Search results for: nano-particles iron dope
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2301

Search results for: nano-particles iron dope

1341 Evaluation of Gasoline Engine Piston with Various Coating Materials Using Finite Element Method

Authors: Nouby Ghazaly, Gamal Fouad, Ali Abd-El-Tawwab, K. A. Abd El-Gwwad

Abstract:

The purpose of this paper is to examine the piston stress distribution using several thicknesses of the coating materials to achieve higher gasoline engine performance. First of all, finite element structure analysis is used to uncoated petrol piston made of aluminum alloy. Then, steel and cast-iron piston materials are conducted and compared with the aluminum piston. After that, investigation of four coating materials namely, yttria-stabilized zirconia, magnesia-stabilized zirconia, alumina, and mullite are studied for each piston materials. Next, influence of various thickness coating layers on the structure stresses of the top surfaces is examined. Comparison between simulated results for aluminum, steel, and cast-iron materials is reported. Moreover, the influences of different coating thickness on the Von Mises stresses of four coating materials are investigated. From the simulation results, it can report that the maximum Von Mises stresses and deformations for the piston materials are decreasing with increasing the coating thickness for magnesia-stabilized zirconia, yttria-stabilized zirconia, mullite and alumina coated materials.

Keywords: structure analysis, aluminum piston, MgZrO₃, YTZ, mullite and alumina

Procedia PDF Downloads 151
1340 Ceramic Composites and Its Applications for Pb Adsorption

Authors: C. L. Popa, S. L. Iconaru, A. Costescu, C. S. Ciobanu, M. Motelica Heino, R. Guegan, D. Predoi

Abstract:

Surface functionalization of ceramic composites with a special focus on tetraethyl orthosilicate (TEOS) and hydroxyapatite (HAp) is discoursed. Mesoporous ceramic HAp-TEOS composites were prepared by the incorporation of hydroxyapatite into tetraethyl orthosilicate by sol-gel method. The resulting samples were analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, and Raman spectroscopy and nitrogen physisorption. The removal of Pb2+ ions from aqueous solutions was evaluated using Atomic Absorbtion Spectroscopy (AAS). Removal experiments of Pb2+ ions were carried out in aqueous solutions with controlled Pb2+ at pH ~ 3 and pH ~ 5. After removal experiment of Pb2+ at pH 3 and pH 5, porous hydroxyapatite nanoparticles is transformed into PbHAp_3 and PbHAp_5 via the adsorption of Pb2+ ions followed by the cation exchange reaction. The diffraction patterns show that THAp nanoparticles were successfully coated with teos without any structural changes. On the other, the AAS analysis showed that THAp can be useful in the removal Pb2+ from water contaminated.

Keywords: teos, hydroxyapatite, environment applications, biosystems engineering

Procedia PDF Downloads 384
1339 In Vivo Assessment of Biogenically Synthesized Silver Nanoparticles

Authors: Muhammad Shahzad Tufail, Iram Liaqat

Abstract:

Silver nanoparticles (AgNPs) have wider biomedical applications due to their intensive antimicrobial activities. However, toxicity and side effects of nanomaterials like AgNPs is a subject of great controversy towards the further studies in this direction. In this study, biogenically synthesized AgNPs, previously characterized via ultraviolet (UV) visible spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR), were subjected to toxicity evaluation using mice model. Albino male mice (BALB/c) were administered with 50 mgkg-1, 100 mgkg-1 and 150 mgkg-1 of AgNPs, respectively, except for control for 30 days. Log-probit regression analysis was used to measure the dosage response to determine the median lethal dose (LD50). Exposure to AgNPs caused significant changes in the levels of serum AST (P ˂ 0.05) at the 100mgkg-1 and 150mgkg-1 of AgNPs exposure, while ALT and serum creatinine (P ˃ 0.05) levels remained normal. Histopathology of male albino mice liver and kidney was studied after 30 days experimental period. Results revealed that mice exposed to heavy dose (150 mgkg-1) of AgNPs showed cell distortion, necrosis and detachment of hepatocytes in the liver. Regarding kidney, at lower concentration, normal renal structure with normal glomeruli was observed. However, at higher concentration (150 mgkg-1), kidneys showed smooth surface and dark red colour with proliferation of podocytes. It can be concluded from present study that biologically synthesized AgNPs are small to be eliminated easily by kidney and therefore the liver and kidney did not show toxicity at low concentrations.

Keywords: silver nanoparticles, pseudomonas aeruginosa, male albino mice, toxicity assessment

Procedia PDF Downloads 79
1338 Topical Delivery of Griseofulvin via Lipid Nanoparticles

Authors: Yann Jean Tan, Hui Meng Er, Choy Sin Lee, Shew Fung Wong, Wen Huei Lim

Abstract:

Griseofulvin is a long standing fungistatic agent against dermatophytosis. Nevertheless, it has several drawbacks such as poor and highly variable bio availability, long duration of treatment, systemic side effects and drug interactions. Targeted treatment for the superficial skin infection, dermatophytosis via topical route could be beneficial. Nevertheless, griseofulvin is only available in the form of oral preparation. Hence, it generates interest in developing a topical formulation for griseofulvin, by using lipid nano particle as the vehicle. Lipid nanoparticle is a submicron colloidal carrier with a core that is solid in nature (lipid). It has combined advantages of various traditional carriers and is a promising vehicle for topical delivery. The griseofulvin loaded lipid nano particles produced using high pressure homogenization method were characterized and investigated for its skin targeting effect in vitro. It has a mean particle size of 179.8±4.9 nm with polydispersity index of 0.306±0.011. Besides, it showed higher skin permeation and better skin targeting effect compared to the griseofulvin suspension.

Keywords: lipid nanoparticles, griseofulvin, topical, dermatophytosis

Procedia PDF Downloads 458
1337 Air Classification of Dust from Steel Converter Secondary De-dusting for Zinc Enrichment

Authors: C. Lanzerstorfer

Abstract:

The off-gas from the basic oxygen furnace (BOF), where pig iron is converted into steel, is treated in the primary ventilation system. This system is in full operation only during oxygen-blowing when the BOF converter vessel is in a vertical position. When pig iron and scrap are charged into the BOF and when slag or steel are tapped, the vessel is tilted. The generated emissions during charging and tapping cannot be captured by the primary off-gas system. To capture these emissions, a secondary ventilation system is usually installed. The emissions are captured by a canopy hood installed just above the converter mouth in tilted position. The aim of this study was to investigate the dependence of Zn and other components on the particle size of BOF secondary ventilation dust. Because of the high temperature of the BOF process it can be expected that Zn will be enriched in the fine dust fractions. If Zn is enriched in the fine fractions, classification could be applied to split the dust into two size fractions with a different content of Zn. For this air classification experiments with dust from the secondary ventilation system of a BOF were performed. The results show that Zn and Pb are highly enriched in the finest dust fraction. For Cd, Cu and Sb the enrichment is less. In contrast, the non-volatile metals Al, Fe, Mn and Ti were depleted in the fine fractions. Thus, air classification could be considered for the treatment of dust from secondary BOF off-gas cleaning.

