previous studies, using a safe imaging technique (MRI) and non-use of predefined hand-crafted imaging features to determine the stage of colon cancer patients are some of the study advantages.Keywords: colon cancer, VGG-16, magnetic resonance imaging, tumor size, lymph node metastasis
Procedia PDF Downloads 591198 Low Cost Webcam Camera and GNSS Integration for Updating Home Data Using AI Principles
Authors: Mohkammad Nur Cahyadi, Hepi Hapsari Handayani, Agus Budi Raharjo, Ronny Mardianto, Daud Wahyu Imani, Arizal Bawazir, Luki Adi Triawan
Abstract:
PDAM (local water company) determines customer charges by considering the customer's building or house. Charges determination significantly affects PDAM income and customer costs because the PDAM applies a subsidy policy for customers classified as small households. Periodic updates are needed so that pricing is in line with the target. A thorough customer survey in Surabaya is needed to update customer building data. However, the survey that has been carried out so far has been by deploying officers to conduct one-by-one surveys for each PDAM customer. Surveys with this method require a lot of effort and cost. For this reason, this research offers a technology called moblie mapping, a mapping method that is more efficient in terms of time and cost. The use of this tool is also quite simple, where the device will be installed in the car so that it can record the surrounding buildings while the car is running. Mobile mapping technology generally uses lidar sensors equipped with GNSS, but this technology requires high costs. In overcoming this problem, this research develops low-cost mobile mapping technology using a webcam camera sensor added to the GNSS and IMU sensors. The camera used has specifications of 3MP with a resolution of 720 and a diagonal field of view of 78⁰. The principle of this invention is to integrate four camera sensors, a GNSS webcam, and GPS to acquire photo data, which is equipped with location data (latitude, longitude) and IMU (roll, pitch, yaw). This device is also equipped with a tripod and a vacuum cleaner to attach to the car's roof so it doesn't fall off while running. The output data from this technology will be analyzed with artificial intelligence to reduce similar data (Cosine Similarity) and then classify building types. Data reduction is used to eliminate similar data and maintain the image that displays the complete house so that it can be processed for later classification of buildings. The AI method used is transfer learning by utilizing a trained model named VGG-16. From the analysis of similarity data, it was found that the data reduction reached 50%. Then georeferencing is done using the Google Maps API to get address information according to the coordinates in the data. After that, geographic join is done to link survey data with customer data already owned by PDAM Surya Sembada Surabaya.Keywords: mobile mapping, GNSS, IMU, similarity, classification
Procedia PDF Downloads 841197 Hate Speech Detection Using Deep Learning and Machine Learning Models
Authors: Nabil Shawkat, Jamil Saquer
Abstract:
Social media has accelerated our ability to engage with others and eliminated many communication barriers. On the other hand, the widespread use of social media resulted in an increase in online hate speech. This has drastic impacts on vulnerable individuals and societies. Therefore, it is critical to detect hate speech to prevent innocent users and vulnerable communities from becoming victims of hate speech. We investigate the performance of different deep learning and machine learning algorithms on three different datasets. Our results show that the BERT model gives the best performance among all the models by achieving an F1-score of 90.6% on one of the datasets and F1-scores of 89.7% and 88.2% on the other two datasets.Keywords: hate speech, machine learning, deep learning, abusive words, social media, text classification
Procedia PDF Downloads 1361196 Clinical Features, Diagnosis and Treatment Outcomes in Necrotising Autoimmune Myopathy: A Rare Entity in the Spectrum of Inflammatory Myopathies
Authors: Tamphasana Wairokpam
Abstract:
Inflammatory myopathies (IMs) have long been recognised as a heterogenous family of myopathies with acute, subacute, and sometimes chronic presentation and are potentially treatable. Necrotizing autoimmune myopathies (NAM) are a relatively new subset of myopathies. Patients generally present with subacute onset of proximal myopathy and significantly elevated creatinine kinase (CK) levels. It is being increasingly recognised that there are limitations to the independent diagnostic utility of muscle biopsy. Immunohistochemistry tests may reveal important information in these cases. The traditional classification of IMs failed to recognise NAM as a separate entity and did not adequately emphasize the diversity of IMs. This review and case report on NAM aims to highlight the heterogeneity of this entity and focus on the distinct clinical presentation, biopsy findings, specific auto-antibodies implicated, and available treatment options with prognosis. This article is a meta-analysis of literatures on NAM and a case report illustrating the clinical course, investigation and biopsy findings, antibodies implicated, and management of a patient with NAM. The main databases used for the search were Pubmed, Google Scholar, and Cochrane Library. Altogether, 67 publications have been taken as references. Two biomarkers, anti-signal recognition protein (SRP) and anti- hydroxyl methylglutaryl-coenzyme A reductase (HMGCR) Abs, have been found to have an association with NAM in about 2/3rd of cases. Interestingly, anti-SRP associated NAM appears to be more aggressive in its clinical course when compared to its anti-HMGCR associated counterpart. Biopsy shows