Search results for: canada water policy
2742 Advanced Textiles for Soldier Clothes Based on Coordination Polymers
Authors: Hossam E. Emam
Abstract:
The functional textiles development history in the military field could be ascribed as a uniquely interesting research topic. Soldiers are like a high-performance athletes, where monitoring their physical and physiological capabilities is a vital requirement. Functional clothes represent a “second skin” that has a close, “intimate” relationship with the human body. For the application of textiles in military purposes, which is normally required in difficult weather and environmental conditions, several functions are required. The requirements for designing functional military textiles for soldier's protection can be categorized into three categories; i) battle field (protection from chemical warfare agents, flames, and thermal radiation), ii) environmental (water proof, air permeable, UV-protection, antibacterial), iii) physiological (minimize heat stress, low weight, insulative, durability). All of these requirements are important, but the means to fulfill these requirements are not simple and straight forward. Additionally, the combination of more than one function is reported to be very expensive and requires many complicated steps, and the final product is found to be low durability. Not only do all of these requirements are overlapping, but they are also contradicting each other at various levels. Thus, we plan to produce multi-functional textiles (e.g., anti-microbial, UV-protection, fire retardant, photoluminescent) to be applied in military clothes. The current project aims to use quite a simple and applicable technique through the modification of textiles with different coordination polymers and functionalized coordination polymers.Keywords: functional textiles, military clothes, coordination polymers, antimicrobial, fire retardant, photolumenscent
Procedia PDF Downloads 1792741 Importance of Secularism in Iraq
Authors: Azhin Hamad Ameen
Abstract:
This research paper explores the concept of secularism in Iraq, analyzing its historical development, contemporary manifestations, and potential future trajectories. Using a combination of qualitative and quantitative methods, including archival research, interviews with experts and practitioners, and surveys of public opinion, the study examines the complex and often contested relationship between religion, politics, and state power in Iraq. The research finds that secularism has played a significant role in shaping Iraq's political and social landscape over the past century, reflecting both the influence of Western modernity and the challenges of managing religious diversity in a multiethnic, multi-sectarian society. However, the study also reveals that secularism in Iraq is highly contested and fragmented, with competing visions and interpretations among different groups and factions. The research identifies several key factors that have contributed to this fragmentation, including the legacy of colonialism, sectarian conflicts, external interventions, and the rise of Islamist movements. Despite these challenges, the study suggests that secularism continues to hold important potential for promoting democratic governance, protecting human rights, and fostering social cohesion in Iraq. The research concludes by outlining several key policy recommendations for strengthening secularism in Iraq, including promoting interfaith dialogue and tolerance, enhancing public education and civic engagement, and supporting grassroots initiatives for social and political reform. Overall, this research contributes to our understanding of the complex dynamics of secularism in Iraq and highlights the urgent need for innovative and inclusive approaches to promoting democratic governance and social justice in the country.Keywords: secularism, Iraq, religion, politics, state power, historical development, contemporary manifestations, multiethnic society, multi-sectarian society, western modernity, religious diversity, fragmentation, colonialism, sectarian conflicts, external interventions, Islamist movements, democratic governance, human rights, social cohesion, interfaith dialogue, tolerance, public education, civic engagement, grassroots initiatives, social and political reform
Procedia PDF Downloads 712740 Physicochemical Characterization of Waste from Vegetal Extracts Industry for Use as Briquettes
Authors: Maíra O. Palm, Cintia Marangoni, Ozair Souza, Noeli Sellin
Abstract:
Wastes from a vegetal extracts industry (cocoa, oak, Guarana and mate) were characterized by particle size, proximate and ultimate analysis, lignocellulosic fractions, high heating value, thermal analysis (Thermogravimetric analysis – TGA, and Differential thermal analysis - DTA) and energy density to evaluate their potential as biomass in the form of briquettes for power generation. All wastes presented adequate particle sizes to briquettes production. The wastes showed high moisture content, requiring previous drying for use as briquettes. Cocoa and oak wastes had the highest volatile matter contents with maximum mass loss at 310 ºC and 450 ºC, respectively. The solvents used in the aroma extraction process influenced in the moisture content of the wastes, which was higher for mate due to water has been used as solvent. All wastes showed an insignificant loss mass after 565 °C, hence resulting in low ash content. High carbon and hydrogen contents and low sulfur and nitrogen contents were observed ensuring a low generation of sulfur and nitrous oxides. Mate and cocoa exhibited the highest carbon and lignin content, and high heating value. The dried wastes had high heating value, from 17.1 MJ/kg to 20.8 MJ/kg. The results indicate the energy potential of wastes for use as fuel in power generation.Keywords: agro-industrial waste, biomass, briquettes, combustion
Procedia PDF Downloads 2052739 Residents Awareness and Willingness to Offer Homestay Accommodation to Tourists at a Listed World Heritage Site: Idanre Hills, Ondo State, Nigeria
Authors: Arowosafe Folusade Catherine, Arowosafe Olubunmi, Aina Samson
Abstract:
In many countries, tourism has been portrayed as a contributor to small-scale enterprises, contributing to improved standards of living, a catalyst for community development, and poverty alleviation. This study assessed the willingness of the host communities to provide homestay accommodation and also identified the homestay facilities available to host visitors to the community. A random sampling method was used to administer 150 copies of the questionnaire to the residents in Idanre. Data collected were subjected to descriptive and inferential statistical analysis, and results were presented using frequency and percentage tables. Results: Findings revealed that the majority of the residents were above 60 years (47.3%), with 33% of them aware of the concept of homestay accommodation, and 32% had primary education. The majority were self-employed (43.3%), earning less than ₦30,000 per month; it also revealed that 80.7% of the residents owned at least one house and had adequate water supply facility (100%) and electricity (99.3%). Some constraints observed revealed that safety for the host family (mean 4.81) was ranked high as a possible deterrent to providing homestay accommodation to strangers. Results revealed a correlation between the resident’s awareness and willingness to provide homestay accommodation services (r.0.05, p<0.05). This study recommends that sensitization programs to create awareness of the potential benefits of homestay accommodation in the host communities of Idanre Hills should be carried out by the relevant stakeholders.Keywords: accommodation, benefits, homestay, Idanre Hills