Keywords: air classification, converter dust, recycling, zinc

Procedia PDF Downloads 425
1336 Increasing the Capacity of Plant Bottlenecks by Using of Improving the Ratio of Mean Time between Failures to Mean Time to Repair

Authors: Jalal Soleimannejad, Mohammad Asadizeidabadi, Mahmoud Koorki, Mojtaba Azarpira

Abstract:

A significant percentage of production costs is the maintenance costs, and analysis of maintenance costs could to achieve greater productivity and competitiveness. With this is mind, the maintenance of machines and installations is considered as an essential part of organizational functions and applying effective strategies causes significant added value in manufacturing activities. Organizations are trying to achieve performance levels on a global scale with emphasis on creating competitive advantage by different methods consist of RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance) etc. In this study, increasing the capacity of Concentration Plant of Golgohar Iron Ore Mining & Industrial Company (GEG) was examined by using of reliability and maintainability analyses. The results of this research showed that instead of increasing the number of machines (in order to solve the bottleneck problems), the improving of reliability and maintainability would solve bottleneck problems in the best way. It should be mention that in the abovementioned study, the data set of Concentration Plant of GEG as a case study, was applied and analyzed.

Keywords: bottleneck, golgohar iron ore mining & industrial company, maintainability, maintenance costs, reliability

Procedia PDF Downloads 363
1335 Investigation the Photocatalytic Properties of Fe3O4-TiO2 Nanocomposites Prepared by Sonochemical Method

Authors: Zh. Saffari, A. Naeimi, M. S. Ekrami-Kakhki, F. Hamidi

Abstract:

Fe3O4 is one of the important magnetic oxides with spinel structure; it has exhibited unique electric and magnetic properties based on the electron transfer between Fe2+ and Fe3+ in the octahedral sites. Fe3O4 has received considerable attention in various areas such as cancer therapy, drug targeting, enzyme immobilization catalysis, magnetic cell separation, magnetic refrigeration systems and super-paramagnetic materials Fe3O4–TiO2 nanostructures were synthesized by simple, effective and new co-precipitation method assisted by ultrasonic reaction at room temperatures with organic surfactant. The effect of various parameters such as temperature, time, and power on the size and morphology of the product was investigated. Alternating gradient force magnetometer shows that Fe3O4 nanoparticles exhibit super-paramagnetic behaviour at room temperature. For preparation of nanocomposite, 1 g of TiO2 nanostructures were dispersed in 100 mL of ethanol. 0.25 g of Fe(NO3)2 and 2 mL of octanoic acid was added to the solution as a surfactant. Then, NaOH solution (1.5 M) was slowly added into the solution until the pH of the mixture was 7–8. After complete precipitation, the solution placed under the ultrasonic irradiation for 30 min. The product was centrifuged, washed with distilled water and dried in an oven at 100 °C for 3 h. The resulting red powder was calcinated at 800 °C for 3 h to remove any organic residue. The photocatalytic behaviour of Fe3O4–TiO2 nanoparticles was evaluated using the degradation of a Methyl Violet (MV) aqueous solution under ultraviolet light irradiation. As time increased, more and more MV was adsorbed on the nanoparticles catalyst, until the absorption peak vanish. The MV concentration decreased rapidly with increasing UV-irradiation time

Keywords: magnetic, methyl violet, nanocomposite, photocatalytic

Procedia PDF Downloads 255
1334 Lipid-Chitosan Hybrid Nanoparticles for Controlled Delivery of Cisplatin

Authors: Muhammad Muzamil Khan, Asadullah Madni, Nina Filipczek, Jiayi Pan, Nayab Tahir, Hassan Shah, Vladimir Torchilin

Abstract:

Lipid-polymer hybrid nanoparticles (LPHNP) are delivery systems for controlled drug delivery at tumor sites. The superior biocompatible properties of lipid and structural advantages of polymer can be obtained via this system for controlled drug delivery. In the present study, cisplatin-loaded lipid-chitosan hybrid nanoparticles were formulated by the single step ionic gelation method based on ionic interaction of positively charged chitosan and negatively charged lipid. Formulations with various chitosan to lipid ratio were investigated to obtain the optimal particle size, encapsulation efficiency, and controlled release pattern. Transmission electron microscope and dynamic light scattering analysis demonstrated a size range of 181-245 nm and a zeta potential range of 20-30 mV. Compatibility among the components and the stability of formulation were demonstrated with FTIR analysis and thermal studies, respectively. The therapeutic efficacy and cellular interaction of cisplatin-loaded LPHNP were investigated using in vitro cell-based assays in A2780/ADR ovarian carcinoma cell line. Additionally, the cisplatin loaded LPHNP exhibited a low toxicity profile in rats. The in-vivo pharmacokinetics study also proved a controlled delivery of cisplatin with enhanced mean residual time and half-life. Our studies suggested that the cisplatin-loaded LPHNP being a promising platform for controlled delivery of cisplatin in cancer therapy.

Keywords: cisplatin, lipid-polymer hybrid nanoparticle, chitosan, in vitro cell line study

Procedia PDF Downloads 130
1333 Development of a Novel Nanobiosystem for the Selective Nanophotothermolysis of Meticilin Resistant Staphyloccocous Aureus Using Anti-MRSA Antibody Functionalized Gold Nanoparticles

Authors: Lucian Mocan, Cristian Matea, Flaviu A. Tabaran, Teodora Mocan, Cornel Iancu

Abstract:

Introduction: Due to antibiotic resistance, systemic infections caused by Meticilin resistant Staphyloccocous Aureus (MRSA) are the main cause of millions of deaths each year. Development of new active biomolecules that are highly effective and refractory to antibiotic resistance may open new avenues in the field of antimicrobial therapy. In this research, we have focused on the development of a novel nanobiosystem with high affinity for MRSA microorganism to mediate its selective laser thermal ablation. Materials and Methods: Gold nanoparticles (15nm in diameter) linked to a specific antibody against MRSA surface were selectively delivered (at various concentrations and incubation times) and internalized into MRSA microorganism following the treatment these multidrug-resistant bacteria were irradiated using a 2w, 808 nm LASER. Results and Discussions: The post-irradiation necrotic rate ranged from 51.2% (for 1 mg/L) to 87.3% (for 50 mg/L) at 60 seconds (p<0.001), while at 30 minute the necrotic rate increased from 64.3% (1 mg/L) to 92.1% (50 mg/L), p value<0.001. Significantly lower apoptotic rates were obtained in irradiated MRSA treated with GNPs only (control) treated for 60 seconds and 30 minutes at concentrations ranging from 1 mg/L to 50 mg/L. We show here that the optimal LASER mediated the necrotic effect of MRSA after incubation with anti-MRSA-Ab was obtained at a concentration of 50 mg/L. Conclusion: In the presented research, we obtained a very efficacious pulse laser mode treatment of individual MRSA agents with minimal effects on the surrounding medium, providing highly localized destruction only for MRSA microorganism.