muscle fibre necrosis without inflammation. There are reports of statin-induced NAM where progression of myopathy has been seen even after discontinuation of statins, pointing towards an underlying immune mechanism. Diagnosisng NAM is essential as it requires more aggressive immunotherapy than other types of IMs. Most cases are refractory to corticosteroid monotherapy. Immunosuppressive therapy with other immunotherapeutic agents such as IVIg, rituximab, mycophenolate mofetil, azathioprine has been explored and found to have a role in the treatment of NAM. In conclusion,given the heterogeneity of NAM, it appears that NAM is not just a single entity but consists of many different forms, despite the similarities in presentation and its classification remains an evolving field. A thorough understanding of underlying mechanism and the clinical correlation with antibodies associated with NAM is essential for efficacious management and disease prognostication.Keywords: inflammatory myopathies, necrotising autoimmune myopathies, anti-SRP antibody, anti-HMGCR antibody, statin induced myopathy
Procedia PDF Downloads 1031195 Spatial and Temporal Analysis of Forest Cover Change with Special Reference to Anthropogenic Activities in Kullu Valley, North-Western Indian Himalayan Region
Authors: Krisala Joshi, Sayanta Ghosh, Renu Lata, Jagdish C. Kuniyal
Abstract:
Throughout the world, monitoring and estimating the changing pattern of forests across diverse landscapes through remote sensing is instrumental in understanding the interactions of human activities and the ecological environment with the changing climate. Forest change detection using satellite imageries has emerged as an important means to gather information on a regional scale. Kullu valley in Himachal Pradesh, India is situated in a transitional zone between the lesser and the greater Himalayas. Thus, it presents a typical rugged mountainous terrain with moderate to high altitude which varies from 1200 meters to over 6000 meters. Due to changes in agricultural cropping patterns, urbanization, industrialization, hydropower generation, climate change, tourism, and anthropogenic forest fire, it has undergone a tremendous transformation in forest cover in the past three decades. The loss and degradation of forest cover results in soil erosion, loss of biodiversity including damage to wildlife habitats, and degradation of watershed areas, and deterioration of the overall quality of nature and life. The supervised classification of LANDSAT satellite data was performed to assess the changes in forest cover in Kullu valley over the years 2000 to 2020. Normalized Burn Ratio (NBR) was calculated to discriminate between burned and unburned areas of the forest. Our study reveals that in Kullu valley, the increasing number of forest fire incidents specifically, those due to anthropogenic activities has been on a rise, each subsequent year. The main objective of the present study is, therefore, to estimate the change in the forest cover of Kullu valley and to address the various social aspects responsible for the anthropogenic forest fires. Also, to assess its impact on the significant changes in the regional climatic factors, specifically, temperature, humidity, and precipitation over three decades, with the help of satellite imageries and ground data. The main outcome of the paper, we believe, will be helpful for the administration for making a quantitative assessment of the forest cover area changes due to anthropogenic activities and devising long-term measures for creating awareness among the local people of the area.Keywords: Anthropogenic Activities, Forest Change Detection, Normalized Burn Ratio (NBR), Supervised Classification
Procedia PDF Downloads 1731194 Unveiling Comorbidities in Irritable Bowel Syndrome: A UK BioBank Study utilizing Supervised Machine Learning
Authors: Uswah Ahmad Khan, Muhammad Moazam Fraz, Humayoon Shafique Satti, Qasim Aziz
Abstract:
Approximately 10-14% of the global population experiences a functional disorder known as irritable bowel syndrome (IBS). The disorder is defined by persistent abdominal pain and an irregular bowel pattern. IBS significantly impairs work productivity and disrupts patients' daily lives and activities. Although IBS is widespread, there is still an incomplete understanding of its underlying pathophysiology. This study aims to help characterize the phenotype of IBS patients by differentiating the comorbidities found in IBS patients from those in non-IBS patients using machine learning algorithms. In this study, we extracted samples coding for IBS from the UK BioBank cohort and randomly selected patients without a code for IBS to create a total sample size of 18,000. We selected the codes for comorbidities of these cases from 2 years before and after their IBS diagnosis and compared them to the comorbidities in the non-IBS cohort. Machine learning models, including Decision Trees, Gradient Boosting, Support Vector Machine (SVM), AdaBoost, Logistic Regression, and XGBoost, were employed to assess their accuracy in predicting IBS. The most accurate model was then chosen to identify the features associated with IBS. In our case, we used XGBoost feature importance as a feature selection method. We applied different models to the top 10% of features, which numbered 50. Gradient Boosting, Logistic Regression and XGBoost algorithms yielded a diagnosis of IBS with an optimal accuracy of 71.08%, 71.427%, and 71.53%, respectively. Among the comorbidities most closely associated with IBS included gut diseases (Haemorrhoids, diverticular diseases), atopic conditions(asthma), and psychiatric comorbidities (depressive episodes or disorder, anxiety). This finding emphasizes the need for a comprehensive approach when evaluating the phenotype of IBS, suggesting the possibility of identifying new subsets of IBS rather than relying solely on the conventional classification based on stool type. Additionally, our study demonstrates the potential of machine learning algorithms in predicting the development of IBS based on comorbidities, which may enhance diagnosis and facilitate better management of modifiable risk factors for IBS. Further research is necessary to confirm our findings and establish cause and effect. Alternative feature selection methods and even larger and more diverse datasets may lead to more accurate classification models. Despite these limitations, our findings highlight the effectiveness of Logistic Regression and XGBoost in predicting IBS diagnosis.Keywords: comorbidities, disease association, irritable bowel syndrome (IBS), predictive analytics