Procedia PDF Downloads 672738 Internal Cycles from Hydrometric Data and Variability Detected Through Hydrological Modelling Results, on the Niger River, over 1901-2020
Authors: Salif Koné
Abstract:
We analyze hydrometric data at the Koulikoro station on the Niger River; this basin drains 120600 km2 and covers three countries in West Africa, Guinea, Mali, and Ivory Coast. Two subsequent decadal cycles are highlighted (1925-1936 and 1929-1939) instead of the presumed single decadal one from literature. Moreover, the observed hydrometric data shows a multidecadal 40-year period that is confirmed when graphing a spatial coefficient of variation of runoff over decades (starting at 1901-1910). Spatial runoff data are produced on 48 grids (0.5 degree by 0.5 degree) and through semi-distributed versions of both SimulHyd model and GR2M model - variants of a French Hydrologic model – standing for Genie Rural of 2 parameters at monthly time step. Both extremal decades in terms of runoff coefficient of variation are confronted: 1951-1960 has minimal coefficient of variation, and 1981-1990 shows the maximal value of it during the three months of high-water level (August, September, and October). The mapping of the relative variation of these two decadal situations allows hypothesizing as following: the scale of variation between both extremal situations could serve to fix boundary conditions for further simulations using data from climate scenario.Keywords: internal cycles, hydrometric data, niger river, gr2m and simulhyd framework, runoff coefficient of variation
Procedia PDF Downloads 922737 Comparative Study on Hydrothermal Carbonization as Pre- and Post-treatment of Anaerobic Digestion of Dairy Sludge: Focus on Energy Recovery, Resources Transformation and Hydrochar Utilization
Authors: Mahmood Al Ramahi, G. Keszthelyi-Szabo, S. Beszedes
Abstract:
Hydrothermal carbonization (HTC) is a thermochemical reaction that utilizes saturated water and vapor pressure to convert waste biomass to C-rich products This work evaluated the effect of HTC as a pre- and post-treatment technique to anaerobic digestion (AD) of dairy sludge, as information in this field is still in its infancy, with many research and methodological gaps. HTC effect was evaluated based on energy recovery, nutrients transformation, and sludge biodegradability. The first treatment approach was executed by applying hydrothermal carbonization (HTC) under a range of temperatures, prior to mesophilic anaerobic digestion (AD) of dairy sludge. Results suggested an optimal pretreatment temperature at 210 °C for 30 min. HTC pretreatment increased methane yield and chemical oxygen demand removal. The theoretical model based on Boyle’s equation had a very close match with the experimental results. On the other hand, applying HTC subsequent to AD increased total energy production, as additional energy yield was obtained by the solid fuel (hydrochar) beside the produced biogas. Furthermore, hydrothermal carbonization of AD digestate generated liquid products (HTC digestate) with improved chemical characteristics suggesting their use as liquid fertilizers.Keywords: hydrothermal carbonization, anaerobic digestion, energy balance, sludge biodegradability, biogas
Procedia PDF Downloads 1822736 Plant Genetic Diversity in Home Gardens and Its Contribution to Household Economy in Western Part of Ethiopia
Authors: Bedilu Tafesse
Abstract:
Home gardens are important social and cultural spaces where knowledge related to agricultural practice is transmitted and through which households may improve their income and livelihood. High levels of inter- and intra-specific plant genetic diversity are preserved in home gardens. Plant diversity is threatened by rapid and unplanned urbanization, which increases environmental problems such as heating, pollution, loss of habitats and ecosystem disruption. Tropical home gardens have played a significant role in conserving plant diversity while providing substantial benefits to households. This research aimed to understand the relationship between household characteristics and plant diversity in western Ethiopia home gardens and the contributions of plants to the household economy. Plant diversity and different uses of plants were studied in a random sample of 111 suburban home gardens in the Ilu Ababora, Jima and Wellega suburban area, western Ethiopia, based on complete garden inventories followed by household surveys on socio-economic status during 2012. A total of 261 species of plants were observed, of which 41% were ornamental plants, 36% food plants, and 22% medicinal plants. Of these 16% were sold commercially to produce income. Avocado, bananas, and other fruits produced in excess. Home gardens contributed the equivalent of 7% of total annual household income in terms of food and commercial sales. Multiple regression analysis showed that education, time spent in gardening, land for cultivation, household expenses, primary conservation practices, and uses of special techniques explained 56% of the total plant diversity. Food, medicinal and commercial plant species had significant positive relationships with time spent gardening and land area for gardening. Education and conservation practices significantly affected food and medicinal plant diversity. Special techniques used in gardening showed significant positive relations with ornamental and commercial plants. Reassessments in different suburban and urban home gardens and proper documentation using same methodology is essential to build a firm policy for enhancing plant diversity and related values to households and surroundings.Keywords: plant genetic diversity, urbanization, suburban home gardens, Ethiopia
Procedia PDF Downloads 3022735 The Mechanical Properties of Rammed Earth with Plastic Fibers
Authors: Majdi Al Shdifat, Juan Chiachio, Esther Puertas, María L. Jalón, Álvaro Blanca-Hoyos
Abstract:
In recent years, the world has begun to adopt more sustainable practices in response to today's environmental and climate challenges. The construction sector is one of the most resource-intensive among others, so researchers are testing different types of materials with different processes and methodologies to achieve more environmentally and sustainably friendly buildings.Plastic is one of the most harmful materials for the environment. The global production of plastics has increased dramatically in recent decades, and it is one of the most widely used materials. However, plastic waste is not biodegradable and has a chemical composition that is stable for many years in the environment, both on land and in water bodies. Recycled plastics have been tested to be used in construction in many ways to reduce the amount of plastic in the environment and the use of raw materials in construction. In this context, the main objective of this research is to test the use of plastic fibers with one of the most promising materials to replace cement, which is rammed earth. In fact, rammed earth is considered one of the most environmentally friendly materials due to its use of local raw materials, recyclability, and low embodied energy. In this research, three different types of plastic fibers were used. Then, the blends were evaluated by considering their mechanical properties, including compressive strength and tensile strength. In addition, the non-destructive ultrasonic wave velocity was measured. The result shows excellent potential for the use of plastic fibers in rammed earth, especially in terms of compressive strength.Keywords: mechanical characterization, plastic fibers reinforcement, rammed earth, sustainable material
Procedia PDF Downloads 672734 A Hygrothermal Analysis and Structural Performance of Wood-Frame Wall Systems with Low-Permeance Exterior Insulation
Authors: Marko Spasojevic, Ying Hei Chui, Yuxiang Chen
Abstract:
Increasing the level of exterior insulation in residential buildings is a popular way for improving the thermal characteristic of building enclosure and reducing heat loss. However, the layout and properties of materials composing the wall have a great effect on moisture accumulation within the wall cavity, long-term durability of a wall as well as the structural performance. A one-dimensional hygrothermal modeling has been performed to investigate moisture condensation risks and the drying capacity of standard 2×4 and 2×6 light wood-frame wall assemblies including exterior low-permeance extruded polystyrene (XPS) insulation. The analysis considered two different wall configurations whereby the rigid insulation board was placed either between Oriented Strand Board (OSB) sheathing and the stud or outboard to the structural sheathing. The thickness of the insulation varied between 0 mm and 50 mm and the analysis has been conducted for eight different locations in Canada, covering climate zone 4 through zone 8. Results show that the wall configuration with low-permeance insulation inserted between the stud and OSB sheathing accumulates more moisture within the stud cavity, compared to the assembly with the same insulation placed exterior to the sheathing. On the other hand, OSB moisture contents of the latter configuration were markedly higher. Consequently, the analysis of hygrothermal performance investigated and compared moisture accumulation in both the OSB and stud cavity. To investigate the structural performance of the wall and the effect of soft insulation layer inserted between the sheathing and framing, forty nail connection specimens were tested. Results have shown that both the connection strength and stiffness experience a significant reduction as the insulation thickness increases. These results will be compared with results from a full-scale shear wall tests in order to investigate if the capacity of shear walls with insulated sheathing would experience a similar reduction in structural capacities.Keywords: hygrothermal analysis, insulated sheathing, moisture performance, nail joints, wood shear wall
Procedia PDF Downloads 1262733 Tide Contribution in the Flood Event of Jeddah City: Mathematical Modelling and Different Field Measurements of the Groundwater Rise
Authors: Aïssa Rezzoug
Abstract:
This paper is aimed to bring new elements that demonstrate the tide caused the groundwater to rise in the shoreline band, on which the urban areas occurs, especially in the western coastal cities of the Kingdom of Saudi Arabia like Jeddah. The reason for the last events of Jeddah inundation was the groundwater rise in the city coupled at the same time to a strong precipitation event. This paper will illustrate the tide participation in increasing the groundwater level significantly. It shows that the reason for internal groundwater recharge within the urban area is not only the excess of the water supply coming from surrounding areas, due to the human activity, with lack of sufficient and efficient sewage system, but also due to tide effect. The research study follows a quantitative method to assess groundwater level rise risks through many in-situ measurements and mathematical modelling. The proposed approach highlights groundwater level, in the urban areas of the city on the shoreline band, reaching the high tide level without considering any input from precipitation. Despite the small tide in the Red Sea compared to other oceanic coasts, the groundwater level is considerably enhanced by the tide from the seaside and by the freshwater table from the landside of the city. In these conditions, the groundwater level becomes high in the city and prevents the soil to evacuate quickly enough the surface flow caused by the storm event, as it was observed in the last historical flood catastrophe of Jeddah in 2009.Keywords: flood, groundwater rise, Jeddah, tide
Procedia PDF Downloads 1122732 The ‘Accompanying Spouse Dependent Visa Status’: Challenges and Constraints Faced by Zimbabwean Immigrant Women in Integration into South Africa’s Formal Labour Market
Authors: Rujeko Samanthia Chimukuche
Abstract:
Introduction: Transboundary migration at both regional and continental levels has become the defining feature of the 21st century. The recent global migration crisis due to economic strife and war brings back to the fore an old age problem, but with fresh challenges. Migration and forced displacement are issues that require long-term solutions. In South Africa, for example, whilst much attention has been placed on xenophobic attacks and other issues at the nexus of immigrant and indigenous communities, the limited focus has been placed on the integration, specifically formal labour integration of immigrant communities and the gender inequalities that are prevalent. Despite noble efforts by South Africa, hosting several immigrants, several challenges arise in integrating the migrants into society as it is often difficult to harmonize the interests of indigenous communities and those of foreign nationals. This research study has aimed to fill in the gaps by analyzing how stringent immigration and visa regulations prevent skilled migrant women spouses from employment, which often results in several societal vices, including domestic abuse, minimum or no access to important services such as healthcare, education, social welfare among others. Methods: Using a qualitative approach, the study analyzed South Africa migration and labour policies in terms of mainstreaming the gender needs of skilled migrant women. Secondly, the study highlighted the migratory experiences and constraints of skilled Zimbabwean women migrant spouses in South Africa labour integration. The experiences of these women have shown the gender inequalities of the migratory policies. Thirdly, Zimbabwean women's opportunities and/or challenges in integration into the South African formal labour market were explored. Lastly, practical interventions to support the integration of skilled migrant women spouses into South Africa’s formal labour market were suggested. Findings: Key findings show that gender dynamics are pivotal in migration patterns and the mainstreaming of gender in migration policies. This study, therefore, contributed to the fields of gender and migration by examining ways in which gender rights of skilled migrant women spouses can be incorporated in labour integration policy making.Keywords: accompanying spouse visa, gender-migration, labour-integration, Zimbabwean women