Keywords: MRSA, photothermolysis, antibiotic resistance, gold nanoparticles

Procedia PDF Downloads 438
1332 Root Cause Analysis of a Catastrophically Failed Output Pin Bush Coupling of a Raw Material Conveyor Belt

Authors: Kaushal Kishore, Suman Mukhopadhyay, Susovan Das, Manashi Adhikary, Sandip Bhattacharyya

Abstract:

In integrated steel plants, conveyor belts are widely used for transferring raw materials from one location to another. An output pin bush coupling attached with a conveyor transferring iron ore fines and fluxes failed after two years of service life. This led to an operational delay of approximately 15 hours. This study is focused on failure analysis of the coupling and recommending counter-measures to prevent any such failures in the future. Investigation consisted of careful visual observation, checking of operating parameters, stress calculation and analysis, macro and micro-fractography, material characterizations like chemical and metallurgical analysis and tensile and impact testings. The fracture occurred from an unusually sharp double step. There were multiple corrosion pits near the step that aggravated the situation. Inner contact surface of the coupling revealed differential abrasion that created a macroscopic difference in the height of the component. This pointed towards misalignment of the coupling beyond a threshold limit. In addition to these design and installation issues, material of the coupling did not meet the quality standards. These were made up of grey cast iron having graphite morphology intermediate between random distribution (Type A) and rosette pattern (Type B). This manifested as a marked reduction in impact toughness and tensile strength of the component. These findings corroborated well with the brittle mode of fracture that might have occurred during minor impact loading while loading of conveyor belt with raw materials from height. Simulated study was conducted to examine the effect of corrosion pits on tensile and impact toughness of grey cast iron. It was observed that pitting marginally reduced tensile strength and ductility. However, there was marked (up to 45%) reduction in impact toughness due to pitting. Thus, it became evident that failure of the coupling occurred due to combination of factors like inferior material, misalignment, poor step design and corrosion pitting. Recommendation for life enhancement of coupling included the use of tougher SG 500/7 grade, incorporation of proper fillet radius for the step, correction of alignment and application of corrosion resistant organic coating to prevent pitting.

Keywords: brittle fracture, cast iron, coupling, double step, pitting, simulated impact tests

Procedia PDF Downloads 133
1331 Quartz Crystal Microbalance Based Hydrophobic Nanosensor for Lysozyme Detection

Authors: F. Yılmaz, Y. Saylan, A. Derazshamshir, S. Atay, A. Denizli

Abstract:

Quartz crystal microbalance (QCM), high-resolution mass-sensing technique, measures changes in mass on oscillating quartz crystal surface by measuring changes in oscillation frequency of crystal in real time. Protein adsorption techniques via hydrophobic interaction between protein and solid support, called hydrophobic interaction chromatography (HIC), can be favorable in many cases. Some nanoparticles can be effectively applied for HIC. HIC takes advantage of the hydrophobicity of proteins by promoting its separation on the basis of hydrophobic interactions between immobilized hydrophobic ligands and nonpolar regions on the surface of the proteins. Lysozyme is found in a variety of vertebrate cells and secretions, such as spleen, milk, tears, and egg white. Its common applications are as a cell-disrupting agent for extraction of bacterial intracellular products, as an antibacterial agent in ophthalmologic preparations, as a food additive in milk products and as a drug for treatment of ulcers and infections. Lysozyme has also been used in cancer chemotherapy. The aim of this study is the synthesis of hydrophobic nanoparticles for Lysozyme detection. For this purpose, methacryoyl-L-phenylalanine was chosen as a hydrophobic matrix. The hydrophobic nanoparticles were synthesized by micro-emulsion polymerization method. Then, hydrophobic QCM nanosensor was characterized by Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM) and zeta size analysis. Hydrophobic QCM nanosensor was tested for real-time detection of Lysozyme from aqueous solution. The kinetic and affinity studies were determined by using Lysozyme solutions with different concentrations. The responses related to a mass (Δm) and frequency (Δf) shifts were used to evaluate adsorption properties.

Keywords: nanosensor, HIC, lysozyme, QCM

Procedia PDF Downloads 348
1330 Iranian Refinery Vacuum Residue Upgrading Using Microwave Irradiation: Effects of Catalyst Type and Amount

Authors: Zarrin Nasri

Abstract:

Microwave irradiation is an innovative technology in the petroleum industry. This kind of energy has been considered to convert vacuum residue of oil refineries into useful products. The advantages of microwaves energy are short time, fast heating, high energy efficiency, and precise process control. In this paper, the effects of catalyst type and amount have been investigated on upgrading of vacuum residue using microwave irradiation. The vacuum residue used in this research is from Tehran oil refinery, Iran. Additives include different catalysts, active carbon as sensitizer, and sodium borohydride as a solid hydrogen donor. Various catalysts contain iron, nickel, molybdenum disulfide, iron oxide and copper. The amount of catalysts in two cases of presence and absence of sodium borohydride have been evaluated. The objective parameters include temperature, asphaltene, viscosity, and API. The specifications of vacuum residue are API, 8.79, viscosity, 16391 cSt (60°C), asphaltene, 13.3 wt %. The results show that there is a significant difference between the effects of catalysts. Among the used catalysts, Fe powder is the best catalyst for upgrading vacuum residue using microwave irradiation and resulted in asphaltene reduction, 31.3 %; viscosity reduction, 76.43 %; and 23.43 % in API increase.