Procedia PDF Downloads 1191193 Credit Risk Prediction Based on Bayesian Estimation of Logistic Regression Model with Random Effects
Authors: Sami Mestiri, Abdeljelil Farhat
Abstract:
The aim of this current paper is to predict the credit risk of banks in Tunisia, over the period (2000-2005). For this purpose, two methods for the estimation of the logistic regression model with random effects: Penalized Quasi Likelihood (PQL) method and Gibbs Sampler algorithm are applied. By using the information on a sample of 528 Tunisian firms and 26 financial ratios, we show that Bayesian approach improves the quality of model predictions in terms of good classification as well as by the ROC curve result.Keywords: forecasting, credit risk, Penalized Quasi Likelihood, Gibbs Sampler, logistic regression with random effects, curve ROC
Procedia PDF Downloads 5421192 On Early Verb Acquisition in Chinese-Speaking Children
Authors: Yating Mu
Abstract:
Young children acquire native language with amazing rapidity. After noticing this interesting phenomenon, lots of linguistics, as well as psychologists, devote themselves to exploring the best explanations. Thus researches on first language acquisition emerged. Early lexical development is an important branch of children’s FLA (first language acquisition). Verb, the most significant class of lexicon, the most grammatically complex syntactic category or word type, is not only the core of exploring syntactic structures of language but also plays a key role in analyzing semantic features. Obviously, early verb development must have great impacts on children’s early lexical acquisition. Most scholars conclude that verbs, in general, are very difficult to learn because the problem in verb learning might be more about mapping a specific verb onto an action or event than about learning the underlying relational concepts that the verb or relational term encodes. However, the previous researches on early verb development mainly focus on the argument about whether there is a noun-bias or verb-bias in children’s early productive vocabulary. There are few researches on general characteristics of children’s early verbs concerning both semantic and syntactic aspects, not mentioning a general survey on Chinese-speaking children’s verb acquisition. Therefore, the author attempts to examine the general conditions and characteristics of Chinese-speaking children’s early productive verbs, based on data from a longitudinal study on three Chinese-speaking children. In order to present an overall picture of Chinese verb development, both semantic and syntactic aspects will be focused in the present study. As for semantic analysis, a classification method is adopted first. Verb category is a sophisticated class in Mandarin, so it is quite necessary to divide it into small sub-types, thus making the research much easier. By making a reasonable classification of eight verb classes on basis of semantic features, the research aims at finding out whether there exist any universal rules in Chinese-speaking children’s verb development. With regard to the syntactic aspect of verb category, a debate between nativist account and usage-based approach has lasted for quite a long time. By analyzing the longitudinal Mandarin data, the author attempts to find out whether the usage-based theory can fully explain characteristics in Chinese verb development. To sum up, this thesis attempts to apply the descriptive research method to investigate the acquisition and the usage of Chinese-speaking children’s early verbs, on purpose of providing a new perspective in investigating semantic and syntactic features of early verb acquisition.Keywords: Chinese-speaking children, early verb acquisition, verb classes, verb grammatical structures
Procedia PDF Downloads 3661191 Stock Movement Prediction Using Price Factor and Deep Learning
Abstract:
The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.Keywords: classification, machine learning, time representation, stock prediction
Procedia PDF Downloads 1471190 Mineralogical Characterization and Petrographic Classification of the Soil of Casablanca City
Authors: I. Fahi, T. Remmal, F. El Kamel, B. Ayoub
Abstract:
The treatment of the geotechnical database of the region of Casablanca was difficult to achieve due to the heterogeneity of the nomenclature of the lithological formations composing its soil. It appears necessary to harmonize the nomenclature of the facies and to produce cartographic documents useful for construction projects and studies before any investment program. To achieve this, more than 600 surveys made by the Public Laboratory for Testing and Studies (LPEE) in the agglomeration of Casablanca, were studied. Moreover, some local observations were made in different places of the metropolis. Each survey was the subject of a sheet containing lithological succession, macro and microscopic description of petrographic facies with photographic illustration, as well as measurements of geomechanical tests. In addition, an X-ray diffraction analysis was made in order to characterize the surficial formations of the region.Keywords: Casablanca, guidebook, petrography, soil