Procedia PDF Downloads 1192731 Modified Model for UV-Laser Corneal Ablation
Authors: Salah Hassab Elnaby, Omnia Hamdy, Aziza Ahmed Hassan, Salwa Abdelkawi, Ibrahim Abdelhalim
Abstract:
Laser corneal reshaping has been proposed as a successful treatment of many refraction disorders. However, some physical and chemical demonstrations of the laser effect upon interaction with the corneal tissue are still not fully explained. Therefore, different computational and mathematical models have been implemented to predict the depth of the ablated channel and calculate the ablation threshold and the local temperature rise. In the current paper, we present a modified model that aims to answer some of the open questions about the ablation threshold, the ablation rate, and the physical and chemical mechanisms of that action. The proposed model consists of three parts. The first part deals with possible photochemical reactions between the incident photons and various components of the cornea (collagen, water, etc.). Such photochemical reactions may end by photo-ablation or just the electronic excitation of molecules. Then a chemical reaction is responsible for the ablation threshold. Finally, another chemical reaction produces fragments that can be cleared out. The model takes into account all processes at the same time with different probabilities. Moreover, the effect of applying different laser wavelengths that have been studied before, namely the common excimer laser (193-nm) and the solid state lasers (213-nm & 266-nm), has been investigated. Despite the success and ubiquity of the ArF laser, the presented results reveal that a carefully designed 213-nm laser gives the same results with lower operational drawbacks. Moreover, the use of mode locked laser could also decrease the risk of heat generation and diffusion.Keywords: UV lasers, mathematical model, corneal ablation, photochemical ablation
Procedia PDF Downloads 852730 Highly Specific DNA-Aptamer-Based Electrochemical Biosensor for Mercury (II) and Lead (II) Ions Detection in Water Samples
Authors: H. Abu-Ali, A. Nabok, T. Smith
Abstract:
Aptamers are single-strand of DNA or RNA nucleotides sequence which is designed in vitro using selection process known as SELEX (systematic evolution of ligands by exponential enrichment) were developed for the selective detection of many toxic materials. In this work, we have developed an electrochemical biosensor for highly selective and sensitive detection of Hg2+ and Pb2+ using a specific aptamer probe (SAP) labelled with ferrocene (or methylene blue) in (5′) end and the thiol group at its (3′) termini, respectively. The SAP has a specific coil structure that matching with G-G for Pb2+ and T-T for Hg2+ interaction binding nucleotides ions, respectively. Aptamers were immobilized onto surface of screen-printed gold electrodes via SH groups; then the cyclic voltammograms were recorded in binding buffer with the addition of the above metal salts in different concentrations. The resulted values of anode current increase upon binding heavy metal ions to aptamers and analyte due to the presence of electrochemically active probe, i.e. ferrocene or methylene blue group. The correlation between the anodic current values and the concentrations of Hg2+ and Pb2+ ions has been established in this work. To the best of our knowledge, this is the first example of using a specific DNA aptamers for electrochemical detection of heavy metals. Each increase in concentration of 0.1 μM results in an increase in the anode current value by simple DC electrochemical test i.e (Cyclic Voltammetry), thus providing an easy way of determining Hg2+ and Pb2+concentration.Keywords: aptamer, based, biosensor, DNA, electrochemical, highly, specific
Procedia PDF Downloads 1592729 Populism and National Unity: A Discourse Analysis of Poverty Eradication Strategies of Three Malaysian Prime Ministers
Authors: Khairil Ahmad, Jenny Gryzelius, Mohd Helmi Mohd Sobri
Abstract:
With the waning support for centrist ‘third-way’ politics across the Western world, there has been an increase in political parties and individual candidates relying on populist political discourse and rhetoric in order to capitalize on the sense of frustration apparent within the electorate. What is of note is the divergence in the discourses employed. On the one hand, there is a polarization between a growing wave of populist right-wing parties and politicians, employing a mixture of economic populism with divisive nationalistic ideals such as restricted immigration, for example, the UK’s UKIP and Donald Trump in the US. On the other hand, there are resurgent, often grassroots-led, left-wing movements and politicians, such as Podemos in Spain and Jeremy Corbyn in the UK, focusing on anti-austerity measures and inclusive policies. In general, the concept of populism is often ascribed in a pejorative way. This is despite the success of populist left-wing governments across Latin America in recent times, especially in terms of reducing poverty. Nonetheless, recently, scholars such as Ernesto Laclau have tried to rethink populism as a social scientific concept which is essential in helping us make sense of contemporary political articulations. Using Laclau’s framework, this paper seeks to analyze poverty reduction policies in different iterations in the context of the tenures of three Prime Ministers of Malaysia. The first is Abdul Razak Hussein’s New Economic Policy, which focused on uplifting the economic position of Malaysia’s majority Malay population. The second is Mahathir Mohamad’s state-led neo-liberalization of the Malaysian economy, which focused on the creation of a core group of crony elites in order to spearhead economic development. The third is current Prime Minister Najib Razak’s targeted poverty eradication strategy through a focused program which directly provides benefits to recipients such as through direct cash transfers. The paper employs a discursive approach to trace elements of populism in these cases and highlight instances of how their strategies are articulated in ways that seek to appeal towards particular visions of national unity.Keywords: discourse analysis, Malaysia, populism, poverty eradication
Procedia PDF Downloads 3192728 Identification and Evaluation of Landscape Mosaics of Kutlubeyyazıcılar Campus, Bartın University, Turkey
Authors: Y. Sarı Nayim, B. N. Nayim
Abstract:
This research proposal includes the defining and evaluation of the semi-natural and cultural ecosystems at Bartın University main campus in Turkey in terms of landscape mosaics. The ecosystem mosaic of the main campus was divided into zones based on ecological classification technique. Based on the results from the study, it was found that 6 different ecosystem mosaics should be used as a base in the planning and design of the existing and future landscape planning of Kutlubeyyazıcılar campus. The first landscape zone involves the 'social areas'. These areas include yards, dining areas, recreational areas and lawn areas. The second landscape zone is 'main vehicle and pedestrian areas'. These areas include vehicle access to the campus landscape, moving in the campus with vehicles, parking and pedestrian walk ways. The third zone is 'landscape areas with high visual landscape quality'. These areas will be the places where attractive structural and plant landscape elements will be used. Fourth zone will be 'landscapes of building borders and their surroundings.' The fifth and important zone that should be survived in the future is 'Actual semi-natural forest and bush areas'. And the last zone is 'water landscape' which brings ecological value to landscape areas. While determining the most convenient areas in the planning and design of the campus, these landscape mosaics should be taken into consideration. This zoning will ensure that the campus landscape is protected and living spaces in the campus apart from the areas where human activities are carried out will be used properly.Keywords: campus landscape planning and design, landscape ecology, landscape mosaics, Bartın
Procedia PDF Downloads 3642727 Effect of Tillage Techniques on the Performance of Kharif Rice Varieties
Authors: Mahua Banerjee, Debtanu Maiti
Abstract:
Zero-tillage cultivation is a farming practice that reduces costs while maintaining harvests and protecting the environment. Innovative partnerships among researchers, farmers, and other actors in the agricultural value chain have enabled the adoption of zero-tillage to sow rice in the Indo-Gangetic Plains, increasing farmers' incomes, fostering more sustainable use of soil and water, and providing a platform for cropping diversification and the introduction of other resource-conserving practices. A field experiment was conducted in the farmer’s field of Ausgram I Block, Burdwan, West Bengal, India under sandy loam soil with soil pH of 5.2, which is low in Nitrogen, medium in Phosphorus and Potassium. There were three techniques of tillage-T1: Zero tillage in Rice, T2: conventional tillage in Rice, T3: Rice grown with Drum seeder and three varieties namely V1: MTU 7029 V2-MTU 1010, V3: Pratikha thus making nine treatment combinations which were replicated thrice and the experiment was laid out in Factorial Randomised Block Design. Among the three varieties, rice variety MTU 7029 gave higher yield in all the tillage techniques. The highest yield was obtained under Zero tillage followed by conventional tillage. From economic analysis it was revealed that the benefit:cost ratio was higher in Zero tillage and rice cultivation by drum seeder. Zero-till is increasingly being adopted because it gives more yield at less cost, saves labour and farmer time. Farmers will be interested in this technology once they overcome their tillage biases.Keywords: economics, Indo-Gangetic plain, rice, zero tillage, yield
Procedia PDF Downloads 3762726 Electrocatalytic Enhancement Mechanism of Dual-Atom and Single-Atom MXenes-Based Catalyst in Oxygen and Hydrogen Evolution Reactions
Authors: Xin Zhao. Xuerong Zheng. Andrey L. Rogach
Abstract:
Using single metal atoms has been considered an efficient way to develop new HER and OER catalysts. MXenes, a class of two-dimensional materials, have attracted tremendous interest as promising substrates for single-atom metal catalysts. However, there is still a lack of systematic investigations on the interaction mechanisms between various MXenes substrates and single atoms. Besides, due to the poor interaction between metal atoms and substrates resulting in low loading and stability, dual-atom MXenes-based catalysts have not been successfully synthesized. We summarized the electrocatalytic enhancement mechanism of three MXenes-based single-atom catalysts through experimental and theoretical results demonstrating the stronger hybridization between Co 3d and surface-terminated O 2p orbitals, optimizing the electronic structure of Co single atoms in the composite. This, in turn, lowers the OER and HER energy barriers and accelerates the catalytic kinetics in the case of the Co@V2CTx composite. The poor interaction between single atoms and substrates can be improved by a surface modification to synthesize dual-atom catalysts. The synergistic electronic structure enhances the stability and electrocatalytic activity of the catalyst. Our study provides guidelines for designing single-atom and dual-atom MXene-based electrocatalysts and sheds light on the origins of the catalytic activity of single-atoms on MXene substrates.Keywords: dual-atom catalyst, single-atom catalyst, MXene substrates, water splitting
Procedia PDF Downloads 672725 Strategies and Difficulties to Integrate Renewable Energy into Recreational Open Spaces
Abstract:
Recreational spaces designed or build for refreshment of the users through natural riches and/or activities. Those places contribute to the quality of city life by providing relaxation point for citizens and maintaining the environmental equilibrium. The elements which constitute the recreational areas also promote long-term environmental and social sustainability of cities. Preservation and creation of the recreation open spaces are important for water and air quality, natural habitat and also social communication. On this point, it is also a good area for promoting the renewable energy sources through comprehension of the sustainable development which is possible only with using nature and technic together. Energy production is mainly technical issue, and architectural design of these elements to the site always ignores or avoid. The main problems for integration of renewable energy sources are the system suitability, security, durability, and resiliency. In this paper, one of the city recreational open spaces in Konya, Turkey was evaluated for integration of possible renewable energy sources. It shows that the solar energy potential is high and PV integration is the best option. On the other hand wind, energy power and area is not suitable for wind turbine, so wind belts were decided to integrate on the design. According to recreational activities, the chosen elements was designed for site application, and their performance was calculated. According to possible installation on the furniture, there is 50 MWh/a electricity production capacity.Keywords: energy, integrated design, recreational space, renewables
Procedia PDF Downloads 1522724 Effect of Baking Temperature on the Mechanical Properties of Reinforced Clayey Soil
Authors: Gul Muhammad, Amanullah Marri, Asif Abbas
Abstract:
Thermal treatment changes the physical and mechanical properties of clayey soils. Thermally treated soils have been used since ancient times for making trails for access and bricks for residence. In this study, it has been focused to observe and analyze the effect of baking (burning) temperature on the mechanical properties of clayey soils usually used for the construction of adobe houses in the rural areas of many of the developing countries. In the first stage of experimental work, a series of tests on clayey soil moulds (100 mm height and 50 mm diameter in size) added different percentages of lime and wheat straw (typically 2%, 4%, 6%, 8%, and 10%) were conducted. In the second stage; samples were made of clayey soils and were subjected to six level of temperatures i.e., 25, 100, 200, 300, 400, and 500⁰C. In the third stage, the moulds of clayey soil were submerged in water prior to testing in order to investigate the flood resilience of the moulds prepared with and without the addition of lime and wheat straw. The experimental results suggest that samples with 6% of lime content and on 2% of wheat straw contents have shown the maximum value of compressive strength. The effect of baking temperature on the clayey soils has shown that maximum UCS is obtained at 200⁰C. The results also suggest reinforcement with 2% wheat straw, give 70.8% increase in the compressive strength compared to soil only, whereas the flooding resilience can be better resist by adding 6% lime and 2% wheat straw.Keywords: baked temperature, submersion, lime, uniaxial, wheat straw
Procedia PDF Downloads 2762723 Climate Change and Global Warming: Effect on Indian Agriculture and Legal Control
Authors: Aman Guru, Chiron Singhi
Abstract:
The Earth’s climate is being changed at an unrivalled rate since beginning of the evolution of the Earth, 4–5 billion years back, but presently it gained pace due to unintentional anthropogenic disturbances and also increased global warming since the mid-20th century, and these incessant changes in the climatic pattern may bring unpropitious effect on global health and security. Today, however, it is not only the air, or water that are polluted, but the whole atmosphere is prone to pollution and this resulted in other cascading ramification in the form of change in the pattern of rainfall, melting of ice, the rise in the sea level etc. Human activities like production, transport, burning of fuels are adding umpteen dangerous pollutants to the atmosphere which in turn gives rise to global warming. Agriculture plays an imperative part in India's economy. Agriculture, along with fisheries and forestry, is one of the largest contributors to the Gross Domestic Product in India. Research on the effect of climate change and vulnerability of agriculture is a high need in India. A steady increase of CO2 is a primary cause of climate change and global warming and which in turn have a great impact on Indian agriculture. The research focuses on the effect of climate change on Indian agriculture and the proceedings and legal control of legislative measures on such issues and the ways to implement such laws which can help to provide a solution to these problems which can prove beneficial to Indian farmers and their agricultural produce.Keywords: agriculture, climate change, global warming, India laws, legislative measures
Procedia PDF Downloads 3112722 The Influence of Production Hygiene Training on Farming Practices Employed by Rural Small-Scale Organic Farmers - South Africa
Authors: Mdluli Fezile, Schmidt Stefan, Thamaga-Chitja Joyce
Abstract:
In view of the frequently reported foodborne disease outbreaks caused by contaminated fresh produce, consumers have a preference for foods that meet requisite hygiene standards to reduce the risk of foodborne illnesses. Producing good quality fresh produce then becomes critical in improving market access and food security, especially for small-scale farmers. Questions of hygiene and subsequent microbiological quality in the rural small-scale farming sector of South Africa are even more crucial, given the policy drive to develop small-scale farming as a measure for reinforcement of household food security and reduction of poverty. Farming practices and methods, throughout the fresh produce value chain, influence the quality of the final product, which in turn determines its success in the market. This study’s aim was to therefore determine the extent to which training on organic farming methods, including modules such as Importance of Production Hygiene, influenced the hygienic farming practices employed by eTholeni small-scale organic farmers in uMbumbulu, KwaZulu-Natal- South Africa. Questionnaires were administered to 73 uncertified organic farmers and analysis showed that a total of 33 farmers were trained and supplied the local Agri-Hub while 40 had not received training. The questionnaire probed respondents’ attitudes, knowledge of hygiene and composting practices. Data analysis included descriptive statistics such as the Chi-square test and a logistic regression model. Descriptive analysis indicated that a majority of the farmers (60%) were female, most of which (73%) were above the age of 40. The logistic regression indicated that factors such as farmer training and prior experience in the farming sector had a significant influence on hygiene practices both at 5% significance levels. These results emphasize the importance of training, education and farming experience in implementing good hygiene practices in small-scale farming. It is therefore recommended that South African policies should advocate for small-scale farmer training, not only for subsistence purposes, but also with an aim of supplying produce markets with high fresh produce.Keywords: small-scale farmers, leafy salad vegetables, organic produce, food safety, hygienic practices, food security
Procedia PDF Downloads 4232721 The Challenge of Characterising Drought Risk in Data Scarce Regions: The Case of the South of Angola
Authors: Natalia Limones, Javier Marzo, Marcus Wijnen, Aleix Serrat-Capdevila
Abstract:
In this research we developed a structured approach for the detection of areas under the highest levels of drought risk that is suitable for data-scarce environments. The methodology is based on recent scientific outcomes and methods and can be easily adapted to different contexts in successive exercises. The research reviews the history of drought in the south of Angola and characterizes the experienced hazard in the episode from 2012, focusing on the meteorological and the hydrological drought types. Only global open data information coming from modeling or remote sensing was used for the description of the hydroclimatological variables since there is almost no ground data in this part of the country. Also, the study intends to portray the socioeconomic vulnerabilities and the exposure to the phenomenon in the region to fully understand the risk. As a result, a map of the areas under the highest risk in the south of the country is produced, which is one of the main outputs of this work. It was also possible to confirm that the set of indicators used revealed different drought vulnerability profiles in the South of Angola and, as a result, several varieties of priority areas prone to distinctive impacts were recognized. The results demonstrated that most of the region experienced a severe multi-year meteorological drought that triggered an unprecedent exhaustion of the surface water resources, and that the majority of their socioeconomic impacts started soon after the identified onset of these processes.Keywords: drought risk, exposure, hazard, vulnerability
