Search results for: fluid collection
4075 Numerical Study of Microdrops Manipulation by MicroFluidic Oscillator
Authors: Tawfiq Chekifi, Brahim Dennai, Rachid Khelfaoui
Abstract:
Over the last few decades, modeling immiscible fluids such as oil and water have been a classical research topic. Droplet-based microfluidics presents a unique platform for mixing, reaction, separation, dispersion of drops and numerous other functions. for this purpose Several devices were studied, as well as microfluidic oscillator. The latter was obtained from wall attachment microfluidic amplifiers using a feedback loop from the outputs to the control inputs, nevertheless this device haven’t well used for microdrops applications. In this paper, we suggest a numerical CFD study of a microfluidic oscillator with two different lengths of feedback loop. In order to produce simultaneous microdrops of gasoil on water, a typical geometry that includes double T-junction is connected to the fluidic oscillator, The generation of microdrops is computed by volume-of-fluid method (VOF). Flow oscillations of microdrops were triggered by the Coanda effect of jet flow. The aim of work is to obtain a high oscillation frequency in output of this passive device, the influence of hydrodynamics and physics parameters on the microdrops frequency in the output of our microsystem is also analyzed, The computational results show that, the length of feedback loop, applied pressure on T-junction and interfacial tension have a significant effect on the dispersion of microdrops and its oscillation frequency. Across the range of low Reynold number, the microdrops generation and its dynamics have been accurately controlled by adjusting applying pressure ratio of two phases.Keywords: fluidic oscillator, microdrops manipulation, volume of fluid method, microfluidic oscillator
Procedia PDF Downloads 4884074 Numerical Simulation of Hydraulic Fracture Propagation in Marine-continental Transitional Tight Sandstone Reservoirs by Boundary Element Method: A Case Study of Shanxi Formation in China
Authors: Jiujie Cai, Fengxia LI, Haibo Wang
Abstract:
After years of research, offshore oil and gas development now are shifted to unconventional reservoirs, where multi-stage hydraulic fracturing technology has been widely used. However, the simulation of complex hydraulic fractures in tight reservoirs is faced with geological and engineering difficulties, such as large burial depths, sand-shale interbeds, and complex stress barriers. The objective of this work is to simulate the hydraulic fracture propagation in the tight sandstone matrix of the marine-continental transitional reservoirs, where the Shanxi Formation in Tianhuan syncline of the Dongsheng gas field was used as the research target. The characteristic parameters of the vertical rock samples with rich beddings were clarified through rock mechanics experiments. The influence of rock mechanical parameters, vertical stress difference of pay-zone and bedding layer, and fracturing parameters (such as injection rates, fracturing fluid viscosity, and number of perforation clusters within single stage) on fracture initiation and propagation were investigated. In this paper, a 3-D fracture propagation model was built to investigate the complex fracture propagation morphology by boundary element method, considering the strength of bonding surface between layers, vertical stress difference and fracturing parameters (such as injection rates, fluid volume and viscosity). The research results indicate that on the condition of vertical stress difference (3 MPa), the fracture height can break through and enter the upper interlayer when the thickness of the overlying bedding layer is 6-9 m, considering effect of the weak bonding surface between layers. The fracture propagates within the pay zone when overlying interlayer is greater than 13 m. Difference in fluid volume distribution between clusters could be more than 20% when the stress difference of each cluster in the segment exceeds 2MPa. Fracture cluster in high stress zones cannot initiate when the stress difference in the segment exceeds 5MPa. The simulation results of fracture height are much higher if the effect of weak bonding surface between layers is not involved. By increasing the injection rates, increasing fracturing fluid viscosity, and reducing the number of clusters within single stage can promote the fracture height propagation through layers. Optimizing the perforation position and reducing the number of perforations can promote the uniform expansion of fractures. Typical curves of fracture height estimation were established for the tight sandstone of the Lower Permian Shanxi Formation. The model results have good consistency with micro-seismic monitoring results of hydraulic fracturing in Well 1HF.Keywords: fracture propagation, boundary element method, fracture height, offshore oil and gas, marine-continental transitional reservoirs, rock mechanics experiment
Procedia PDF Downloads 1274073 Multifluid Computational Fluid Dynamics Simulation for Sawdust Gasification inside an Industrial Scale Fluidized Bed Gasifier
Authors: Vasujeet Singh, Pruthiviraj Nemalipuri, Vivek Vitankar, Harish Chandra Das
Abstract:
For the correct prediction of thermal and hydraulic performance (bed voidage, suspension density, pressure drop, heat transfer, and combustion kinetics), one should incorporate the correct parameters in the computational fluid dynamics simulation of a fluidized bed gasifier. Scarcity of fossil fuels, and to fulfill the energy demand of the increasing population, researchers need to shift their attention to the alternative to fossil fuels. The current research work focuses on hydrodynamics behavior and gasification of sawdust inside a 2D industrial scale FBG using the Eulerian-Eulerian multifluid model. The present numerical model is validated with experimental data. Further, this model extended for the prediction of gasification characteristics of sawdust by incorporating eight heterogeneous moisture release, volatile cracking, tar cracking, tar oxidation, char combustion, CO₂ gasification, steam gasification, methanation reaction, and five homogeneous oxidation of CO, CH₄, H₂, forward and backward water gas shift (WGS) reactions. In the result section, composition of gasification products is analyzed, along with the hydrodynamics of sawdust and sand phase, heat transfer between the gas, sand and sawdust, reaction rates of different homogeneous and heterogeneous reactions is being analyzed along the height of the domain.Keywords: devolatilization, Eulerian-Eulerian, fluidized bed gasifier, mathematical modelling, sawdust gasification
Procedia PDF Downloads 1074072 Evaluation of the Safety and Performance of Blood Culture Practices Using BD Safety-Lokᵀᴹ Blood Collection Sets in the Emergency Room
Authors: Jeonghyun Chang, Taegeun Lee, Heungsup Sung, Yoon-Seon Lee, Youn-Jung Kim, Mi-Na Kim
Abstract:
Background: Safety device has been applied to improve safety and performance of blood culture practice. BD vacutainer® Safety-Lokᵀᴹ blood collection sets with pre-attached holder (Safety-Lok) (BD, USA) was evaluated in the emergency room (ER) of a tertiary care hospital. Methods: From April to June 2017, interns and nurses in ER were surveyed for blood culture practices with a questionnaire before and after 2 or 3 weeks of experience of Safety-Lok. All of them participated in exercise workshop for 1 hour combined with video education prior to the initial survey. The blood volume, positive and contamination rates of Safety-Lok-drawn (SD) blood cultures were compared to those of overall blood cultures. Results: Eighteen interns and 30 nurses were enrolled. As a result of the initial survey, interns had higher rates of needlestick incidence (27.8%), carriage of the blood-filled syringe with needle (88.9%) and lower rates of vacutainer use (38.9%) than nurses (13.3%, 53.3%, and 60.0%). Interns preferred to use safety devices (88.9%) rather than nurses (40.0%). The number of overall blood cultures and SD blood cultures was 9,053 and 555, respectively. While the overall blood volume of aerobic bottles was 2.6±2.1 mL, those of SD blood cultures were 5.0±3.0 mL in aerobic bottles and 6.0±3.0 mL in anaerobic bottles. Positive and contamination rates were 6.5% and 0.72% with SD blood cultures and 6.2% and 0.3% with overall blood cultures. Conclusions: The introduction of the safety device would encourage healthcare workers to collect adequate blood volume as well as lead to safer practices in the ER.Keywords: blood culture, needlestick, safety device, volume
Procedia PDF Downloads 2074071 Hydrodynamic and Sediment Transport Analysis of Computational Fluid Dynamics Designed Flow Regulating Liner (Smart Ditch)
Authors: Saman Mostafazadeh-Fard, Zohrab Samani, Kenneth Suazo
Abstract:
Agricultural ditch liners are used to prevent soil erosion and reduce seepage losses. This paper introduced an approach to validate a computational fluid dynamics (CFD) platform FLOW-3D code and its use to design a flow-regulating corrugated agricultural ditch liner system (Smart Ditch (SM)). Hydrodynamic and sediment transport analyses were performed on the proposed liner flow using the CFD platform FLOW-3D code. The code's hydrodynamic and scour and sediment transport models were calibrated and validated using lab data with an accuracy of 94 % and 95%, respectively. The code was then used to measure hydrodynamic parameters of sublayer turbulent intensity, kinetic energy, dissipation, and packed sediment mass normalized with respect to sublayer flow velocity. Sublayer turbulent intensity, kinetic energy, and dissipation in the SM flow were significantly higher than CR flow. An alternative corrugated liner was also designed, and sediment transport was measured and compared to SM and CR flows. Normalized packed sediment mass with respect to average sublayer flow velocity was 27.8 % lower in alternative flow compared to SM flow. CFD platform FLOW-3D code could effectively be used to design corrugated ditch liner systems and perform hydrodynamic and sediment transport analysis under various corrugation designs.Keywords: CFD, hydrodynamic, sediment transport, ditch, liner design
Procedia PDF Downloads 1224070 Improving Carbon Dioxide Mass Transfer in Open Pond Raceway Systems for Improved Algal Productivity
Authors: William Middleton, Nodumo Zulu, Sue Harrison
Abstract:
Open raceway ponds are currently the most used system for the commercial cultivation of algal biomass, as it is a cost-effective means of production. However, raceway ponds suffer from lower algal productivity when compared to closed photobioreactors. This is due to poor gas exchange between the fluid and the atmosphere. Carbon dioxide (CO₂) mass transfer is a large concern in the production of algae in raceway pond systems. The utilization of atmospheric CO₂ does not support maximal growth; however, CO₂ supplementation in the form of flue gas or concentrated CO₂ is not cost-effective. The introduction of slopes into the raceway system presents a possible improvement to the mass transfer from the air, as seen in previous work conducted at CeBER. Slopes improve turbulence (decreasing the concentration gradient of dissolved CO₂) and can cause air entrainment (allowing for greater surface area and contact time between the air and water). This project tests the findings of previous studies conducted in an indoor lab-scale raceway on a larger scale under outdoor conditions. The addition of slopes resulted in slightly increased CO₂ mass transfer as well as algal growth rate and productivity. However, there were reductions in energy consumption and average fluid velocity in the system. These results indicate a potential to improve the economic feasibility of algal biomass production, but further economic assessment would need to be carried out.Keywords: algae, raceway ponds, mass transfer, algal culture, biotechnology, reactor design
Procedia PDF Downloads 994069 Place, Female and Latino Identities in Kali Fajardo-Anstine’s Short Story Collection Sabrina and Corina
Authors: Jaroslav Kusnir
Abstract:
In her short story collection, Sabrina & Corina, Kali Fajardo-Anstine depicts mostly Latina characters of indigenous background living and travelling in the American West and the Southwest. In all the stories, place and the environment plays an important role in the construction of cultural identity of these characters that is influenced by their indigenous background, a specificity of the American West, its culture and environment, as well as a contemporary (modern) American culture, position of women and gender roles in a Latino community in the USA. This paper will analyze Fajardo-Anstine´s depiction of a specificity of place, especially of the American West and its role in a construction of Latino/a cultural identity in a modern American society as manifested especially in Fajardo-Anstine´s stories Any Further West and Sabrina & Corina. At the same time, the paper will point out Fajardo-Anstine´s construction of cultural identity of female characters and their gender roles in both Latino and a contemporary American societies. The research results show that the formation of Latina cultural identity is closely connected with both place, that is the American West and the Soutwest as well as with Latina and contemporary American cultures.Keywords: American culture, american west, cultural identity, female identity, latina identity, place
Procedia PDF Downloads 874068 Utilizing Computational Fluid Dynamics in the Analysis of Natural Ventilation in Buildings
Authors: A. W. J. Wong, I. H. Ibrahim
Abstract:
Increasing urbanisation has driven building designers to incorporate natural ventilation in the designs of sustainable buildings. This project utilises Computational Fluid Dynamics (CFD) to investigate the natural ventilation of an academic building, SIT@SP, using an assessment criterion based on daily mean temperature and mean velocity. The areas of interest are the pedestrian level of first and fourth levels of the building. A reference case recommended by the Architectural Institute of Japan was used to validate the simulation model. The validated simulation model was then used for coupled simulations on SIT@SP and neighbouring geometries, under two wind speeds. Both steady and transient simulations were used to identify differences in results. Steady and transient results are agreeable with the transient simulation identifying peak velocities during flow development. Under a lower wind speed, the first level was sufficiently ventilated while the fourth level was not. The first level has excessive wind velocities in the higher wind speed and the fourth level was adequately ventilated. Fourth level flow velocity was consistently lower than those of the first level. This is attributed to either simulation model error or poor building design. SIT@SP is concluded to have a sufficiently ventilated first level and insufficiently ventilated fourth level. Future works for this project extend to modifying the urban geometry, simulation model improvements, evaluation using other assessment metrics and extending the area of interest to the entire building.Keywords: buildings, CFD Simulations, natural ventilation, urban airflow
Procedia PDF Downloads 2214067 Modelling the Yield Stress of Magnetorheological Fluids