Procedia PDF Downloads 3001189 Land-Use Transitions and Its Implications on Food Production Systems in Rural Landscape of Southwestern Ghana
Authors: Evelyn Asante Yeboah, Kwabena O. Asubonteng, Justice Camillus Mensah, Christine Furst
Abstract:
Smallholder-dominated mosaic landscapes in rural Africa are relevant for food production, biodiversity conservation, and climate regulation. Land-use transitions threaten the multifunctionality of such landscapes, especially the production capacity of arable lands resulting in food security challenges. Using land-cover maps derived from maximum likelihood classification of Landsat satellite images for the years 2002, 2015, and 2020, post-classification change detection, landscape metrics, and key informant interviews, the study assessed the implications of rubber plantation expansion and oil business development on the food production capacity of Ahanta West District, Ghana. The analysis reveals that settlement and rubber areas expanded by 5.82% and 10.33% of the landscape area, respectively, between 2002 and 2020. This increase translates into over twice their initial sizes (144% in settlement change and 101% in rubber change). Rubber plantation spread dominates the north and southwestern areas, whereas settlement is widespread in the eastern parts of the landscape. Rubber and settlement expanded at the expense of cropland, palm, and shrublands. Land-use transitions between cropland, palm, and shrubland were targeting each other, but the net loss in shrubland was higher (-17.27%). Isolation, subdivision, connectedness, and patch adjacency indices showed patch consolidation in the landscape configuration from 2002 to 2015 and patch fragmentation from 2015 to 2020. The study also found patches with consistent increasing connectivity in settlement areas indicating the influence of oil discovery developments and fragmentation tendencies in rubber, shrubland, cropland, and palm, indicating springing up of smaller rubber farms, the disappearance of shrubland, and splitting up of cropland and palm areas respectively. The results revealed a trend in land-use transitions in favor of smallholder rubber plantation expansion and oil discovery developments, which suggest serious implications on food production systems and poses a risk for food security and landscape multifunctional characteristics. To ensure sustainability in land uses, this paper recommends the enforcement of legislative instruments governing spatial planning and land use in Ghana as embedded in the 2016 land-use and spatial planning act.Keywords: food production systems, food security, Ghana’s west coast, land-use transitions, multifunctional rural landscapes
Procedia PDF Downloads 1451188 A Literature Review of Emotional Labor and Emotional Labor Strategies
Authors: Yeong-Gyeong Choi, Kyoung-Seok Kim
Abstract:
This study, literature review research, intends to deal with the problem of conceptual ambiguity among research on emotional labor, and to look into the evolutionary trends and changing aspects of defining the concept of emotional labor. For this, it gropes for methods for reducing conceptual ambiguity. Further, it arranges the concept of emotional labor; and examines and reviews comparatively the currents of the existing studies and looks for the characteristics and correlations of their classification criteria. That is, this study intends to arrange systematically and examine theories on emotional labor suggested hitherto, and suggest a future direction of research on emotional labor on the basis thereof. In addition, it attempts to look for positive aspects of the results of emotional labor.Keywords: emotion labor, dimensions of emotional labor, surface acting, deep acting
Procedia PDF Downloads 3571187 Kohonen Self-Organizing Maps as a New Method for Determination of Salt Composition of Multi-Component Solutions
Authors: Sergey A. Burikov, Tatiana A. Dolenko, Kirill A. Gushchin, Sergey A. Dolenko
Abstract:
The paper presents the results of clusterization by Kohonen self-organizing maps (SOM) applied for analysis of array of Raman spectra of multi-component solutions of inorganic salts, for determination of types of salts present in the solution. It is demonstrated that use of SOM is a promising method for solution of clusterization and classification problems in spectroscopy of multi-component objects, as attributing a pattern to some cluster may be used for recognition of component composition of the object.Keywords: Kohonen self-organizing maps, clusterization, multi-component solutions, Raman spectroscopy
Procedia PDF Downloads 4431186 Optimizing Communications Overhead in Heterogeneous Distributed Data Streams
Authors: Rashi Bhalla, Russel Pears, M. Asif Naeem
Abstract:
In this 'Information Explosion Era' analyzing data 'a critical commodity' and mining knowledge from vertically distributed data stream incurs huge communication cost. However, an effort to decrease the communication in the distributed environment has an adverse influence on the classification accuracy; therefore, a research challenge lies in maintaining a balance between transmission cost and accuracy. This paper proposes a method based on Bayesian inference to reduce the communication volume in a heterogeneous distributed environment while retaining prediction accuracy. Our experimental evaluation reveals that a significant reduction in communication can be achieved across a diverse range of dataset types.Keywords: big data, bayesian inference, distributed data stream mining, heterogeneous-distributed data
Procedia PDF Downloads 1611185 Assessment of Soil Quality Indicators in Rice Soil of Tamil Nadu
Authors: Kaleeswari R. K., Seevagan L .
