Search results for: trees recognition
1313 Development of Cathode for Hybrid Zinc Ion Supercapacitor Using Secondary Marigold Floral Waste for Green Energy Application
Authors: Syali Pradhan, Neetu Jha
Abstract:
The Marigold flower is used in religious places for offering and decoration purpose every day. The flowers are discarded near trees or in aquatic bodies. This floral waste can be used for extracting dyes or oils. Still the secondary waste remains after processing which need to be addressed. This research aims to provide green and clean power using secondary floral waste available after processing. The carbonization of floral waste produce carbon material with high surface area and enhance active site for more reaction. The Hybrid supercapacitors are more stable, offer improved operating temperature and use less toxic material compared to battery. They provide enhanced energy density compared to supercapacitors. Hence, hybrid supercapacitor designed using waste material would be more practicable for future energy application. Here, we present the utilization of carbonized floral waste as supercapacitor electrode material. This material after carbonization gets graphitized and shows high surface area, optimum porosity along with high conductivity. Hence, this material has been tested as cathode electrode material for high performance zinc storage hybrid supercapacitor. High energy storage along with high stability has been obtained using this cathodic waste material as electrode.Keywords: marigold, flower waste, energy storage, cathode, supercapacitor
Procedia PDF Downloads 741312 EEG Diagnosis Based on Phase Space with Wavelet Transforms for Epilepsy Detection
Authors: Mohmmad A. Obeidat, Amjed Al Fahoum, Ayman M. Mansour
Abstract:
The recognition of an abnormal activity of the brain functionality is a vital issue. To determine the type of the abnormal activity either a brain image or brain signal are usually considered. Imaging localizes the defect within the brain area and relates this area with somebody functionalities. However, some functions may be disturbed without affecting the brain as in epilepsy. In this case, imaging may not provide the symptoms of the problem. A cheaper yet efficient approach that can be utilized to detect abnormal activity is the measurement and analysis of the electroencephalogram (EEG) signals. The main goal of this work is to come up with a new method to facilitate the classification of the abnormal and disorder activities within the brain directly using EEG signal processing, which makes it possible to be applied in an on-line monitoring system.Keywords: EEG, wavelet, epilepsy, detection
Procedia PDF Downloads 5381311 Foraging Ecology and Diet of the Philippine Spotted Flying Lizard, Draco Spilopterus (Wiegmann, 1834), in Luzon Biogeographic Region
Authors: Michael A. Tabug, Arvin C. Diesmos
Abstract:
The foraging ecology of the Philippine endemic Draco spilopterus was studied through a combination of in-situ field observations and laboratory examinations of specimens of the species. A total of four populations of the species were studied across the Luzon Biogeographic Region between June 2017 and March 2019. Of the 59 lizards captured, gut contents of 54 individuals were studied. A total of 2933 food items were sorted into seven types, such as Formicidae (ants) (96%), Araneae (spiders) (0.034%), Coleoptera (beetles) (0.579%), Hemiptera (scale insects) (0.102%), Isoptera (termites) (2.796%), Lepidoptera (larvae) (0.307%), and Diplopoda (millipede) (0.102%). Diet analysis revealed that D. spilopterus fed mainly on insect arthropods and were dominated by ants (Formicidae). Of the four populations studied, lizards consumed a relatively high proportion of ants (96%), which strongly implies that D. spilopterus is a specialist predator and a sit-and-wait active forager. The observed feeding activities of D. spilopterus also show that it is diurnal forager and actively hunts for prey from 0830 hr to 1658 hr, with decreasing activity during midday. Draco spilopterus lizards were also observed to use a wide spectrum of perch heights while foraging, regardless of the dimension of trees.Keywords: ant specialists, diet analysis, flying lizards, foraging ecology, Luzon Biogeographic Region
Procedia PDF Downloads 1641310 Evaluating Value of Users' Personal Information Based on Cost-Benefit Analysis
Authors: Jae Hyun Park, Sangmi Chai, Minkyun Kim
Abstract:
As users spend more time on the Internet, the probability of their personal information being exposed has been growing. This research has a main purpose of investigating factors and examining relationships when Internet users recognize their value of private information with a perspective of an economic asset. The study is targeted on Internet users, and the value of their private information will be converted into economic figures. Moreover, how economic value changes in relation with individual attributes, dealer’s traits, circumstantial properties will be studied. In this research, the changes in factors on private information value responding to different situations will be analyzed in an economic perspective. Additionally, this study examines the associations between users’ perceived risk and value of their personal information. By