Authors: Hesam Khajehsaeid, Naeimeh Alagheband
Abstract:
Magnetorheological fluids (MRF) are a category of smart materials. They exhibit a reversible change from a Newtonian-like fluid to a semi-solid state upon application of an external magnetic field. In contrast to ordinary fluids, MRFs can tolerate shear stresses up to a threshold value called yield stress which strongly depends on the strength of the magnetic field, magnetic particles volume fraction and temperature. Even beyond the yield, a magnetic field can increase MR fluid viscosity up to several orders. As yield stress is an important parameter in the design of MR devices, in this work, the effects of magnetic field intensity and magnetic particle concentration on the yield stress of MRFs are investigated. Four MRF samples with different particle concentrations are developed and tested through flow-ramp analysis to obtain the flow curves at a range of magnetic field intensity as well as shear rate. The viscosity of the fluids is determined by means of the flow curves. The results are then used to determine the yield stresses by means of the steady stress sweep method. The yield stresses are then determined by means of a modified form of the dipole model as well as empirical models. The exponential distribution function is used to describe the orientation of particle chains in the dipole model under the action of the external magnetic field. Moreover, the modified dipole model results in a reasonable distribution of chains compared to previous similar models.Keywords: magnetorheological fluids, yield stress, particles concentration, dipole model
Procedia PDF Downloads 1794066 Characterisation of Wind-Driven Ventilation in Complex Terrain Conditions
Authors: Daniel Micallef, Damien Bounaudet, Robert N. Farrugia, Simon P. Borg, Vincent Buhagiar, Tonio Sant
Abstract:
The physical effects of upstream flow obstructions such as vegetation on cross-ventilation phenomena of a building are important for issues such as indoor thermal comfort. Modelling such effects in Computational Fluid Dynamics simulations may also be challenging. The aim of this work is to establish the cross-ventilation jet behaviour in such complex terrain conditions as well as to provide guidelines on the implementation of CFD numerical simulations in order to model complex terrain features such as vegetation in an efficient manner. The methodology consists of onsite measurements on a test cell coupled with numerical simulations. It was found that the cross-ventilation flow is highly turbulent despite the very low velocities encountered internally within the test cells. While no direct measurement of the jet direction was made, the measurements indicate that flow tends to be reversed from the leeward to the windward side. Modelling such a phenomenon proves challenging and is strongly influenced by how vegetation is modelled. A solid vegetation tends to predict better the direction and magnitude of the flow than a porous vegetation approach. A simplified terrain model was also shown to provide good comparisons with observation. The findings have important implications on the study of cross-ventilation in complex terrain conditions since the flow direction does not remain trivial, as with the traditional isolated building case.Keywords: complex terrain, cross-ventilation, wind driven ventilation, wind resource, computational fluid dynamics, CFD
Procedia PDF Downloads 3954065 Knowledge of Operation Rooms’ Staff toward Sources, Prevention and Control of Fires at Governmental Hospitals in Sana’a, Yemen
Authors: Abdulnasser Ahmed Haza’a, Marzoq Ali Odhah, Saddam Ahmed Al-Ahdal, Abdulfatah Saleh Al-Jaradi, Gamil Ghaleb Alrubaiee
Abstract:
Patient safety in hospitals is an essential professional indicator that should be noticed. The threat of fires is potentially the most dangerous risk that could harm patients and personnel. The aim of the study is to assess the knowledge of operating room (OR) staff toward prevention and control sources of fires. Between March 1 and March 30, 2022, data collection was done. A descriptive cross-sectional study was conducted. The sample of the study consisted of 89 OR staff from different governmental hospitals. Convenient sampling was applied to select the sample size. Official approvals were obtained from selected settings for start collection data. Data were collected using a close-ended questionnaire and tested for knowledge. This study was conducted in four governmental hospitals in Sana'a, Yemen. Most of the OR staff were male. Of these, 50.6% of them were operation technician professionals. More than two-thirds of OR staff have less than ten years of experience; 93% of OR staff had inadequate knowledge of sources of fires, and inadequate knowledge of them toward controls and prevention of fires (73%, 79.8%), respectively; 77.5% of OR staff had inadequate knowledge of prevention and control sources of fires. The study concluded that most of OR staff had inadequate knowledge of sources, controls, and prevention of fires, while 22.5% of them had adequate knowledge of prevention and control sources of fires. We recommended the implementation of training programs toward sources, controls, and prevention of fires or related workshops in their educational planning for OR staff of hospitals.Keywords: knowledge, operation rooms staff, fires, prevention
Procedia PDF Downloads 1014064 Helicopter Exhaust Gases Cooler in Terms of Computational Fluid Dynamics (CFD) Analysis
Authors: Mateusz Paszko, Ksenia Siadkowska
Abstract:
Due to the low-altitude and relatively low-speed flight, helicopters are easy targets for actual combat assets e.g. infrared-guided missiles. Current techniques aim to increase the combat effectiveness of the military helicopters. Protection of the helicopter in flight from early detection, tracking and finally destruction can be realized in many ways. One of them is cooling hot exhaust gasses, emitting from the engines to the atmosphere in special heat exchangers. Nowadays, this process is realized in ejective coolers, where strong heat and momentum exchange between hot exhaust gases and cold air ejected from atmosphere takes place. Flow effects of air, exhaust gases; mixture of those two and the heat transfer between cold air and hot exhaust gases are given by differential equations of: Mass transportation–flow continuity, ejection of cold air through expanding exhaust gasses, conservation of momentum, energy and physical relationship equations. Calculation of those processes in ejective cooler by means of classic mathematical analysis is extremely hard or even impossible. Because of this, it is necessary to apply the numeric approach with modern, numeric computer programs. The paper discussed the general usability of the Computational Fluid Dynamics (CFD) in a process of projecting the ejective exhaust gases cooler cooperating with helicopter turbine engine. In this work, the CFD calculations have been performed for ejective-based cooler cooperating with the PA W3 helicopter’s engines.Keywords: aviation, CFD analysis, ejective-cooler, helicopter techniques
Procedia PDF Downloads 3324063 A Study of a Plaque Inhibition Through Stenosed Bifurcation Artery considering a Biomagnetic Blood Flow and Elastic Walls
Authors: M. A. Anwar, K. Iqbal, M. Razzaq
Abstract:
Background and Objectives: This numerical study reflects the magnetic field's effect on the reduction of plaque formation due to stenosis in a stenosed bifurcated artery. The entire arterythe wall is assumed as linearly elastic, and blood flow is modeled as a Newtonian, viscous, steady, incompressible, laminar, biomagnetic fluid. Methods: An Arbitrary Lagrangian-Eulerian (ALE) technique is employed to formulate the hemodynamic flow in a bifurcated artery under the effect of the asymmetric magnetic field by two-way Fluid-structure interaction coupling. A stable P2P1 finite element pair is used to discretize thenonlinear system of partial differential equations. The resulting nonlinear system of algebraic equations is solved by the Newton Raphson method. Results: The numerical results for displacement, velocity magnitude, pressure, and wall shear stresses for Reynolds numbers, Re = 500, 1000, 1500, 2000, in the presence of magnetic fields are presented graphically. Conclusions: The numerical results show that the presence of the magnetic field influences the displacement and flows velocity magnitude considerably. The magnetic field reduces the flow separation, recirculation area adjacent to stenosis and gives rise to wall shear stress.Keywords: bifurcation, elastic walls, finite element, wall shear stress,
Procedia PDF Downloads 1794062 Municipal Solid Waste Management Characteristics and Management Challenges in Bauchi Metropolitan Area, Nigeria
Authors: Haruna Abdu Usman, Bashir Usman Mohammed, Mohammed Umar Jamil
Abstract:
Municipal solid waste management constitutes a serious problem bedeviling environmental protection agencies in many cities of developing countries. Most agencies do not collect the totality of the waste generated in their cities. This study presents the current solid waste management practices and problems in Bauchi metropolis, Bauchi state Nigeria. The general feature is characterized by inefficient, insufficient and irrational collection and improper disposal alternatives. The consequent environmental effects of these problems depict clogged city drains, uncollected heap of waste on road sides of residential areas, vacant plots and uncompleted buildings and highways. This contributes immensely to flooding in the city. The major challenges facing the state environmental protection agency includes; lack of collection and disposal points, technical and institutional arrangements, financial resources and general attitude of the serving public among others. The study suggested a comprehensive and integrated approach to the solid waste management which recognizes and incorporates the interventionist role of the state government, the private formal and informal waste management operators and the serving public.Keywords: municipal solid waste, bauchi metropolitan area, environmental protection agency, solid waste management, waste disposal
Procedia PDF Downloads 7424061 Comparison of Cardiomyogenic Potential of Amniotic Fluid Mesenchymal Stromal Cells Derived from Normal and Isolated Congenital Heart Defective Fetuses
Authors: Manali Jain, Neeta Singh, Raunaq Fatima, Soniya Nityanand, Mandakini Pradhan, Chandra Prakash Chaturvedi
Abstract:
Isolated Congenital Heart Defect (ICHD) is the major cause of neonatal death worldwide among all forms of CHDs. A significant proportion of fetuses with ICHD die in the neonatal period if no treatment is provided. Recently, stem cell therapies have emerged as a potential approach to ameliorate ICHD in children. ICHD is characterized by cardiac structural abnormalities during embryogenesis due to alterations in the cardiomyogenic properties of a pool of cardiac progenitors/ stem cells associated with fetal heart development. The stem cells present in the amniotic fluid (AF) are of fetal origin and may reflect the physiological and pathological changes in the fetus during embryogenesis. Therefore, in the present study, the cardiomyogenic potential of AF-MSCs derived from fetuses with ICHD (ICHD AF-MSCs) has been evaluated and compared with that of AF-MSCs of structurally normal fetuses (normal AF-MSCs). Normal and ICHD AF-MSC were analyzed for the expression of cardiac progenitor markers viz., stage-specific embryonic antigen-1 (SSEA-1), vascular endothelial growth factor 2 (VEGFR-2) and platelet-derived growth factor receptor-alpha (PDGFR-α) by flow cytometry. The immunophenotypic characterization revealed that ICHD AF-MSCs have significantly lower expression of cardiac progenitor markers VEGFR-2 (0.14% ± 0.6 vs.48.80% ± 0.9; p <0.01), SSEA-1 (70.86% ± 2.4 vs. 88.36% ±2.7; p <0.01), and PDGFR-α (3.92% ± 1.8 vs. 47.59% ± 3.09; p <0.01) in comparison to normal AF-MSCs. Upon induction with 5’-azacytidine for 21 days, ICHD AF-MSCs showed a significantly down-regulated expression of cardiac transcription factors such as GATA-4 (0.4 ± 0.1 vs. 6.8 ± 1.2; p<0.01), ISL-1 (2.3± 0.6 vs. 14.3 ± 1.12; p<0.01), NK-x 2-5 (1.1 ± 0.3 vs. 14.1 ±2.8; p<0.01), TBX-5 (0.4 ± 0.07 vs. 4.4 ± 0.3; p<0.001), and TBX-18 (1.3 ± 0.2 vs. 4.19 ± 0.3; p<0.01) when compared with the normal AF-MSCs. Furthermore, immunocytochemical staining revealed that both types of AF-MSCs could differentiate into cardiovascular lineages and express cardiomyogenic, endothelial, and smooth muscle actin markers, viz., cardiac troponin (cTNT), CD31, and alpha-smooth muscle actin (α-SMA). However, normal AF-MSCs showed an enhanced expression of cTNT (p<0.001), CD31 (p<0.01), and α-SMA (p<0.05), compared to ICHD AF-MSCs. Overall, these results suggest that the ICHD-AF-MSCs have a defective cardiomyogenic differentiation potential and that the defects in these stem cells may have a role in the pathogenesis of ICHD.Keywords: amniotic fluid, cardiomyogenic potential, isolated congenital heart defect, mesenchymal stem cells
Procedia PDF Downloads 1024060 Optimizing Cell Culture Performance in an Ambr15 Microbioreactor Using Dynamic Flux Balance and Computational Fluid Dynamic Modelling
Authors: William Kelly, Sorelle Veigne, Xianhua Li, Zuyi Huang, Shyamsundar Subramanian, Eugene Schaefer
Abstract:
The ambr15™ bioreactor is a single-use microbioreactor for cell line development and process optimization. The ambr system offers fully automatic liquid handling with the possibility of fed-batch operation and automatic control of pH and oxygen delivery. With operating conditions for large scale biopharmaceutical production properly scaled down, micro bioreactors such as the ambr15™ can potentially be used to predict the effect of process changes such as modified media or different cell lines. In this study, gassing rates and dilution rates were varied for a semi-continuous cell culture system in the ambr15™ bioreactor. The corresponding changes to metabolite production and consumption, as well as cell growth rate and therapeutic protein production were measured. Conditions were identified in the ambr15™ bioreactor that produced metabolic shifts and specific metabolic and protein production rates also seen in the corresponding larger (5 liter) scale perfusion process. A Dynamic Flux Balance model was employed to understand and predict the metabolic changes observed. The DFB model-predicted trends observed experimentally, including lower specific glucose consumption when CO₂ was maintained at higher levels (i.e. 100 mm Hg) in the broth. A Computational Fluid Dynamic (CFD) model of the ambr15™ was also developed, to understand transfer of O₂ and CO₂ to the liquid. This CFD model predicted gas-liquid flow in the bioreactor using the ANSYS software. The two-phase flow equations were solved via an Eulerian method, with population balance equations tracking the size of the gas bubbles resulting from breakage and coalescence. Reasonable results were obtained in that the Carbon Dioxide mass transfer coefficient (kLa) and the air hold up increased with higher gas flow rate. Volume-averaged kLa values at 500 RPM increased as the gas flow rate was doubled and matched experimentally determined values. These results form a solid basis for optimizing the ambr15™, using both CFD and FBA modelling approaches together, for use in microscale simulations of larger scale cell culture processes.Keywords: cell culture, computational fluid dynamics, dynamic flux balance analysis, microbioreactor