Abstract:
Soil quality in an agroecosystem is influenced by the cropping system, water and soil fertility management. A valid soil quality index would help to assess the soil and crop management practices for desired productivity and soil health. The soil quality indices also provide an early indication of soil degradation and needy remedial and rehabilitation measures. Imbalanced fertilization and inadequate organic carbon dynamics deteriorate soil quality in an intensive cropping system. The rice soil ecosystem is different from other arable systems since rice is grown under submergence, which requires a different set of key soil attributes for enhancing soil quality and productivity. Assessment of the soil quality index involves indicator selection, indicator scoring and comprehensive score into one index. The most appropriate indicator to evaluate soil quality can be selected by establishing the minimum data set, which can be screened by linear and multiple regression factor analysis and score function. This investigation was carried out in intensive rice cultivating regions (having >1.0 lakh hectares) of Tamil Nadu viz., Thanjavur, Thiruvarur, Nagapattinam, Villupuram, Thiruvannamalai, Cuddalore and Ramanathapuram districts. In each district, intensive rice growing block was identified. In each block, two sampling grids (10 x 10 sq.km) were used with a sampling depth of 10 – 15 cm. Using GIS coordinates, and soil sampling was carried out at various locations in the study area. The number of soil sampling points were 41, 28, 28, 32, 37, 29 and 29 in Thanjavur, Thiruvarur, Nagapattinam, Cuddalore, Villupuram, Thiruvannamalai and Ramanathapuram districts, respectively. Principal Component Analysis is a data reduction tool to select some of the potential indicators. Principal Component is a linear combination of different variables that represents the maximum variance of the dataset. Principal Component that has eigenvalues equal or higher than 1.0 was taken as the minimum data set. Principal Component Analysis was used to select the representative soil quality indicators in rice soils based on factor loading values and contribution percent values. Variables having significant differences within the production system were used for the preparation of the minimum data set. Each Principal Component explained a certain amount of variation (%) in the total dataset. This percentage provided the weight for variables. The final Principal Component Analysis based soil quality equation is SQI = ∑ i=1 (W ᵢ x S ᵢ); where S- score for the subscripted variable; W-weighing factor derived from PCA. Higher index scores meant better soil quality. Soil respiration, Soil available Nitrogen and Potentially Mineralizable Nitrogen were assessed as soil quality indicators in rice soil of the Cauvery Delta zone covering Thanjavur, Thiruvavur and Nagapattinam districts. Soil available phosphorus could be used as a soil quality indicator of rice soils in the Cuddalore district. In rain-fed rice ecosystems of coastal sandy soil, DTPA – Zn could be used as an effective soil quality indicator. Among the soil parameters selected from Principal Component Analysis, Microbial Biomass Nitrogen could be used quality indicator for rice soils of the Villupuram district. Cauvery Delta zone has better SQI as compared with other intensive rice growing zone of Tamil Nadu.Keywords: soil quality index, soil attributes, soil mapping, and rice soil
Procedia PDF Downloads 861184 Ottoman Marches Composed by European Musicians
Authors: Selcen Özyurt Ulutaş
Abstract:
March as a musical form in Ottoman Music has started after Sultan II. Mahmud. Owing to the modernization process on Ottoman Empire, marches had accepted and embraced by the sultanate in a short period of time. The reasons behind sultans favor against marches that is actually a European Music form is closely related to attribute meanings to marches. After Sultan II. Mahmud, marches became a symbol of westernization and became a symbol of sultanate. After that period besides sultans also princes started to compose marches. The presentation includes the demonstration of the marches classification in achieves to be able to give information on the composers of those marches. Through that process, this study aims to show attributed meanings to those marches and what those marches represent.Keywords: Ottoman marches, music, Europe, European musicians
Procedia PDF Downloads 3171183 Standardized Testing of Filter Systems regarding Their Separation Efficiency in Terms of Allergenic Particles and Airborne Germs
Authors: Johannes Mertl
Abstract:
Our surrounding air contains various particles. Besides typical representatives of inorganic dust, such as soot and ash, also particles originating from animals, microorganisms or plants are floating through the air, so-called bioaerosols. The group of bioaerosols consists of a broad spectrum of particles of different size, including fungi, bacteria, viruses, spores, or tree, flower and grass pollen that are of high relevance for allergy sufferers. In dependence of the environmental climate and the actual season, these allergenic particles can be found in enormous numbers in the air and are inhaled by humans via the respiration tract, with a potential for inflammatory diseases of the airways, such as asthma or allergic rhinitis. As a consequence air filter systems of ventilation and air conditioning devices are required to meet very high standards to prevent, or at least lower the number of allergens and airborne germs entering the indoor