Keywords: asphaltene, microwave, upgrading, vacuum residue, viscosity

Procedia PDF Downloads 255
1329 Magnetic Cellulase/Halloysite Nanotubes as Biocatalytic System for Converting Agro-Waste into Value-Added Product

Authors: Devendra Sillu, Shekhar Agnihotri

Abstract:

The 'nano-biocatalyst' utilizes an ordered assembling of enzyme on to nanomaterial carriers to catalyze desirable biochemical kinetics and substrate selectivity. The current study describes an inter-disciplinary approach for converting agriculture waste, sugarcane bagasse into D-glucose exploiting halloysite nanotubes (HNTs) decorated cellulase enzyme as nano-biocatalytic system. Cellulase was successfully immobilized on HNTs employing polydopamine as an eco-friendly crosslinker while iron oxide nanoparticles were attached to facilitate magnetic recovery of material. The characterization studies (UV-Vis, TEM, SEM, and XRD) displayed the characteristic features of both cellulase and magnetic HNTs in the resulting nanocomposite. Various factors (i.e., working pH, temp., crosslinker conc., enzyme conc.) which may influence the activity of biocatalytic system were investigated. The experimental design was performed using Response Surface Methodology (RSM) for process optimization. Analyses data demonstrated that the nanobiocatalysts retained 80.30% activity even at elevated temperature (55°C) and excellent storage stabilities after 10 days. The repeated usage of system revealed a remarkable consistent relative activity over several cycles. The immobilized cellulase was employed to decompose agro-waste and the maximum decomposition rate of 67.2 % was achieved. Conclusively, magnetic HNTs can serve as a potential support for enzyme immobilization with long term usage, good efficacy, reusability and easy recovery from solution.

Keywords: halloysite nanotubes, enzyme immobilization, cellulase, response surface methodology, magnetic recovery

Procedia PDF Downloads 133
1328 Thermolysin Entrapment in a Gold Nanoparticles/Polymer Composite: Construction of an Efficient Biosensor for Ochratoxin a Detection

Authors: Fatma Dridi, Mouna Marrakchi, Mohammed Gargouri, Alvaro Garcia Cruz, Sergei V. Dzyadevych, Francis Vocanson, Joëlle Saulnier, Nicole Jaffrezic-Renault, Florence Lagarde

Abstract:

An original method has been successfully developed for the immobilization of thermolysin onto gold interdigitated electrodes for the detection of ochratoxin A (OTA) in olive oil samples. A mix of polyvinyl alcohol (PVA), polyethylenimine (PEI) and gold nanoparticles (AuNPs) was used. Cross-linking sensors chip was made by using a saturated glutaraldehyde (GA) vapor atmosphere in order to render the two polymers water stable. Performance of AuNPs/ (PVA/PEI) modified electrode was compared to a traditional immobilized enzymatic method using bovine serum albumin (BSA). Atomic force microscopy (AFM) experiments were employed to provide a useful insight into the structure and morphology of the immobilized thermolysin composite membranes. The enzyme immobilization method influence the topography and the texture of the deposited layer. Biosensors optimization and analytical characteristics properties were studied. Under optimal conditions AuNPs/ (PVA/PEI) modified electrode showed a higher increment in sensitivity. A 700 enhancement factor could be achieved with a detection limit of 1 nM. The newly designed OTA biosensors showed a long-term stability and good reproducibility. The relevance of the method was evaluated using commercial doped olive oil samples. No pretreatment of the sample was needed for testing and no matrix effect was observed. Recovery values were close to 100% demonstrating the suitability of the proposed method for OTA screening in olive oil.

Keywords: thermolysin, A. ochratoxin , polyvinyl alcohol, polyethylenimine, gold nanoparticles, olive oil

Procedia PDF Downloads 590
1327 Effect of Preconception Picture-Based Nutrition Education on Knowledge and Adherence to Iron-Folic Acid Supplementation Among Women Planning to Be Pregnant in Ethiopia

Authors: Anteneh Berhane Yeyi, Tefera Belachew

Abstract:

Any woman who could become pregnant is at risk of having a baby with neural tube defects (NTDs). A spontaneous aborted women with immediately preceding pregnancy may have an increased risk of develop NTDs. Ethiopia has one of the highest rates of micronutrient deficiencies, including folate and iron deficiency. Currently, in Ethiopia, NTDs is emerged as a public health concern. Even if Ethiopia, has implement different strategies for reducing maternal and neonatal mortality and morbidity, there is no room in the health care system and lack of integration for preventing the risk of NTDs for those women who aborted spontaneously and women who discontinue long acting contraception to become pregnant. The purpose of this study was to evaluate the effect of preconception picture-based nutrition education on knowledge and adherence to iron-folic acid supplement (IFAS) intake to reduce the risk of developing neural tube defects (NTDs) and iron deficiency anemia (IDA) among women who had a planned to pregnancy in Ethiopia, a country with a high burden of NTDs. Methodology: This study was conducted in Eastern Ethiopia. A double blinded parallel randomized controlled trial design was employed among women in the age group of 18-45 years who requested to interrupt modern contraceptive who have an intention to be pregnant and women with spontaneous abortion who refused to take a contraceptive. The interventional arm (n=122) received a preconception picture-based nutrition education with iron-folic acid supplement, and the control arm (n=122) received only preconception IFAS. In this study male partners were participated. Result: After three months of intervention the proportion of adherence to IFAS was 23% (n=56). With regard to adherence within the groups, 42.6% (n=52) in the intervention group and 3.3% (n=4) in the control group and the intervention group were significantly higher than in control group. In the intervention group the proportion of adherence to IFAS intake among participants increased by 40.1% and there were statistically difference (P<0.0001). The difference in difference between the two groups of adherence to IFAS intake was 37.6% and there were a statistical significance (P<0.0001). Level of knowledge between the groups did differ before and after intervention (P= 0.87 Vs P<0.0001). The overall the mean change in knowledge Mean (+SE) between group was 0.9 (+3.04 SE) and there were significant differences between two groups (P<0.001). Conclusion: In general this intervention is effective toward adherence to IFAS and a critical milestone to improve maternal health and reduce the neonate mortality due to NTDs and other advert effect of pregnancy and birth outcomes. This intervention is very short, simple, and cost effective and has potential for adaptation, feasible development to large-scale implementation in the existing health care system. Furthermore, this type of interventional approach has the potential to reduce the country's ANC program dropout rates and increase male partner’s participation on reproductive health.