Procedia PDF Downloads 1902720 Effect of Lactic Acid Bacteria Inoculant on Fermentation Quality of Sweet Sorghum Silage
Authors: Azizza Mala, Babo Fadlalla, Elnour Mohamed, Siran Wang, Junfeng Li, Tao Shao
Abstract:
Sweet sorghum is considered one of the best plants for silage production and is now a more important feed crop in many countries worldwide. It is simple to ensile because of its high water-soluble carbohydrates (WSC) concentration and low buffer capacity. This study investigated the effect of adding Pediococcus acidilactici AZZ5 and Lactobacillus plantarum AZZ4 isolated from elephant grass on the fermentation quality of sweet sorghum silage. One commercial bacteria Lactobacillus Plantarum, Ecosyl MTD/1(C.B.)), and two strains were used as additives Pediococcus acidilactici (AZZ5), Lactobacillus plantarum subsp. Plantarum (AZZ4) at 6 log colony forming units (cfu)/g of fresh sweet sorghum grass in laboratory silos (1000g). After 15, 30, and 60 days, the silos for each treatment were opened. All of the isolated strains enhanced the silage quality of sweet sorghum silage compared to the control, as evidenced by significantly (P < 0.05) lower ammonia nitrogen (NH3-N) content and undesirable microbial counts, as well as greater lactic acid (L.A.) contents and lactic acid/acetic acid (LA/AA) ratios. In addition, AZZ4 performed better than all other inoculants during ensiling, as evidenced by a significant (P < 0.05) reduction in pH and ammonia-N contents and a significant increase in lactic acid contents.Keywords: fermentation, lactobacillus plantarum, lactic acid bacteria, pediococcus acidilactic, sweet sorghum
Procedia PDF Downloads 892719 Mechanical, Physical and Durability Properties of Cement Mortars Added with Recycled PP/PE-Based Food Packaging Waste Material
Authors: Livia Guerini, Christian Paglia
Abstract:
In Switzerland, only a fraction of plastic waste from food packaging is collected and recycled for further use in the food industry. Therefore, reusing these waste plastics for building applications can be an attractive alternative to disposal in order to reduce the problem of waste management and to make up for the depletion of raw materials needed for construction. In this study, experiments were conducted on the mechanical properties (compressive and flexural strength, elastic modulus), physical properties (density, workability, porosity, and water permeability) and durability (freeze/thaw resistance) of cementitious mortars with additions of recycled low-/high-density polyethylene (LDPE/HDPE)/ polypropylene (PP) regrind (addition of 5% and 10% by weight) and LDPE sheets (addition of 0.5% and 1.5% by weight) coming from food packaging. The results show that as the addition of plastic material increases, the density and mechanical properties of the mortars decrease compared to conventional ones. Porosity is similar in all the mixtures made, while the workability and the permeability are affected not only by the amount added but also by the shape of the plastic aggregate. Freeze/thaw resistance, on the other hand, is significantly higher in mortars with plastic aggregates than in traditional mortar. This feature may be interesting for the realization of outdoor mortars in cold environments.Keywords: food packaging waste, durability properties, mechanical properties, mortar, recycled PE, recycled PP
Procedia PDF Downloads 1442718 Case Study; Drilled Shafts Installation in Difficult Site Conditions; Loose Sand and High Water Table
Authors: Anthony El Hachem, Hosam Salman
Abstract:
Selecting the most effective construction method for drilled shafts under the high phreatic surface can be a challenging task that requires effective communication between the design and construction teams. Slurry placement, temporary casing, and permanent casing are the three most commonly used installation techniques to ensure the stability of the drilled hole before casting the concrete. Each one of these methods has its implications on the installation and performance of the drilled piers. Drilled shafts were designed to support a fire wall for an Energy project in Central Texas. The subsurface consisted of interlayers of sands and clays of varying shear strengths. The design recommended that the shafts be installed with temporary casing or slurry displacement due to the anticipated groundwater seepage through granular soils. During the foundation construction, it was very difficult to maintain the stability of the hole, and the contractor requested to install the shafts using permanent casings. Therefore, the foundation design was modified to ensure that the cased shafts achieve the required load capacity. Effective and continuous communications between the owner, contractor and design team during field shaft installations to mitigate the unforeseen challenges helped the team to successfully complete the project.Keywords: construction challenges, deep foundations, drilled shafts, loose sands underwater table, permanent casing
Procedia PDF Downloads 1912717 Alternative Biocides to Reduce Algal Fouling in Seawater Industrial Cooling Towers
Authors: Mohammed Al-Bloushi, Sanghyun Jeong, Torove Leiknes
Abstract:
Biofouling in the open recirculating cooling water systems may cause biological corrosion, which can reduce the performance, increase the energy consummation and lower heat exchange efficiencies of the cooling tower. Seawater cooling towers are prone to biofouling due to the presences of organic and inorganic compounds in the seawater. The availability of organic and inorganic nutrients, along with sunlight and continuous aeration of the cooling tower contributes to an environment that is ideal for microbial growth. Various microorganisms (algae, fungi, and bacteria) can grow in a cooling tower system under certain environmental conditions. The most commonly being used method to control the biofouling in the cooling tower is the addition of biocides such as chlorination. In this study, algae containing diatom and green algae were added to the cooling tower basin, and its viability was monitored in the recirculating cooling seawater loop as well as in the cooling tower basin. Continuous addition of biocides was employed in pilot-scale seawater cooling towers, and it was operated continuously for 2 months. Three different types of oxidizing biocides, namely chlorine, chlorine dioxide and ozone, were tested. The results showed that all biocides were effective in keeping the biological growth to the minimum regardless of algal addition. Amongst the biocides, ozone could reduce 99% of total live cells of bacteria and algae, followed by chlorine dioxide at 97%, while the conventional chlorine showed only 89% reduction in the bioactivities.Keywords: algae, biocide, biofouling, seawater cooling tower
Procedia PDF Downloads 2382716 Nano-emulsion/Nano-suspension as Precursors for Oral Dissolvable Film to Enhance Bioavalabilty for Poor-water Solubility Drugs