air. Still, filter systems are merely classified for their separation rates using well-defined mineral test dust, while no appropriate sufficiently standardized test methods for bioaerosols exist. However, determined separation rates for mineral test particles of a certain size cannot simply be transferred to bioaerosols, as separation efficiency of particularly fine and respirable particles (< 10 microns) is dependent not only on their shape and particle diameter, but also defined by their density and physicochemical properties. For this reason, the OFI developed a test method, which directly enables a testing of filters and filter media for their separation rates on bioaerosols, as well as a classification of filters. Besides allergens from an intact or fractured tree or grass pollen, allergenic proteins bound to particulates, as well as allergenic fungal spores (e.g. Cladosporium cladosporioides), or bacteria can be used to classify filters regarding their separation rates. Allergens passing through the filter can then be detected by highly sensitive immunological assays (ELISA) or in the case of fungal spores by microbiological methods, which allow for the detection of even one single spore passing the filter. The test procedure, which is carried out in laboratory scale, was furthermore validated regarding its sufficiency to cover real life situations by upscaling using air conditioning devices showing great conformity in terms of separation rates. Additionally, a clinical study with allergy sufferers was performed to verify analytical results. Several different air conditioning filters from the car industry have been tested, showing significant differences in their separation rates.Keywords: airborne germs, allergens, classification of filters, fine dust
Procedia PDF Downloads 2531182 A Classical Method of Optimizing Manufacturing Systems Using a Number of Industrial Engineering Techniques
Authors: John M. Ikome, Martha E. Ikome, Therese Van Wyk
Abstract:
Productivity optimization of a company can significantly increase the company’s output and productivity which can be in the form of corrective actions of ineffective activities, process simplification, and reduction of variations, responsiveness, and reduction of set-up-time which are all under the classification of waste within the manufacturing environment. Deriving a means to eliminate a number of these issues has a key importance for manufacturing organization. This paper focused on a number of industrial engineering techniques which include a cause and effect diagram, to identify and optimize the method or systems being used. Based on our results, it shows that there are a number of variations within the production processes that can significantly disrupt the expected output.Keywords: optimization, fishbone, diagram, productivity
Procedia PDF Downloads 3121181 A Study of Classification Models to Predict Drill-Bit Breakage Using Degradation Signals
Authors: Bharatendra Rai
Abstract:
Cutting tools are widely used in manufacturing processes and drilling is the most commonly used machining process. Although drill-bits used in drilling may not be expensive, their breakage can cause damage to expensive work piece being drilled and at the same time has major impact on productivity. Predicting drill-bit breakage, therefore, is important in reducing cost and improving productivity. This study uses twenty features extracted from two degradation signals viz., thrust force and torque. The methodology used involves developing and comparing decision tree, random forest, and multinomial logistic regression models for classifying and predicting drill-bit breakage using degradation signals.Keywords: degradation signal, drill-bit breakage, random forest, multinomial logistic regression
Procedia PDF Downloads 3521180 The Risk of Deaths from Viral Hepatitis among the Female Workers in the Beauty Service Industry
Authors: Byeongju Choi, Sanggil Lee, Kyung-Eun Lee
Abstract:
Introduction: In the republic of Korea, the number of workers in the beauty industry has been increasing. Because the prevalence of hepatitis B carriers in Korea is higher than in other countries, the risk of blood-borne infection including viral hepatitis B and C, among the workers by using the sharp and contaminated instruments during procedure can be expected among beauty salon workers. However, the health care policies for the workers to prevent the blood-borne infection are not established due to the lack of evidences. Moreover, the workers in hair and nail salon were mostly employed at small businesses, where national mandatory systems or policies for workers’ health management are not applied. In this study, the risk of the viral hepatitis B and C from the job experiencing the hair and nail procedures in the mortality was assessed. Method: We conducted a retrospective review of the job histories and causes of death in the female deaths from 2006-2016. 