Keywords: NTDs, IFAS, WRA, Ethiopia

Procedia PDF Downloads 34
1326 Preparation and Characterization of Chitosan Nanoparticles for Delivery of Oligonucleotides

Authors: Gyati Shilakari Asthana, Abhay Asthana, Dharm Veer Kohli, Suresh Prasad Vyas

Abstract:

Purpose: The therapeutic potential of oligonucleotide (ODN) is primarily dependent upon its safe and efficient delivery to specific cells overcoming degradation and maximizing cellular uptake in vivo. The present study is focused to design low molecular weight chitosan nanoconstructs to meet the requirements of safe and effectual delivery of ODNs. LMW-chitosan is a biodegradable, water soluble, biocompatible polymer and is useful as a non-viral vector for gene delivery due to its better stability in water. Methods: LMW chitosan ODN nanoparticles (CHODN NPs) were formulated by self-assembled method using various N/P ratios (moles ratio of amine groups of CH to phosphate moieties of ODNs; 0.5:1, 1:1, 3:1, 5:1, and 7:1) of CH to ODN. The developed CHODN NPs were evaluated with respect to gel retardation assay, particle size, zeta potential and cytotoxicity and transfection efficiency. Results: Complete complexation of CH/ODN was achieved at the charge ratio of 0.5:1 or above and CHODN NPs displayed resistance against DNase I. On increasing the N/P ratio of CH/ODN, the particle size of the NPs decreased whereas zeta potential (ZV) value increased. No significant toxicity was observed at all CH concentrations. The transfection efficiency was increased on increasing N/P ratio from 1:1 to 3:1, whereas it was decreased with further increment in N/P ratio upto 7:1. Maximum transfection of CHODN NPs with both the cell lines (Raw 267.4 cells and Hela cells) was achieved at N/P ratio of 3:1. The results suggest that transfection efficiency of CHODN NPs is dependent on N/P ratio. Conclusion: Thus the present study states that LMW chitosan nanoparticulate carriers would be acceptable choice to improve transfection efficiency in vitro as well as in vivo delivery of oligonucleotide.

Keywords: LMW-chitosan, chitosan nanoparticles, biocompatibility, cytotoxicity study, transfection efficiency, oligonucleotide

Procedia PDF Downloads 849
1325 Doped and Co-doped ZnO Based Nanoparticles and their Photocatalytic and Gas Sensing Property

Authors: Neha Verma, Manik Rakhra

Abstract:

Statement of the Problem: Nowadays, a tremendous increase in population and advanced industrialization augment the problems related to air and water pollutions. Growing industries promoting environmental danger, which is an alarming threat to the ecosystem. For safeguard, the environment, detection of perilous gases and release of colored wastewater is required for eutrophication pollution. Researchers around the globe are trying their best efforts to save the environment. For this remediation advanced oxidation process is used for potential applications. ZnO is an important semiconductor photocatalyst with high photocatalytic and gas sensing activities. For efficient photocatalytic and gas sensing properties, it is necessary to prepare a doped/co-doped ZnO compound to decrease the electron-hole recombination rates. However, lanthanide doped and co-doped metal oxide is seldom studied for photocatalytic and gas sensing applications. The purpose of this study is to describe the best photocatalyst for the photodegradation of dyes and gas sensing properties. Methodology & Theoretical Orientation: Economical framework has to be used for the synthesis of ZnO. In the depth literature survey, a simple combustion method is utilized for gas sensing and photocatalytic activities. Findings: Rare earth doped and co-doped ZnO nanoparticles were the best photocatalysts for photodegradation of organic dyes and different gas sensing applications by varying various factors such as pH, aging time, and different concentrations of doping and codoping metals in ZnO. Complete degradation of dye was observed only in min. Gas sensing nanodevice showed a better response and quick recovery time for doped/co-doped ZnO. Conclusion & Significance: In order to prevent air and water pollution, well crystalline ZnO nanoparticles were synthesized by rapid and economic method, which is used as photocatalyst for photodegradation of organic dyes and gas sensing applications to sense the release of hazardous gases from the environment.

Keywords: ZnO, photocatalyst, photodegradation of dye, gas sensor

Procedia PDF Downloads 155
1324 Ultrasonic Studies of Polyurea Elastomer Composites with Inorganic Nanoparticles

Authors: V. Samulionis, J. Banys, A. Sánchez-Ferrer

Abstract:

Inorganic nanoparticles are used for fabrication of various composites based on polymer materials because they exhibit a good homogeneity and solubility of the composite material. Multifunctional materials based on composites of a polymer containing inorganic nanotubes are expected to have a great impact on industrial applications in the future. An emerging family of such composites are polyurea elastomers with inorganic MoS2 nanotubes or MoSI nanowires. Polyurea elastomers are a new kind of materials with higher performance than polyurethanes. The improvement of mechanical, chemical and thermal properties is due to the presence of hydrogen bonds between the urea motives which can be erased at high temperature softening the elastomeric network. Such materials are the combination of amorphous polymers above glass transition and crosslinkers which keep the chains into a single macromolecule. Polyurea exhibits a phase separated structure with rigid urea domains (hard domains) embedded in a matrix of flexible polymer chains (soft domains). The elastic properties of polyurea can be tuned over a broad range by varying the molecular weight of the components, the relative amount of hard and soft domains, and concentration of nanoparticles. Ultrasonic methods as non-destructive techniques can be used for elastomer composites characterization. In this manner, we have studied the temperature dependencies of the longitudinal ultrasonic velocity and ultrasonic attenuation of these new polyurea elastomers and composites with inorganic nanoparticles. It was shown that in these polyurea elastomers large ultrasonic attenuation peak and corresponding velocity dispersion exists at 10 MHz frequency below room temperature and this behaviour is related to glass transition Tg of the soft segments in the polymer matrix. The relaxation parameters and Tg depend on the segmental molecular weight of the polymer chains between crosslinking points, the nature of the crosslinkers in the network and content of MoS2 nanotubes or MoSI nanowires. The increase of ultrasonic velocity in composites modified by nanoparticles has been observed, showing the reinforcement of the elastomer. In semicrystalline polyurea elastomer matrices, above glass transition, the first order phase transition from quasi-crystalline to the amorphous state has been observed. In this case, the sharp ultrasonic velocity and attenuation anomalies were observed near the transition temperature TC. Ultrasonic attenuation maximum related to glass transition was reduced in quasicrystalline polyureas indicating less influence of soft domains below TC. The first order phase transition in semicrystalline polyurea elastomer samples has large temperature hysteresis (> 10 K). The impact of inorganic MoS2 nanotubes resulted in the decrease of the first order phase transition temperature in semicrystalline composites.