using the cost-benefit analysis framework, the hypothesis that the user’s sense in private information value can be influenced by individual attributes and situational properties will be tested. Therefore, this research will attempt to provide answers for three research objectives. First, this research will identify factors that affect value recognition of users’ personal information. Second, it provides evidences that there are differences on information system users’ economic value of information responding to personal, trade opponent, and situational attributes. Third, it investigates the impact of those attributes on individuals’ perceived risk. Based on the assumption that personal, trade opponent and situation attributes make an impact on the users’ value recognition on private information, this research will present the understandings on the different impacts of those attributes in recognizing the value of information with the economic perspective and prove the associative relationships between perceived risk and decision on the value of users’ personal information. In order to validate our research model, this research used the regression methodology. Our research results support that information breach experience and information security systems is associated with users’ perceived risk. Information control and uncertainty are also related to users’ perceived risk. Therefore, users’ perceived risk is considered as a significant factor on evaluating the value of personal information. It can be differentiated by trade opponent and situational attributes. This research presents new perspective on evaluating the value of users’ personal information in the context of perceived risk, personal, trade opponent and situational attributes. It fills the gap in the literature by providing how users’ perceived risk are associated with personal, trade opponent and situation attitudes in conducting business transactions with providing personal information. It adds to previous literature that the relationship exists between perceived risk and the value of users’ private information in the economic perspective. It also provides meaningful insights to the managers that in order to minimize the cost of information breach, managers need to recognize the value of individuals’ personal information and decide the proper amount of investments on protecting users’ online information privacy.Keywords: private information, value, users, perceived risk, online information privacy, attributes
Procedia PDF Downloads 2391309 Anthropomorphic Brand Mascot Serve as the Vehicle: To Quickly Remind Customers Who You Are and What You Stand for in Indian Cultural Context
Authors: Preeti Yadav, Dandeswar Bisoyi, Debkumar Chakrabati
Abstract:
For many years organization have been exercising a creative technique of applying brand mascots, which results in making a visual ‘ambassador’ of a brand. The goal of mascot’s is just not confined to strengthening the brand identity, improving customer perception, but also acting as a vehicle of anthropomorphic translation towards the consumer. Such that it helps in embracing the power of recognition and processing the experiences happening in our daily lives. The study examines the relationship between the specific mascot features and brand attitude. It eliminates that mascot trust is an important mediator of the mascot features on brand attitude. Anthropomorphic characters turn out to be the key players despite the application of brand mascots in today’s marketing.Keywords: advertising, mascot, branding, recall
Procedia PDF Downloads 3341308 Bridging Urban Planning and Environmental Conservation: A Regional Analysis of Northern and Central Kolkata
Authors: Tanmay Bisen, Aastha Shayla
Abstract:
This study introduces an advanced approach to tree canopy detection in urban environments and a regional analysis of Northern and Central Kolkata that delves into the intricate relationship between urban development and environmental conservation. Leveraging high-resolution drone imagery from diverse urban green spaces in Kolkata, we fine-tuned the deep forest model to enhance its precision and accuracy. Our results, characterized by an impressive Intersection over Union (IoU) score of 0.90 and a mean average precision (mAP) of 0.87, underscore the model's robustness in detecting and classifying tree crowns amidst the complexities of aerial imagery. This research not only emphasizes the importance of model customization for specific datasets but also highlights the potential of drone-based remote sensing in urban forestry studies. The study investigates the spatial distribution, density, and environmental impact of trees in Northern and Central Kolkata. The findings underscore the significance of urban green spaces in met-ropolitan cities, emphasizing the need for sustainable urban planning that integrates green infrastructure for ecological balance and human well-being.Keywords: urban greenery, advanced spatial distribution analysis, drone imagery, deep learning, tree detection
Procedia PDF Downloads 551307 Setting up a Prototype for the Artificial Interactive Reality Unified System to Transform Psychosocial Intervention in Occupational Therapy
Authors: Tsang K. L. V., Lewis L. A., Griffith S., Tucker P.