132,744 of female deaths who had one more job experiences during their lifetime were included in this study. Job histories were assessed using the employment insurance database in Korea Employment Information Service (KEIS) and the causes of death were in death statistics produced by Statistics Korea. Case group (n= 666) who died from viral hepatitis was classified the death having record involved in ‘B15-B19’ as a cause of deaths based on Korean Standard Classification of Diseases(KCD) with the deaths from other causes, control group (n=132,078). The group of the workers in the beauty service industry were defined as the employees who had ever worked in the industry coded as ‘9611’ based on Korea Standard Industry Classification (KSIC) and others were others. Other than job histories, birth year, marital status, education level were investigated from the death statistics. Multiple logistic regression analysis were used to assess the risk of deaths from viral hepatitis in the case and control group. Result: The number of the deaths having ever job experiences at the hair and nail salon was 255. After adjusting confounders of age, marital status and education, the odds ratio(OR) for deaths from viral hepatitis was quite high in the group having experiences with working in the beauty service industry with 3.14(95% confidence interval(CI) 1.00-9.87). Other associated factors with increasing the risk of deaths from viral hepatitis were low education level(OR=1.34, 95% CI 1.04-1.73), married women (OR=1.42, 95% CI 1.02-1.97). Conclusion: The risk of deaths from viral hepatitis were high in the workers in the beauty service industry but not statistically significant, which might attributed from the small number of workers in beauty service industry. It was likely that the number of workers in beauty service industry could be underestimated due to their temporary job position. Further studies evaluating the status and the incidence of viral infection among the workers with consideration of the vertical transmission would be required.Keywords: beauty service, viral hepatitis, blood-borne infection, viral infection
Procedia PDF Downloads 1381179 Prediction of Coronary Heart Disease Using Fuzzy Logic
Authors: Elda Maraj, Shkelqim Kuka
Abstract:
Coronary heart disease causes many deaths in the world. Unfortunately, this problem will continue to increase in the future. In this paper, a fuzzy logic model to predict coronary heart disease is presented. This model has been developed with seven input variables and one output variable that was implemented for 30 patients in Albania. Here fuzzy logic toolbox of MATLAB is used. Fuzzy model inputs are considered as cholesterol, blood pressure, physical activity, age, BMI, smoking, and diabetes, whereas the output is the disease classification. The fuzzy sets and membership functions are chosen in an appropriate manner. Centroid method is used for defuzzification. The database is taken from University Hospital Center "Mother Teresa" in Tirana, Albania.Keywords: coronary heart disease, fuzzy logic toolbox, membership function, prediction model
Procedia PDF Downloads 1611178 Visualization-Based Feature Extraction for Classification in Real-Time Interaction
Authors: Ágoston Nagy
Abstract:
This paper introduces a method of using unsupervised machine learning to visualize the feature space of a dataset in 2D, in order to find most characteristic segments in the set. After dimension reduction, users can select clusters by manual drawing. Selected clusters are recorded into a data model that is used for later predictions, based on realtime data. Predictions are made with supervised learning, using Gesture Recognition Toolkit. The paper introduces two example applications: a semantic audio organizer for analyzing incoming sounds, and a gesture database organizer where gestural data (recorded by a Leap motion) is visualized for further manipulation.Keywords: gesture recognition, machine learning, real-time interaction, visualization
Procedia PDF Downloads 3531177 Exploratory Study to Obtain a Biolubricant Base from Transesterified Oils of Animal Fats (Tallow)
Authors: Carlos Alfredo Camargo Vila, Fredy Augusto Avellaneda Vargas, Debora Alcida Nabarlatz
Abstract:
Due to the current need to implement environmentally friendly technologies, the possibility of using renewable raw materials to produce bioproducts such as biofuels, or in this case, to produce biolubricant bases, from residual oils (tallow), originating has been studied of the bovine industry. Therefore, it is hypothesized that through the study and control of the operating variables involved in the reverse transesterification method, a biolubricant base with high performance is obtained on a laboratory scale using animal fats from the bovine industry as raw materials, as an alternative for material recovery and environmental benefit. To implement this process, esterification of the crude tallow oil must be carried out in the first instance, which allows the acidity index to be decreased ( > 1 mg KOH/g oil), this by means of an acid catalysis with sulfuric acid and methanol, molar ratio 7.5:1 methanol: tallow, 1.75% w/w catalyst at 60°C for 150 minutes. Once the conditioning has been completed, the biodiesel is continued to be obtained from the improved sebum, for which an experimental design for the transesterification method is implemented, thus evaluating the effects of the variables involved in the process such as the methanol molar ratio: improved sebum and catalyst percentage (KOH) over methyl ester content (% FAME). Finding that the highest percentage of FAME (92.5%) is given with a 7.5:1 methanol: improved tallow ratio and 0.75% catalyst at 60°C for 120 minutes. And although the% FAME of the biodiesel produced does not make it suitable for commercialization, it does ( > 90%) for its use as a raw material in obtaining biolubricant bases. Finally, once the biodiesel is obtained, an experimental design is carried out to obtain biolubricant bases using the reverse transesterification method, which allows the study of the effects of the biodiesel: TMP (Trimethylolpropane) molar ratio and the percentage of catalyst on