Keywords: inorganic nanotubes, polyurea elastomer composites, ultrasonic velocity, ultrasonic attenuation

Procedia PDF Downloads 300
1323 Anticancer Effect of Resveratrol-Loaded Gelatin Nanoparticles in NCI-H460 Non-Small Cell Lung Carcinoma Cell Lines

Authors: N. Rajendra Prasad

Abstract:

Resveratrol (RSV), a grape phytochemical, has drawn greater attention because of its beneficial ef-fects against cancer. However, RSV has some draw-backs such as unstabilization, poor water solubility and short biological half time, which limit the utili-zation of RSV in medicine, food and pharmaceutical industries. In this study, we have encapsulated RSV in gelatin nanoparticles (GNPs) and studied its anti-cancer efficacy in NCI-H460 lung cancer cells. SEM and DLS studies have revealed that the prepared RSV-GNPs possess spherical shape with a mean diameter of 294 nm. The successful encapsulation of RSV in GNPs has been achieved by the cross-linker glutaraldehyde probably through Schiff base reaction and hydrogen bond interaction. Spectrophotometric analysis revealed that the max-imum of 93.6% of RSV has been entrapped in GNPs. In vitro drug release kinetics indicated that there was an initial burst release followed by a slow and sustained release of RSV from GNPs. The prepared RSV-GNPs exhibited very rapid and more efficient cellular uptake than free RSV. Further, RSV-GNPs treatment showed greater antiproliferative efficacy than free RSV treatment in NCI-H460 cells. It has been found that greater ROS generation, DNA damage and apoptotic incidence in RSV-GNPs treated cells than free RSV treatment. Erythrocyte aggregation assay showed that the prepared RSV-GNPs formulation elicit no toxic response. HPLC analysis revealed that RSV-GNPs was more bioavailable and had a longer half-life than free RSV. Hence, GNPs carrier system might be a promising mode for controlled delivery and for improved therapeutic index of poorly water soluble RSV.

Keywords: resveratrol, coacervation, anticancer gelatin nanoparticles, lung cancer, controlled release

Procedia PDF Downloads 447
1322 Repeatable Surface Enhanced Raman Spectroscopy Substrates from SERSitive for Wide Range of Chemical and Biological Substances

Authors: Monika Ksiezopolska-Gocalska, Pawel Albrycht, Robert Holyst

Abstract:

Surface Enhanced Raman Spectroscopy (SERS) is a technique used to analyze very low concentrations of substances in solutions, even in aqueous solutions - which is its advantage over IR. This technique can be used in the pharmacy (to check the purity of products); forensics (whether at a crime scene there were any illegal substances); or medicine (serving as a medical test) and lots more. Due to the high potential of this technique, its increasing popularity in analytical laboratories, and simultaneously - the absence of appropriate platforms enhancing the SERS signal (crucial to observe the Raman effect at low analyte concentration in solutions (1 ppm)), we decided to invent our own SERS platforms. As an enhancing layer, we have chosen gold and silver nanoparticles, because these two have the best SERS properties, and each has an affinity for the other kind of particles, which increases the range of research capabilities. The next step was to commercialize them, which resulted in the creation of the company ‘SERSitive.eu’ focusing on production of highly sensitive (Ef = 10⁵ – 10⁶), homogeneous and reproducible (70 - 80%) substrates. SERStive SERS substrates are made using the electrodeposition of silver or silver-gold nanoparticles technique. Thanks to a very detailed analysis of data based on studies optimizing such parameters as deposition time, temperature of the reaction solution, applied potential, used reducer, or reagent concentrations using a standardized compound - p-mercaptobenzoic acid (PMBA) at a concentration of 10⁻⁶ M, we have developed a high-performance process for depositing precious metal nanoparticles on the surface of ITO glass. In order to check a quality of the SERSitive platforms, we examined the wide range of the chemical compounds and the biological substances. Apart from analytes that have great affinity to the metal surfaces (e.g. PMBA) we obtained very good results for those fitting less the SERS measurements. Successfully we received intensive, and what’s more important - very repetitive spectra for; amino acids (phenyloalanine, 10⁻³ M), drugs (amphetamine, 10⁻⁴ M), designer drugs (cathinone derivatives, 10⁻³ M), medicines and ending with bacteria (Listeria, Salmonella, Escherichia coli) and fungi.

Keywords: nanoparticles, Raman spectroscopy, SERS, SERS applications, SERS substrates, SERSitive

Procedia PDF Downloads 151
1321 Silver Nanoparticles-Enhanced Luminescence Spectra of Silicon Nanocrystals

Authors: Khamael M. Abualnaja, Lidija Šiller, Benjamin R. Horrocks

Abstract:

Metal-enhanced luminescence of silicon nano crystals (SiNCs) was determined using two different particle sizes of silver nano particles (AgNPs). SiNCs have been characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photo electron spectroscopy (XPS). It is found that the SiNCs are crystalline with an average diameter of 65 nm and FCC lattice. AgNPs were synthesized using photochemical reduction of AgNO3 with sodium dodecyl sulphate (SDS). The enhanced luminescence of SiNCs by AgNPs was evaluated by confocal Raman microspectroscopy. Enhancement up to ×9 and ×3 times were observed for SiNCs that mixed with AgNPs which have an average particle size of 100 nm and 30 nm, respectively. Silver NPs-enhanced luminescence of SiNCs occurs as a result of the coupling between the excitation laser light and the plasmon bands of AgNPs; thus this intense field at AgNPs surface couples strongly to SiNCs.

Keywords: silver nanoparticles, surface enhanced raman spectroscopy (SERS), silicon nanocrystals, luminescence

Procedia PDF Downloads 421
1320 Numerical Study of Natural Convection Heat Transfer Performance in an Inclined Cavity: Nanofluid and Random Temperature

Authors: Hicham Salhi, Mohamed Si-Ameur, Nadjib Chafai

Abstract:

Natural convection of a nanofluid consisting of water and nanoparticles (Ag or TiO2) in an inclined enclosure cavity, has been studied numerically, heated by a (random temperature, based on the random function). The governing equations are solved numerically using the finite-volume. Results are presented in the form of streamlines, isotherms, and average Nusselt number. In addition, a parametric study is carried out to examine explicitly the volume fraction effects of nanoparticles (Ψ= 0.1, 0.2), the Rayleigh number (Ra=103, 104, 105, 106),the inclination angle of the cavity( égale à 0°, 30°, 45°, 90°, 135°, 180°), types of temperature (constant ,random), types of (NF) (Ag andTiO2). The results reveal that (NPs) addition remarkably enhances heat transfer in the cavity especially for (Ψ= 0.2). Besides, the effect of inclination angle and type of temperature is more pronounced at higher Rayleigh number.