Abstract:
Background: Many children with high incidence disabilities, such as autism spectrum disorder (ASD), struggle to participate in the community in a socially acceptable manner. There are limitations for clinical settings to provide natural, real-life scenarios for them to practice the life skills needed to meet their real-life challenges. Virtual reality (VR) offers potential solutions to resolve the existing limitations faced by clinicians to create simulated natural environments for their clients to generalize the facilitated skills. Research design: The research aimed to develop a prototype of an interactive VR system to provide realistic and immersive environments for clients to practice skills. The descriptive qualitative methodology is employed to design and develop the Artificial Interactive Reality Unified System (AIRUS) prototype, which provided insights on how to use advanced VR technology to create simulated real-life social scenarios and enable users to interact with the objects and people inside the virtual environment using natural eye-gazes, hand and body movements. The eye tracking (e.g., selective or joint attention), hand- or body-tracking (e.g., repetitive stimming or fidgeting), and facial tracking (e.g., emotion recognition) functions allowed behavioral data to be captured and managed in the AIRUS architecture. Impact of project: Instead of using external controllers or sensors, hand tracking software enabled the users to interact naturally with the simulated environment using daily life behavior such as handshaking and waving to control and interact with the virtual objects and people. The AIRUS protocol offers opportunities for breakthroughs in future VR-based psychosocial assessment and intervention in occupational therapy. Implications for future projects: AI technology can allow more efficient data capturing and interpretation of object identification and human facial emotion recognition at any given moment. The data points captured can be used to pinpoint our users’ focus and where their interests lie. AI can further help advance the data interpretation system.Keywords: occupational therapy, psychosocial assessment and intervention, simulated interactive environment, virtual reality
Procedia PDF Downloads 351306 Viral Metagenomics Revealed a Novel Cardiovirus in Feces of Wild Rats
Authors: Asif Mahmood, Shama Shama, Hao Ni, Hao Wang, Yu Ling, Hui Xu, Shixing Yang, Qais Ahmad Naseer, Wen Zhang
Abstract:
Cardiovirus is a genus of viruses belonging to the family Picornaviridae. Here, we used viral metagenomic techniques to detect the viral nucleic acid in the fecal samples from wild rats in Zhenjiang city in China. Fecal samples were collected from 20 wild rats and pooled into four sample pools and then subjected to libraries construction which were then sequenced on Illumina MiSeq platform. The sequenced reads were analyzed using viral metagenomic analysis pipeline. A novel cardiovirus from feces of a wild rat was identified, named amzj-2018, of which the complete genome was acquired. Phylogenetic analysis based on the complete amino acid sequence of polyprotein revealed that amzj-2018 formed a separate branch located between clusters of Saffold virus and Rat Theilovirus 1 (RTV-1). Phylogenetic analysis based on different regions of the polyproteins, including P1, P2, P3, and P2+P3, respectively, showed discordant trees, where the tree based on P3 region indicated that amzj-2018 clustered separately between Theiler's murine encephalomyelitis virus and RTV-1. The complete genome of a cardiovirus was determined from the feces of wild rats which belonged to a novel type of cardiovirus based on phylogenetic analysis. Whether it is associated with disease needs further investigation.Keywords: cardiovirus, viral metagenomics, genomic organization, phylogenetic analysis
Procedia PDF Downloads 181305 Peptide-Based Platform for Differentiation of Antigenic Variations within Influenza Virus Subtypes (Flutype)
Authors: Henry Memczak, Marc Hovestaedt, Bernhard Ay, Sandra Saenger, Thorsten Wolff, Frank F. Bier
Abstract:
The influenza viruses cause flu epidemics every year and serious pandemics in larger time intervals. The only cost-effective protection against influenza is vaccination. Due to rapid mutation continuously new subtypes appear, what requires annual reimmunization. For a correct vaccination recommendation, the circulating influenza strains had to be detected promptly and exactly and characterized due to their antigenic properties. During the flu season 2016/17, a wrong vaccination recommendation has been given because of the great time interval between identification of the relevant influenza vaccine strains and outbreak of the flu epidemic during the following winter. Due to such recurring incidents of vaccine mismatches, there is a great need to speed up the process chain from identifying the right vaccine strains to their administration. The monitoring of subtypes as part of this process chain is carried out by national reference laboratories within the WHO Global Influenza Surveillance and Response System (GISRS). To this end, thousands of viruses from patient samples (e.g., throat smears) are isolated and analyzed each year. Currently, this analysis involves complex and time-intensive (several weeks) animal experiments to produce specific hyperimmune sera in ferrets, which are necessary for the determination of the antigen profiles of circulating virus strains. These tests also bear difficulties in standardization and reproducibility, which restricts the significance of the results. To replace this test a peptide-based assay for influenza virus subtyping from corresponding virus samples was developed. The differentiation of the viruses takes place by a set of specifically designed peptidic recognition molecules which interact differently with the different influenza virus subtypes. The differentiation of influenza subtypes is performed by pattern recognition guided by machine learning algorithms, without any animal experiments. Synthetic peptides are immobilized in multiplex format on various platforms (e.g., 96-well microtiter plate, microarray). Afterwards, the viruses are incubated and analyzed comparing different signaling mechanisms and a variety of assay conditions. Differentiation of a range of influenza subtypes, including H1N1, H3N2, H5N1, as well as fine differentiation of single strains within these subtypes is possible using the peptide-based subtyping platform. Thereby, the platform could be capable of replacing the current antigenic characterization of influenza strains using ferret hyperimmune sera.Keywords: antigenic characterization, influenza-binding peptides, influenza subtyping, influenza surveillance