Authors: Yuan Yang, Mickey Lam
Abstract:
Oral dissolvable films have been considered as a unique alternative approach to conventional oral dosage forms. The films could be administrated via the gastrointestinal tract as conventional dosages or through sublingual/buccal mucosa membranes, which could enhance drug bioavailability by avoiding the first-pass effect and improving permeability due to high blood flow and lymphatic circulation. This work has described a state-of-art technic using nano-emulsion/nano-suspension as a precursor for the film to enhance the bioavailability of BCS class II drugs. The drug molecules are consequentially processed through the emulsification, gelation, and film-casting processes. The gelation process is critical to stabilizing the nano-emulsion for the film-casting as well as controlling the drug release process. Furthermore, the size of the nanoparticle on the film has a strong correlation with the size of the micelles in the precursor and the condition of the gelation process. It has been discovered that nanoparticle from 200 nm to 300 nm has shown the highest permeability for sublingual administration. In one example shown in work, the bioavailability of a low solubilize drug has been increased from 10% to 24% via sublingual administration of the film. The increasing of the bioavailability was thought to be associated with the enhancement of the diffusion process of the drug in the saliva layer above the mucosa membrane and the fact that the presents of the emulsifier help lose the rigid junction of the mucosa cells.Keywords: oral dissolvable film, nano-suspension, nano-emulsion, bioavailability
Procedia PDF Downloads 1812715 Evaluating the Effect of Splitting Wind Farms on Power Output
Authors: Nazanin Naderi, Milton Smith
Abstract:
Since worldwide demand for renewable energy is increasing rapidly because of the climate problem and the limitation of fossil fuels, technologies of alternative energy sources have been developed and the electric power network now includes renewable energy resources such as wind energy. Because of the huge advantages that wind energy has, like reduction in natural gas use, price pressure, emissions of greenhouse gases and other atmospheric pollutants, electric sector water consumption and many other contributions to the nation’s economy like job creation it has got too much attention these days from different parts of the world especially in the United States which is trying to provide 20% of the nation’s energy from wind by 2030. This study is trying to evaluate the effect of splitting wind farms on power output. We are trying to find if we can get more output by installing wind turbines in different sites rather than installing all wind turbines in one site. Five potential sites in Texas have been selected as a case study and two years wind data has been gathered for these sites. Wind data are analyzed and effect of correlation between sites on power output has been evaluated. Standard deviation and autocorrelation effect has also been considered for this study. The paper has been organized as follows: After the introduction the second section gives a brief overview of wind analysis. The third section addresses the case study and evaluates correlation between sites, auto correlation of sites and standard deviation of power output. In section four we describe the results.Keywords: auto correlation, correlation between sites, splitting wind farms, power output, standard deviation
Procedia PDF Downloads 5852714 Experimental Investigation of The Influence of Cement on Soil-Municipal Solid Waste Incineration Fly ash Mix Properties
Authors: Gehan Aouf, Diala Tabbal, Abd El Rahim Sabsabi, Rashad Aouf
Abstract:
The aim of this study is to assess the viability of utilizing Municipal Solid Waste Incineration Fly Ash (MSWIFA) with Ordinary Portland cement as soil reinforcement materials for geotechnical engineering applications. A detailed experimental program is carried out, followed by analysis of results. Soil samples were prepared by adding Cement to MSWIFA-soil mix at different percentages. Then, a series of laboratory tests were performed, namely: Sieve analysis, Atterberg limits tests, Unconfined compression test, and Proctor tests. A parametric study is conducted to investigate the effect of adding the cement at different percentages on the unconfined compression strength, maximum dry density, and optimum moisture content of clayey soil-MSWIFA The variation of contents of admixtures were 10%, 20%, and 30% for MSWIFA by dry total weight of soil and 10%, 15%, and 20% for Portland cement by dry total weight of the mix. The test results reveal that adding MSWIFA to the soil up to 20% increased the MDD of the mixture and decreased the OMC, then an opposite trend for results were found when the percentage of MSWIFA exceeds 20%. This is due to the low specific gravity of MSWIFA and to the greater water absorption of MSWIFA. The laboratory tests also indicate that the UCS values were found to be increased for all the mixtures with curing periods of 7, 14, and 28 days. It is also observed that the cement increased the strength of the finished product of the mix of soil and MSWIFA.Keywords: clayey soil, cement, MSWIFA, unconfined compression strength
Procedia PDF Downloads 1292713 Effects of Aggregate Type and Concrete Age on Compressive Strength After Subjected to Elevated Temperature
Authors: Ahmed M. Seyam, Rita Nemes
Abstract:
In this study, the influence of elevated temperature and concrete age on the compressive strength of concrete produced by normal quartz aggregate, expanded clay, expanded glass, crushed andesite and crushed clay bricks aggregates were investigated. For this purpose, six different mixtures were prepared by 100% replacement of the coarse aggregate. The specimens were cured in water for seven days, then kept in the laboratory for 120 days and 240 days. The concrete specimens were heated in an electric furnace up to 200, 400, 600, 800, and 1000 °C and kept at these temperatures for two hours heating, then for 24 hours cooling. The residual compressive strength of the specimens was measured. The results showed that, the elevated temperature induces a significant decrease in a compressive strength in both normal weight and lightweight aggregate concrete, by comparing the behavior of different mixes, in all cases, the strength of the specimens containing crushed andesite aggregates showed a better performance for compressive strength after exposure to elevated temperatures over 800 °C, while the specimens containing expanded glass showing the least residual strength after subjected to elevated temperature; moreover the age of the concrete in all mixes has also been an effective factor, the behavior of the concrete strength loss by increasing heating temperature was not changed but the strength results showing the better performance and higher compressive strength in both ambient and elevated temperature.Keywords: elevated temperature, concrete age, compressive strength, expanded clay, expanded glass, crushed andesite, crushed clay bricks
Procedia PDF Downloads 116