Procedia PDF Downloads 2824059 Urban Noise and Air Quality: Correlation between Air and Noise Pollution; Sensors, Data Collection, Analysis and Mapping in Urban Planning
Authors: Massimiliano Condotta, Paolo Ruggeri, Chiara Scanagatta, Giovanni Borga
Abstract:
Architects and urban planners, when designing and renewing cities, have to face a complex set of problems, including the issues of noise and air pollution which are considered as hot topics (i.e., the Clean Air Act of London and the Soundscape definition). It is usually taken for granted that these problems go by together because the noise pollution present in cities is often linked to traffic and industries, and these produce air pollutants as well. Traffic congestion can create both noise pollution and air pollution, because NO₂ is mostly created from the oxidation of NO, and these two are notoriously produced by processes of combustion at high temperatures (i.e., car engines or thermal power stations). We can see the same process for industrial plants as well. What have to be investigated – and is the topic of this paper – is whether or not there really is a correlation between noise pollution and air pollution (taking into account NO₂) in urban areas. To evaluate if there is a correlation, some low-cost methodologies will be used. For noise measurements, the OpeNoise App will be installed on an Android phone. The smartphone will be positioned inside a waterproof box, to stay outdoor, with an external battery to allow it to collect data continuously. The box will have a small hole to install an external microphone, connected to the smartphone, which will be calibrated to collect the most accurate data. For air, pollution measurements will be used the AirMonitor device, an Arduino board to which the sensors, and all the other components, are plugged. After assembling the sensors, they will be coupled (one noise and one air sensor) and placed in different critical locations in the area of Mestre (Venice) to map the existing situation. The sensors will collect data for a fixed period of time to have an input for both week and weekend days, in this way it will be possible to see the changes of the situation during the week. The novelty is that data will be compared to check if there is a correlation between the two pollutants using graphs that should show the percentage of pollution instead of the values obtained with the sensors. To do so, the data will be converted to fit on a scale that goes up to 100% and will be shown thru a mapping of the measurement using GIS methods. Another relevant aspect is that this comparison can help to choose which are the right mitigation solutions to be applied in the area of the analysis because it will make it possible to solve both the noise and the air pollution problem making only one intervention. The mitigation solutions must consider not only the health aspect but also how to create a more livable space for citizens. The paper will describe in detail the methodology and the technical solution adopted for the realization of the sensors, the data collection, noise and pollution mapping and analysis.Keywords: air quality, data analysis, data collection, NO₂, noise mapping, noise pollution, particulate matter
Procedia PDF Downloads 2124058 Early Childhood Education: Teachers Ability to Assess
Authors: Ade Dwi Utami
Abstract:
Pedagogic competence is the basic competence of teachers to perform their tasks as educators. The ability to assess has become one of the demands in teachers pedagogic competence. Teachers ability to assess is related to curriculum instructions and applications. This research is aimed at obtaining data concerning teachers ability to assess that comprises of understanding assessment, determining assessment type, tools and procedure, conducting assessment process, and using assessment result information. It uses mixed method of explanatory technique in which qualitative data is used to verify the quantitative data obtained through a survey. The technique of quantitative data collection is by test whereas the qualitative data collection is by observation, interview and documentation. Then, the analyzed data is processed through a proportion study technique to be categorized into high, medium and low. The result of the research shows that teachers ability to assess can be grouped into 3 namely, 2% of high, 4% of medium and 94% of low. The data shows that teachers ability to assess is still relatively low. Teachers are lack of knowledge and comprehension in assessment application. The statement is verified by the qualitative data showing that teachers did not state which aspect was assessed in learning, record children’s behavior, and use the data result as a consideration to design a program. Teachers have assessment documents yet they only serve as means of completing teachers administration for the certification program. Thus, assessment documents were not used with the basis of acquired knowledge. The condition should become a consideration of the education institution of educators and the government to improve teachers pedagogic competence, including the ability to assess.Keywords: assessment, early childhood education, pedagogic competence, teachers
Procedia PDF Downloads 2464057 Magnetic Properties of Bis-Lanthanoates: Probing Dimer Formation in Crystalline, Liquid and Glassy Compounds Using SQUID Magnetometry
Authors: Kane Esien, Eadaoin McCourt, Peter Nockemann, Soveig Felton
Abstract:
Magnetic ionic liquids (MILs) are a class of ionic liquid incorporating one or more magnetic atoms into the anion or cation of the ionic liquid, endowing the ionic liquid with magnetic properties alongside the existing properties of ionic liquids. MILs have applications in e.g. fluid-fluid separations, electrochemistry, and polymer chemistry. In this study three different types of Bis-Lanthanoates, that exist in different phases, have been synthesised and characterised (Ln = lanthanide): 1) imidazolium lanthanide acetate – [C4Mim]2[Ln2(OAc)8] – forms a crystalline solid at room temperature, 2) phosphonium lanthanide acetate – [P666 14]2[Ln2(OAc)8] – is in a solid glassy state, and 3) phosphonium lanthanide octanoate – [P666 14]2[Ln2(Oct)8] – is an ionic liquid. X-ray diffraction of the crystalline solid imidazolium lanthanide acetate – [C4Mim]2[Ln2(OAc)8] confirm that the Ln(III) ions form dimers, bridged by carboxyl groups, but cannot yield information about samples phosphonium lanthanide acetate – [P666 14]2[Ln2(OAc)8] (glass) and phosphonium lanthanide octanoate – [P666 14]2[Ln2(Oct)8] (ionic liquid) since these lack long-range order. SQUID magnetometry studies show that all three samples have effective magnetic moments consistent with non-interacting Ln(III) ions at room temperature but deviate from this behavior in the same way below 50 K. Through modeling the magnetic response, we are able to show that we have formed magnetic dimers, in all compounds, that are weakly antiferromagnetically interactingKeywords: dimeric ionic liquids, interactions, SQUID, structure
Procedia PDF Downloads 1564056 Study on Heat Transfer Capacity Limits of Heat Pipe with Working Fluids Ammonia and Water
Authors: M. Heydari, A. Ghanami
Abstract:
Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section. In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region, and evaporator. Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In the present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.used in the abstract.Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits
Procedia PDF Downloads 4004055 Shear Stress and Effective Structural Stress Fields of an Atherosclerotic Coronary Artery
Authors: Alireza Gholipour, Mergen H. Ghayesh, Anthony Zander, Stephen J. Nicholls, Peter J. Psaltis
Abstract:
A three-dimensional numerical model of an atherosclerotic coronary artery is developed for the determination of high-risk situation and hence heart attack prediction. Employing the finite element method (FEM) using ANSYS, fluid-structure interaction (FSI) model of the artery is constructed to determine the shear stress distribution as well as the von Mises stress field. A flexible model for an atherosclerotic coronary artery conveying pulsatile blood is developed incorporating three-dimensionality, artery’s tapered shape via a linear function for artery wall distribution, motion of the artery, blood viscosity via the non-Newtonian flow theory, blood pulsation via use of one-period heartbeat, hyperelasticity via the Mooney-Rivlin model, viscoelasticity via the Prony series shear relaxation scheme, and micro-calcification inside the plaque. The material properties used to relate the stress field to the strain field have been extracted from clinical data from previous in-vitro studies. The determined stress fields has potential to be used as a predictive tool for plaque rupture and dissection. The results show that stress concentration due to micro-calcification increases the von Mises stress significantly; chance of developing a crack inside the plaque increases. Moreover, the blood pulsation varies the stress distribution substantially for some cases.Keywords: atherosclerosis, fluid-structure interaction, coronary arteries, pulsatile flow
Procedia PDF Downloads 1724054 Revealing the Potential of Geotourism and Geoheritage of Gedangsari Area, Yogyakarta
Authors: Cecilia Jatu, Adventino
Abstract:
Gedangsari is located in Gunungkidul, Yogyakarta Province, which has several criteria to be used as a new geosite object. The research area is located in the southern mountain zone of Java, composed of 5 rock formations with Oligocene up to Middle Miocene age. The purpose of this study is to reveal the potential of geotourism and the geoheritage to be proposed as a new geosite and to make a geosite map of Gedangsari. The research method used is descriptive data collection and which includes quantitative geological data collection, geotourism, and heritage sites, then supported by petrographic analysis, geological structure, geological mapping, and SWOT analysis. The geological data proved that Gedangsari consists of igneous rock (intrusion), pyroclastic rock, and sediment rock. This condition caused many varieties and particular geomorphological platform. Geotourism that include in Gedangsari are Luweng Sampang Canyon, Gedangsari Bouma Sequence, Watugajah Columnar Joint, Gedangsari Marine Fan Sediment, and Tegalrejo Waterfall. There is also Tegalrejo Village, which can be considered as geoheritage site because of its culture and batik traditional cloth. The results of the SWOT analysis, Gedangsari geosite must be developed and appropriately promoted in order to improve the existence. The development of geosite area will have a significant impact that improve the economic growth of the surrounding community and can be used by the government as base information for sustainable development. In addition, the making of an educational map about the geological conditions and geotourism location of the Gedangsari geosite can increase the people's knowledge about Gedangsari.Keywords: Gedangsari, geoheritage, geotourism, geosite
Procedia PDF Downloads 1224053 Data Collection in Protected Agriculture for Subsequent Big Data Analysis: Methodological Evaluation in Venezuela
Authors: Maria Antonieta Erna Castillo Holly
Abstract:
During the last decade, data analysis, strategic decision making, and the use of artificial intelligence (AI) tools in Latin American agriculture have been a challenge. In some countries, the availability, quality, and reliability of historical data, in addition to the current data recording methodology in the field, makes it difficult to use information systems, complete data analysis, and their support for making the right strategic decisions. This is something essential in Agriculture 4.0. where the increase in the global demand for fresh agricultural products of tropical origin, during all the seasons of the year requires a change in the production model and greater agility in the responses to the consumer market demands of quality, quantity, traceability, and sustainability –that means extensive data-. Having quality information available and updated in real-time on what, how much, how, when, where, at what cost, and the compliance with production quality standards represents the greatest challenge for sustainable and profitable agriculture in the region. The objective of this work is to present a methodological proposal for the collection of georeferenced data from the protected agriculture sector, specifically in production units (UP) with tall structures (Greenhouses), initially for Venezuela, taking the state of Mérida as the geographical framework, and horticultural products as target crops. The document presents some background information and explains the methodology and tools used in the 3 phases of the work: diagnosis, data collection, and analysis. As a result, an evaluation of the process is carried out, relevant data and dashboards are displayed, and the first satellite maps integrated with layers of information in a geographic information system are presented. Finally, some improvement proposals and tentatively recommended applications are added to the process, understanding that their objective is to provide better qualified and traceable georeferenced data for subsequent analysis of the information and more agile and accurate strategic decision making. One of the main points of this study is the lack of quality data treatment in the Latin America area and especially in the Caribbean basin, being one of the most important points how to manage the lack of complete official data. The methodology has been tested with horticultural products, but it can be extended to other tropical crops.Keywords: greenhouses, protected agriculture, data analysis, geographic information systems, Venezuela
Procedia PDF Downloads 1314052 Technology Assessment of the Collection of Cast Seaweed and Use as Feedstock for Biogas Production- The Case of SolrøD, Denmark
Authors: Rikke Lybæk, Tyge Kjær
Abstract:
The Baltic Sea is suffering from nitrogen and phosphorus pollution, which causes eutrophication of the maritime environment and hence threatens the biodiversity of the Baltic Sea area. The intensified quantity of nutrients in the water has created challenges with the growth of seaweed being discarded on beaches around the sea. The cast seaweed has led to odor problems hampering the use of beach areas around the Bay of Køge in Denmark. This is the case in, e.g., Solrød Municipality, where recreational activities have been disrupted when cast seaweed pile up on the beach. Initiatives have, however, been introduced within the municipality to remove the cast seaweed from the beach and utilize it for renewable energy production at the nearby Solrød Biogas Plant, thus being co-digested with animal manure for power and heat production. This paper investigates which type of technology application’s have been applied in the effort to optimize the collection of cast seaweed, and will further reveal, how the seaweed has been pre-treated at the biogas plant to be utilized for energy production the most efficient, hereunder the challenges connected with the content of sand. Heavy metal contents in the seaweed and how it is managed will also be addressed, which is vital as the digestate is utilized as soil fertilizer on nearby farms. Finally, the paper will outline the energy production scheme connected to the use of seaweed as feedstock for biogas production, as well as the amount of nitrogen-rich fertilizer produced. The theoretical approach adopted in the paper relies on the thinking of Circular Bio-Economy, where biological materials are cascaded and re-circulated etc., to increase and extend their value and usability. The data for this research is collected as part of the EU Interreg project “Cluster On Anaerobic digestion, environmental Services, and nuTrients removAL” (COASTAL Biogas), 2014-2020. Data gathering consists of, e.g., interviews with relevant stakeholders connected to seaweed collection and operation of the biogas plant in Solrød Municipality. It further entails studies of progress and evaluation reports from the municipality, analysis of seaweed digestion results from scholars connected to the research, as well as studies of scientific literature to supplement the above. Besides this, observations and photo documentation have been applied in the field. This paper concludes, among others, that the seaweed harvester technology currently adopted is functional in the maritime environment close to the beachfront but inadequate in collecting seaweed directly on the beach. New technology hence needs to be developed to increase the efficiency of seaweed collection. It is further concluded that the amount of sand transported to Solrød Biogas Plant with the seaweed continues to pose challenges. The seaweed is pre-treated for sand in a receiving tank with a strong stirrer, washing off the sand, which ends at the bottom of the tank where collected. The seaweed is then chopped by a macerator and mixed with the other feedstock. The wear down of the receiving tank stirrer and the chopper are, however, significant, and new methods should be adopted.Keywords: biogas, circular bio-economy, Denmark, maritime technology, cast seaweed, solrød municipality
Procedia PDF Downloads 2934051 Parameter Selection and Monitoring for Water-Powered Percussive Drilling in Green-Fields Mineral Exploration
Authors: S. J. Addinell, T. Richard, B. Evans
Abstract:
The Deep Exploration Technologies Cooperative Research Centre (DET CRC) is researching and developing a new coiled tubing based greenfields mineral exploration drilling system utilising downhole water powered percussive drill tooling. This new drilling system is aimed at significantly reducing the costs associated with identifying mineral resource deposits beneath deep, barron cover. This system has shown superior rates of penetration in water-rich hard rock formations at depths exceeding 500 meters. Several key challenges exist regarding the deployment and use of these bottom hole assemblies for mineral exploration, and this paper discusses some of the key technical challenges. This paper presents experimental results obtained from the research program during laboratory and field testing of the prototype drilling system. A study of the morphological aspects of the cuttings generated during the percussive drilling process is presented and shows a strong power law relationship for particle size distributions. Several percussive drilling parameters such as RPM, applied fluid pressure and weight on bit have been shown to influence the particle size distributions of the cuttings generated. This has direct influence on other drilling parameters such as flow loop performance, cuttings dewatering, and solids control. Real-time, accurate knowledge of percussive system operating parameters will assist the driller in maximising the efficiency of the drilling process. The applied fluid flow, fluid pressure, and rock properties are known to influence the natural oscillating frequency of the percussive hammer, but this paper also shows that drill bit design, drill bit wear and the applied weight on bit can also influence the oscillation frequency. Due to the changing drilling conditions and therefore changing operating parameters, real-time understanding of the natural operating frequency is paramount to achieving system optimisation. Several techniques to understand the oscillating frequency have been investigated and presented. With a conventional top drive drilling rig, spectral analysis of applied fluid pressure, hydraulic feed force pressure, hold back pressure and drill string vibrations have shown the presence of the operating frequency of the bottom hole tooling. Unfortunately, however, with the implementation of a coiled tubing drilling rig, implementing a positive displacement downhole motor to provide drill bit rotation, these signals are not available for interrogation at the surface and therefore another method must be considered. The investigation and analysis of ground vibrations using geophone sensors, similar to seismic-while-drilling techniques have indicated the presence of the natural oscillating frequency of the percussive hammer. This method is shown to provide a robust technique for the determination of the downhole percussive oscillation frequency when used with a coiled tubing drill rig.Keywords: cuttings characterization, drilling optimization, oscillation frequency, percussive drilling, spectral analysis
Procedia PDF Downloads 2304050 Two-Phase Flow Study of Airborne Transmission Control in Dental Practices
Authors: Mojtaba Zabihi, Stephen Munro, Jonathan Little, Ri Li, Joshua Brinkerhoff, Sina Kheirkhah
Abstract:
Occupational Safety and Health Administration (OSHA) identified dental workers at the highest risk of contracting COVID-19. This is because aerosol-generating procedures (AGP) during dental practices generate aerosols ( < 5µm) and droplets. These particles travel at varying speeds, in varying directions, and for varying durations. If these particles bear infectious viruses, their spreading causes airborne transmission of the virus in the dental room, exposing dentists, hygienists, dental assistants, and even other dental clinic clients to the infection risk. Computational fluid dynamics (CFD) simulation of two-phase flows based on a discrete phase model (DPM) is carried out to study the spreading of aerosol and droplets in a dental room. The simulation includes momentum, heat, and mass transfers between the particles and the airflow. Two simulations are conducted and compared. One simulation focuses on the effects of room ventilation in winter and summer on the particles' travel. The other simulation focuses on the control of aerosol and droplets' spreading. A suction collector is added near the source of aerosol and droplets, creating a flow sink in order to remove the particles. The effects of the suction flow on the aerosol and droplet travel are studied. The suction flow can remove aerosols and also reduce the spreading of droplets.Keywords: aerosols, computational fluid dynamics, COVID-19, dental, discrete phase model, droplets, two-phase flow
Procedia PDF Downloads 2654049 Computational Fluid Dynamics Design and Analysis of Aerodynamic Drag Reduction Devices for a Mazda T3500 Truck
Authors: Basil Nkosilathi Dube, Wilson R. Nyemba, Panashe Mandevu
Abstract:
In highway driving, over 50 percent of the power produced by the engine is used to overcome aerodynamic drag, which is a force that opposes a body’s motion through the air. Aerodynamic drag and thus fuel consumption increase rapidly at speeds above 90kph. It is desirable to minimize fuel consumption. Aerodynamic drag reduction in highway driving is the best approach to minimize fuel consumption and to reduce the negative impacts of greenhouse gas emissions on the natural environment. Fuel economy is the ultimate concern of automotive development. This study aims to design and analyze drag-reducing devices for a Mazda T3500 truck, namely, the cab roof and rear (trailer tail) fairings. The aerodynamic effects of adding these append devices were subsequently investigated. To accomplish this, two 3D CAD models of the Mazda truck were designed using the Design Modeler. One, with these, append devices and the other without. The models were exported to ANSYS Fluent for computational fluid dynamics analysis, no wind tunnel tests were performed. A fine mesh with more than 10 million cells was applied in the discretization of the models. The realizable k-ε turbulence model with enhanced wall treatment was used to solve the Reynold’s Averaged Navier-Stokes (RANS) equation. In order to simulate the highway driving conditions, the tests were simulated with a speed of 100 km/h. The effects of these devices were also investigated for low-speed driving. The drag coefficients for both models were obtained from the numerical calculations. By adding the cab roof and rear (trailer tail) fairings, the simulations show a significant reduction in aerodynamic drag at a higher speed. The results show that the greatest drag reduction is obtained when both devices are used. Visuals from post-processing show that the rear fairing minimized the low-pressure region at the rear of the trailer when moving at highway speed. The rear fairing achieved this by streamlining the turbulent airflow, thereby delaying airflow separation. For lower speeds, there were no significant differences in drag coefficients for both models (original and modified). The results show that these devices can be adopted for improving the aerodynamic efficiency of the Mazda T3500 truck at highway speeds.Keywords: aerodynamic drag, computation fluid dynamics, fluent, fuel consumption
Procedia PDF Downloads 1384048 A Critical Analysis on Gaps Associated with Culture Policy Milieu Governing Traditional Male Circumcision in the Eastern Cape, South Africa
Authors: Thanduxolo Nomngcoyiya, Simon M. Kang’ethe
Abstract:
The paper aimed to critically analyse gaps pertaining to the cultural policy environments governing traditional male circumcision in the Eastern Cape as exemplified by an empirical case study. The original study which this paper is derived from utilized qualitative paradigm; and encompassed 28 participants. It used in-depth one-on-one interviews complemented by focus group discussions and key informants as a method of data collection. It also adopted interview guide as a data collection instrument. The original study was cross-sectional in nature, and the data was audio recorded and transcribed later during the data analysis and coding process. The study data analysis was content thematic analysis and identified the following key major findings on the culture of male circumcision policy: Lack of clarity on culture of male circumcision policy operations; Myths surrounding procedures on culture of male circumcision; Divergent views on cultural policies between government and male circumcision custodians; Unclear cultural policies on selection criteria of practitioners; and Lack of policy enforcement and implementation on transgressors of culture of male circumcision. It recommended: a stringent selection criteria of practitioners; a need to carry out death-free male circumcision; a need for male circumcision stakeholders to work with other culture and tradition-friendly stakeholders.Keywords: human rights, policy enforcement, traditional male circumcision, traditional surgeons and nurses
Procedia PDF Downloads 2974047 Interdisciplinary Approach for Economic Production of Oil and Gas Reserves: Application of Geothermal Energy for Enhanced Oil Recovery
Authors: Dharmit Viroja, Prerakkumar Shah, Rajanikant Gajera, Ruchit Shah
Abstract:
With present scenario of aging oil and gas fields with high water cuts, volatile oil prices and increasing greenhouse gas emission, the need for alleviating such issues has necessitated for oil and gas industry to make the maximum out of available assets, infrastructure and reserves in mother Earth. Study undertaken emphasizes on utilizing Geothermal Energy under specific reservoir conditions for Enhanced oil Recovery (EOR) to boost up production. Allied benefits of this process include mitigation of electricity problem in remote fields and controlled CO-emission. Utilization of this energy for EOR and increasing economic life of field could surely be rewarding. A new way to value oil lands would be considered if geothermal co-production is integrated in the field development program. Temperature profile of co-produced fluid across its journey is a pivotal issue which has been studied. Geo pressured reservoirs resulting from trapped brine under an impermeable bed is also a frontier for exploitation. Hot geothermal fluid is a by-product of large number of oil and gas wells, historically this hot water has been seen as an inconvenience; however, it can be looked at as a useful resource. The production of hot fluids from abandoned and co-production of hot fluids from producing wells has potential to prolong life of oil and gas fields. The study encompasses various factors which are required for use of this technology and application of this process across various phases of oil and gas value chain. Interdisciplinary approach in oil and gas value chain has shown potential for economic production of estimated oil and gas reserves.Keywords: enhanced oil recovery, geo-pressured reservoirs, geothermal energy, oil and gas value chain
Procedia PDF Downloads 3414046 Proteomics Application in Disease Diagnosis and Reproduction İmprovement in Cow
Authors: Abdollah Sobhani, Hossein Vaseghi-Dodaran
Abstract:
Proteomics is defined as the study of the component of a cell, tissue and biological fluid. This technique has the potential to identify protein biomarkers of a disease states. In this study which was performed on bovine ovarian follicular cysts (BOFC), eight proteins are over expressed in BOFC that these proteins could be useful biomarkers for BOFC. The difference between serum proteome pattern cows affected by postpartum endometritis with healthy cows revealed that concentrations orosomucoid was decreased in endometritis. The comparison proteome of brucella abortus between laboratory adapted strains and clinical isolates could be useful to better understand this disease and vaccine development. Proteomics experiments identified new proteins and pathways that may be important in future hypothesis-driven studies of glucocorticoid-induced immunosuppression. Understanding the molecular mechanisms of effective parameters on male fertility is essential for obtaining high reproductive efficiency by decreasing cost and time. The investigations on proteome of high fertility spermatozoa indicated that expression of some proteins such as casein kinase 2 (CKII) prime poly peptide and tyrosine kinase in high fertility spermatozoa was higher compared to low fertility spermatozoa. Also, some evidence has indicated that variation in protein types and amounts in seminal fluid regulates fertility indexes in dairy bull. In conclusion, proteomics is a useful technique for discovering drugs, vaccine development, and diagnosis disease by biomarkers and improvement of reproduction efficiency.Keywords: proteomics, reproduction, biomarker, immunity
Procedia PDF Downloads 412