Keywords: nanofluid, natural convection, inclined cavity, random temperature, finite-volume

Procedia PDF Downloads 287
1319 Relation between Electrical Properties and Application of Chitosan Nanocomposites

Authors: Evgen Prokhorov, Gabriel Luna-Barcenas

Abstract:

The polysaccharide chitosan (CS) is an attractive biopolymer for the stabilization of several nanoparticles in acidic aqueous media. This is due in part to the presence of abundant primary NH2 and OH groups which may lead to steric or chemical stabilization. Applications of most CS nanocomposites are based upon the interaction of high surface area nanoparticles (NPs) with different substance. Therefore, agglomeration of NPs leads to decreasing effective surface area such that it may decrease the efficiency of nanocomposites. The aim of this work is to measure nanocomposite’s electrical conductivity phenomena that will allow one to formulate optimal concentrations of conductivity NPs in CS-based nanocomposites. Additionally, by comparing the efficiency of such nanocomposites, one can guide applications in the biomedical (antibacterial properties and tissue regeneration) and sensor fields (detection of copper and nitrate ions in aqueous solutions). It was shown that the best antibacterial (CS-AgNPs, CS-AgNPs-carbon nanotubes) and would healing properties (CS-AuNPs) are observed in nanocomposites with concentrations of NPs near the percolation threshold. In this regard, the best detection limit in potentiometric and impedimetric sensors for detection of copper ions (using CS-AuNPs membrane) and nitrate ions (using CS-clay membrane) in aqueous solutions have been observed for membranes with concentrations of NPs near percolation threshold. It is well known that at the percolation concentration of NPs an abrupt increasing of conductivity is observed due to the presence of physical contacts between NPs; above this concentration, agglomeration of NPs takes place such that a decrease in the effective surface and performance of nanocomposite appear. The obtained relationship between electrical percolation threshold and performance of polymer nanocomposites with conductivity NPs is important for the design and optimization of polymer-based nanocomposites for different applications.

Keywords: chitosan, conductivity nanoparticles, percolation threshold, polymer nanocomposites

Procedia PDF Downloads 212
1318 Effects of Copper Oxide Nanoparticles on the Growth Performance, Antioxidant Enzymes Activity and Gut Morphology of Broiler Chickens

Authors: Mohammad Nassiri, Farhad Ahmadi

Abstract:

This research was carried out to investigate the effects of copper oxide nanoparticles (nano-CuO) on performance and gut morphology of broiler chickens. A total of 240 one-day-old male chickens (Ross-308) were randomly divided in a completely randomized design, the inclusion of 4 groups of 60 birds with 4 replicates and 15 birds in each. Experimental diets were as follow: T1 control (basal diets, without nano-CuO but contain 9.1 mg Cu/kg from CuO), T2, T3, and T4 basal diet supplementation with 30, 60, and 90 mg nano-CuO/kg, respectively. Feed intake (FI) and gain weight as weekly recorded and on d 21 feed conversion ratio (FCR) were calculated. Furthermore, at the end of the trial (21 d), four birds per treatment (one bird/replicate) randomly selected and after removed blood samples, they slaughtered and then to the analysis of gut morphological. A segment (10 cm) from the middle part of duodenum and jejunum was removed and put in the formalin 10% (pH = 7). The results revealed that nano-CuO had significantly increased body weight (P = 0.029, but feed intake (P = 0.017), and feed conversion ratio (P = 0.031) decreased in the birds that fed 90 mg nano-CuO when compared to control and the other groups. Total antioxidant capacity (P = 0.041), superoxide dismutase (P = 0.036), and glutathione peroxidase (P = 0.048) were more in the birds fed diet inclusion of 60 and 90 mg nano-CuO (T4) than other treatments. The lowest malonaldehyde (MDA) level was observed in T3 (P = 0.23) and T4 (P = 0.028) decreased (P = 0.17). The villi height and villi height to crypt depth (VH/CD ratio) numerically increased (P = 0.09) in the bird fed 90 mg nano-CuO in comparison with other treatments. According to present results, it could be concluded that dietary nano-CuO improved performance parameters and antioxidant status of broiler chickens during starter period. As well, the optimum improvement observed in the birds fed diet inclusion of 90 mg nano-CuO/kg.

Keywords: antioxidant, broilers, copper, performance, nanoparticles

Procedia PDF Downloads 571
1317 Magnetic Properties and Cytotoxicity of Ga-Mn Magnetic Ferrites Synthesized by the Citrate Sol-Gel Method

Authors: Javier Sánchez, Laura Elena De León Prado, Dora Alicia Cortés Hernández

Abstract:

Magnetic spinel ferrites are materials that possess size, magnetic properties and heating ability adequate for their potential use in biomedical applications. The Mn0.5Ga0.5Fe2O4 magnetic nanoparticles (MNPs) were synthesized by sol-gel method using citric acid as chelating agent of metallic precursors. The synthesized samples were identified by X-Ray Diffraction (XRD) as an inverse spinel structure with no secondary phases. Saturation magnetization (Ms) of crystalline powders was 45.9 emu/g, which was higher than those corresponding to GaFe2O4 (14.2 emu/g) and MnFe2O4 (40.2 emu/g) synthesized under similar conditions, while the coercivity field (Hc) was 27.9 Oe. The average particle size was 18 ± 7 nm. The heating ability of the MNPs was enough to increase the surrounding temperature up to 43.5 °C in 7 min when a quantity of 4.5 mg of MNPs per mL of liquid medium was tested. Cytotoxic effect (hemolysis assay) of MNPs was determined and the results showed hemolytic values below 1% in all tested cases. According to the results obtained, these synthesized nanoparticles can be potentially used as thermoseeds for hyperthermia therapy.

Keywords: manganese-gallium ferrite, magnetic hyperthermia, heating ability, cytotoxicity

Procedia PDF Downloads 393
1316 Synthesis and Characterization of Akermanite Nanoparticles (AMN) as a Bio-Ceramic Nano Powder by Sol-Gel Method for Use in Biomedical

Authors: Seyedmahdi Mousavihashemi

Abstract:

Natural Akermanite (NAM) has been successfully prepared by a modified sol-gel method. Optimization in calcination temperature and mechanical ball milling resulted in a pure and nano-sized powder which characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared Spectroscopy (FT–IR). We hypothesized that nano-sized Akermanite (AM) would mimic more efficiently the nanocrystal structure and function of natural bone apatite, owing to the higher surface area, compare to conventional micron-size Akermanite (AM). Accordingly, we used the unique advantage of nanotechnology to improve novel nano akermanite particles as a potential candidate for bone tissue regeneration whether as a per implant filling powder or in combination with other biomaterials as a composite scaffold. Pure Akermanite (PAM) powders were successfully obtained via a simple sol-gel method followed by calcination at 1250 °C. Mechanical grinding in a ceramic ball mill for 7 hours resulted in akermanite (AM) nanoparticles in the range of about 30- 45 nm.