viscosity and yield as response variables. As a result, a biolubricant base is obtained that meets the requirements of ISO VG (Classification for industrial lubricants according to ASTM D 2422) 32 (viscosity and viscosity index) for commercial lubricant bases, using a 4:1 biodiesel molar ratio: TMP and 0.51% catalyst at 120°C, at a pressure of 50 mbar for 180 minutes. It is necessary to highlight that the product obtained consists of two phases, a liquid and a solid one, being the first object of study, and leaving the classification and possible application of the second one incognito. Therefore, it is recommended to carry out studies of the greater depth that allows characterizing both phases, as well as improving the method of obtaining by optimizing the variables involved in the process and thus achieving superior results.Keywords: biolubricant base, bovine tallow, renewable resources, reverse transesterification
Procedia PDF Downloads 1171176 Exploring Digital Media’s Impact on Sports Sponsorship: A Global Perspective
Authors: Sylvia Chan-Olmsted, Lisa-Charlotte Wolter
Abstract:
With the continuous proliferation of media platforms, there have been tremendous changes in media consumption behaviors. From the perspective of sports sponsorship, while there is now a multitude of platforms to create brand associations, the changing media landscape and shift of message control also mean that sports sponsors will have to take into account the nature of and consumer responses toward these emerging digital media to devise effective marketing strategies. Utilizing the personal interview methodology, this study is qualitative and exploratory in nature. A total of 18 experts from European and American academics, sports marketing industry, and sports leagues/teams were interviewed to address three main research questions: 1) What are the major changes in digital technologies that are relevant to sports sponsorship; 2) How have digital media influenced the channels and platforms of sports sponsorship; and 3) How have these technologies affected the goals, strategies, and measurement of sports sponsorship. The study found that sports sponsorship has moved from consumer engagement, engagement measurement, and consequences of engagement on brand behaviors to micro-targeting one on one, engagement by context, time, and space, and activation and leveraging based on tracking and databases. From the perspective of platforms and channels, the use of mobile devices is prominent during sports content consumption. Increasing multiscreen media consumption means that sports sponsors need to optimize their investment decisions in leagues, teams, or game-related content sources, as they need to go where the fans are most engaged in. The study observed an imbalanced strategic leveraging of technology and digital infrastructure. While sports leagues have had less emphasis on brand value management via technology, sports sponsors have been much more active in utilizing technologies like mobile/LBS tools, big data/user info, real-time marketing and programmatic, and social media activation. Regardless of the new media/platforms, the study found that integration and contextualization are the two essential means of improving sports sponsorship effectiveness through technology. That is, how sponsors effectively integrate social media/mobile/second screen into their existing legacy media sponsorship plan so technology works for the experience/message instead of distracting fans. Additionally, technological advancement and attention economy amplify the importance of consumer data gathering, but sports consumer data does not mean loyalty or engagement. This study also affirms the benefit of digital media as they offer viral and pre-event activations through storytelling way before the actual event, which is critical for leveraging brand association before and after. That is, sponsors now have multiple opportunities and platforms to tell stories about their brands for longer time period. In summary, digital media facilitate fan experience, access to the brand message, multiplatform/channel presentations, storytelling, and content sharing. Nevertheless, rather than focusing on technology and media, today’s sponsors need to define what they want to focus on in terms of content themes that connect with their brands and then identify the channels/platforms. The big challenge for sponsors is to play to the venues/media’s specificity and its fit with the target audience and not uniformly deliver the same message in the same format on different platforms/channels.Keywords: digital media, mobile media, social media, technology, sports sponsorship
Procedia PDF Downloads 2941175 The Control System Architecture of Space Environment Simulator
Authors: Zhan Haiyang, Gu Miao
Abstract:
This article mainly introduces the control system architecture of space environment simulator, simultaneously also briefly introduce the automation control technology of industrial process and the measurement technology of vacuum and cold black environment. According to the volume of chamber, the space environment simulator is divided into three types of small, medium and large. According to the classification and application of space environment simulator, the control system is divided into the control system of small, medium, large space environment simulator and the centralized control system of multiple space environment simulators.Keywords: space environment simulator, control system, architecture, automation control technology
Procedia PDF Downloads 475