Keywords: biomedical engineering, nano composite, SEM, TEM

Procedia PDF Downloads 238
1315 Correlation Studies in Nutritional Intake, Health Status and Clinical Examination of Young Adult Girls

Authors: Sonal Tuljaram Kame

Abstract:

Growth and development is based on proper diet. A balanced diet contains all the nutrients in required quantum. Although physical growth is completed by young adulthood, the body tissues remain in a dynamic state with catabolism slightly exceeding anabolism, resulting in a net decrease in the number of cells. After the years of adolescence which cause upheavals in the life of the person, the individual struggle to emerge as an adult who know who he is and what his goals are. During this period nutrients are needed for maintaining the health and energy is required for physical functions and physical activities. The nutritional requirement in young adulthood differs from other periods of life. Iron is needed for haemoglobin synthesis and necessitates by the considerable examination of blood volume. Young adult girls need to ensure adequate intake of iron as they loose 0.5 mg/day by way of menstruation. This is complete awareness about nutritional and health on the other side there is widespread ignorance about nutrition and health among young adult girls. The young adult girls who are aware about nutrition and health seem to be very conscious about nutritional intake and health. Figure consciousness and fear of obesity leads to self imposed intake of nutrients. It may result in various health problems. The study was planned to investigate nutrient intake, find relation between nutritional intake, clinical examination score and health status of young adult girls. The present study is based on the data collected from 120 young adult girls studying in four different competitive exams coaching academies in Akola city of Maharashtra. It was found that nutritional intake of these young adult girls was below the recommended level, nutritional knowledge level and nutritional intake are associated attributes, calories, calcium and protein intake is positively correlated with clinical examination and health status. It was concluded that well planned nutritional counseling for the young adult girls can help prevent nutritional deficiency diseases and disorders which may lead to anaemic condition in young adult girls. Girls need to be educated on intake of iron and vitamin B12.

Keywords: nutritional intake, health status, young adult girls, correlation studies

Procedia PDF Downloads 370
1314 Tensile Properties of Aluminum Silicon Nickel Iron Vanadium High Entropy Alloys

Authors: Sefiu A. Bello, Nasirudeen K. Raji, Jeleel A. Adebisi, Sadiq A. Raji

Abstract:

Pure metals are not used in most cases for structural applications because of their limited properties. Presently, high entropy alloys (HEAs) are emerging by mixing comparative proportions of metals with the aim of maximizing the entropy leading to enhancement in structural and mechanical properties. Aluminum Silicon Nickel Iron Vanadium (AlSiNiFeV) alloy was developed using stir cast technique and analysed. Results obtained show that the alloy grade G0 contains 44 percentage by weight (wt%) Al, 32 wt% Si, 9 wt% Ni, 4 wt% Fe, 3 wt% V and 8 wt% for minor elements with tensile strength and elongation of 106 Nmm-2 and 2.68%, respectively. X-ray diffraction confirmed intermetallic compounds having hexagonal closed packed (HCP), orthorhombic and cubic structures in cubic dendritic matrix. This affirmed transformation from the cubic structures of elemental constituents of the HEAs to the precipitated structures of the intermetallic compounds. A maximum tensile strength of 188 Nmm-2 with 4% elongation was noticed at 10wt% of silica addition to the G0. An increase in tensile strength with an increment in silica content could be attributed to different phases and crystal geometries characterizing each HEA.

Keywords: HEAs, phases model, aluminium, silicon, tensile strength, model

Procedia PDF Downloads 122
1313 Development of New Localized Surface Plasmon Resonance Interfaces Based on ITO Au NPs/ Polymer for Nickel Detection

Authors: F. Z. Tighilt, N. Belhaneche-Bensemra, S. Belhousse, S. Sam, K. Lasmi, N. Gabouze

Abstract:

Recently, the gold nanoparticles (Au NPs) became an active multidisciplinary research topic. First, Au thin films fabricated by alkylthiol-functionalized Au NPs were found to have vapor sensitive conductivities, they were hence widely investigated as electrical chemiresistors for sensing different vapor analytes and even organic molecules in aqueous solutions. Second, Au thin films were demonstrated to have speciallocalized surface plasmon resonances (LSPR), so that highly ordered 2D Au superlattices showed strong collective LSPR bands due to the near-field coupling of adjacent nanoparticles and were employed to detect biomolecular binding. Particularly when alkylthiol ligands were replaced by thiol-terminated polymers, the resulting polymer-modified Au NPs could be readily assembled into 2D nanostructures on solid substrates. Monolayers of polystyrene-coated Au NPs showed typical dipolar near-field interparticle plasmon coupling of LSPR. Such polymer-modified Au nanoparticle films have an advantage that the polymer thickness can be feasibly controlled by changing the polymer molecular weight. In this article, the effect of tin-doped indium oxide (ITO) coatings on the plasmonic properties of ITO interfaces modified with gold nanostructures (Au NSs) is investigated. The interest in developing ITO overlayers is multiple. The presence of a con-ducting ITO overlayer creates a LSPR-active interface, which can serve simultaneously as a working electrode in an electro-chemical setup. The surface of ITO/ Au NPs contains hydroxyl groups that can be used to link functional groups to the interface. Here the covalent linking of nickel /Au NSs/ITO hybrid LSPR platforms will be presented.

Keywords: conducting polymer, metal nanoparticles (NPs), LSPR, poly (3-(pyrrolyl)–carboxylic acid), polypyrrole

Procedia PDF Downloads 268
1312 Sonochemically Prepared Non-Noble Metal Oxide Catalysts for Methane Catalytic Combustion

Authors: Przemyslaw J. Jodlowski, Roman J. Jedrzejczyk, Damian K. Chlebda, Anna Dziedzicka, Lukasz Kuterasinski, Anna Gancarczyk, Maciej Sitarz

Abstract:

The aim of this study was to obtain highly active catalysts based on non-noble metal oxides supported on zirconia prepared via a sonochemical method. In this study, the influence of the stabilizers addition during the preparation step was checked. The final catalysts were characterized by using such characterization methods as X-ray Diffraction (XRD), nitrogen adsorption, X-ray fluorescence (XRF), scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and µRaman. The proposed preparation method allowed to obtain uniformly dispersed metal-oxide nanoparticles at the support’s surface. The catalytic activity of prepared catalyst samples was measured in a methane combustion reaction. The activity of the catalysts prepared by the sonochemical method was considerably higher than their counterparts prepared by the incipient wetness method.

Keywords: methane catalytic combustion, nanoparticles, non-noble metals, sonochemistry

Procedia PDF Downloads 217