Procedia PDF Downloads 1561304 Recommender Systems Using Ensemble Techniques
Authors: Yeonjeong Lee, Kyoung-jae Kim, Youngtae Kim
Abstract:
This study proposes a novel recommender system that uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user’s preference. The proposed model consists of two steps. In the first step, this study uses logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. Then, this study combines the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. In the second step, this study uses the market basket analysis to extract association rules for co-purchased products. Finally, the system selects customers who have high likelihood to purchase products in each product group and recommends proper products from same or different product groups to them through above two steps. We test the usability of the proposed system by using prototype and real-world transaction and profile data. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The results also show that the proposed system may be useful in real-world online shopping store.Keywords: product recommender system, ensemble technique, association rules, decision tree, artificial neural networks
Procedia PDF Downloads 2941303 Measuring the Biomechanical Effects of Worker Skill Level and Joystick Crane Speed on Forestry Harvesting Performance Using a Simulator
Authors: Victoria L. Chester, Usha Kuruganti
Abstract:
The forest industry is a major economic sector of Canada and also one of the most dangerous industries for workers. The use of mechanized mobile forestry harvesting machines has successfully reduced the incidence of injuries in forest workers related to manual labor. However, these machines have also created additional concerns, including a high machine operation learning curve, increased the length of the workday, repetitive strain injury, cognitive load, physical and mental fatigue, and increased postural loads due to sitting in a confined space. It is critical to obtain objective performance data for employers to develop appropriate work practices for this industry, however ergonomic field studies of this industry are lacking mainly due to the difficulties in obtaining comprehensive data while operators are cutting trees in the woods. The purpose of this study was to establish a measurement and experimental protocol to examine the effects of worker skill level and movement training speed (joystick crane speed) on harvesting performance using a forestry simulator. A custom wrist angle measurement device was developed as part of the study to monitor Euler angles during operation of the simulator. The device of the system consisted of two accelerometers, a Bluetooth module, three 3V coin cells, a microcontroller, a voltage regulator and an application software. Harvesting performance and crane data was provided by the simulator software and included tree to frame collisions, crane to tree collisions, boom tip distance, number of trees cut, etc. A pilot study of 3 operators with various skill levels was tested to identify factors that distinguish highly skilled operators from novice or intermediate operators. Dependent variables such as reaction time, math skill, past work experience, training movement speed (e.g. joystick control speeds), harvesting experience level, muscle activity, and wrist biomechanics were measured and analyzed. A 10-channel wireless surface EMG system was used to monitor the amplitude and mean frequency of 10 upper extremity muscles during pre and postperformance on the forestry harvest stimulator. The results of the pilot study showed inconsistent changes in median frequency pre-and postoperation, but there was the increase in the activity of the flexor carpi radialis, anterior deltoid and upper trapezius of both arms. The wrist sensor results indicated that wrist supination and pronation occurred more than flexion and extension with radial-ulnar rotation demonstrating the least movement. Overall, wrist angular motion increased as the crane speed increased from slow to fast. Further data collection is needed and will help industry partners determine those factors that separate skill levels of operators, identify optimal training speeds, and determine the length of training required to bring new operators to an efficient skill level effectively. In addition to effective and employment training programs, results of this work will be used for selective employee recruitment strategies to improve employee retention after training. Further, improved training procedures and knowledge of the physical and mental demands on workers will lead to highly trained and efficient personnel, reduced risk of injury, and optimal work protocols.Keywords: EMG, forestry, human factors, wrist biomechanics
Procedia PDF Downloads 1451302 Autonomous Vehicle Detection and Classification in High Resolution Satellite Imagery
Authors: Ali J. Ghandour, Houssam A. Krayem, Abedelkarim A. Jezzini
Abstract:
High-resolution satellite images and remote sensing can provide global information in a fast way compared to traditional methods of data collection. Under such high resolution, a road is not a thin line anymore. Objects such as cars and trees are easily identifiable. Automatic vehicles enumeration can be considered one of the most important applications in traffic management. In this paper, autonomous vehicle detection and classification approach in highway environment is proposed. This approach consists mainly of three stages: (i) first, a set of preprocessing operations are applied including soil, vegetation, water suppression. (ii) Then, road networks detection and delineation is implemented using built-up area index, followed by several morphological operations. This step plays an important role in increasing the overall detection accuracy since vehicles candidates are objects contained within the road networks only. (iii) Multi-level Otsu segmentation is implemented in the last stage, resulting in vehicle detection and classification, where detected vehicles are classified into cars and trucks. Accuracy assessment analysis is conducted over different study areas to show the great efficiency of the proposed method, especially in highway environment.Keywords: remote sensing, object identification, vehicle and road extraction, vehicle and road features-based classification
Procedia PDF Downloads 2311301 Factors Relating to Motivation to Change Behaviors in Individuals Who Are Overweight
Authors: Teresa Wills, Geraldine Mccarthy, Nicola Cornally
Abstract:
Background: Obesity is an emerging healthcare epidemic affecting virtually all age and socio-economic groups and is one of the most serious and prevalent diseases of the 21st century. It is a public health challenge because of its prevalence, associated costs and health effects. The increasing prevalence of obesity has created a social perception that overweight body sizes are healthy and normal. This normalization of obesity within our society and the acceptance of higher body weights have led to individuals being unaware of the reality of their weight status and gravity of this situation thus impeding recognition of obesity. Given the escalating global health problem of obesity and its co-morbidities, the need to re-appraise its management is more compelling than ever. It is widely accepted that the causes of obesity are complex and multi-factorial. Engagement of individuals in weight management programmes is difficult if they do not perceive they have a problem with their weight. Recognition of the problem is a key component of obesity management and identifying the main predictors of behaviour is key to designing health behaviour interventions. Aim: The aim of the research was to determine factors relating to motivation to change behaviours in individuals who perceive themselves to be overweight. Method: The research design was quantitative, correlational and cross-sectional. The design was guided by the Health Belief Model. Data were collected online using a multi-section and multi-item questionnaire, developed from a review of the theoretical and empirical research. A sample of 202 men and women who perceived themselves to be overweight participated in the research. Descriptive and inferential statistical analyses were employed to describe relationships between variables. Findings: Following multivariate regression analysis, perceived barriers to weight loss and perceived benefits of weight loss were significant predictors of motivation to change behaviour. The perceived barriers to weight loss which were significant were psychological barriers to weight loss (p = < 0.019) and environmental barriers to physical activity (p= < 0.032).The greatest predictor of motivation to change behaviour was the perceived benefits of weight loss (p < 0.001). Perceived susceptibility to obesity and perceived severity of obesity did not emerge as significant predictors in this model. Total variance explained by the model was 33.5%. Conclusion: Perceived barriers to weight loss and perceived benefits of weight loss are important determinants of motivation to change behaviour. These findings have important implications for health professionals to help inform their practice and for the development of intervention programmes to prevent and control obesity.Keywords: motivation to change behaviours, obesity, predictors of behavior, interventions, overweight
Procedia PDF Downloads 4141300 Review and Comparison of Associative Classification Data Mining Approaches
Authors: Suzan Wedyan
Abstract:
Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases.Keywords: associative classification, classification, data mining, learning, rule ranking, rule pruning, prediction
Procedia PDF Downloads 5371299 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments
Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard
Abstract:
With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.Keywords: activities of daily living, classification, internet of things, machine learning, prediction, smart home
Procedia PDF Downloads 3571298 Thoughts on the Informatization Technology Innovation of Cores and Samples in China
Authors: Honggang Qu, Rongmei Liu, Bin Wang, Yong Xu, Zhenji Gao
Abstract:
There is a big gap in the ability and level of the informatization technology innovation of cores and samples compared with developed countries. Under the current background of promoting the technology innovation, how to strengthen the informatization technology innovation of cores and samples for National Cores and Samples Archives, which is a national innovation research center, is an important research topic. The paper summarizes the development status of cores and samples informatization technology, and finds the gaps and deficiencies, and proposes the innovation research directions and content, including data extraction, recognition, processing, integration, application and so on, so as to provide some reference and guidance for the future innovation research of the archives and support better the geological technology innovation in China.Keywords: cores and samples;, informatization technology;, innovation;, suggestion
Procedia PDF Downloads 1261297 Using of Bimolecular Fluorescence Complementation (BiFC) Assays to Study Homo and/ or Heterodimerization of Laminin Receptor 37 LRP/ 67 LR with Galectin-3
Authors: Fulwah Alqahtani, Jafar Mahdavi, Lee Weldon, Nick Holliday, Dlawer Ala'Aldeen
Abstract:
There are two isoforms of laminin receptor; monomeric 37 kDa laminin receptor precursor (37 LRP) and mature 67 kDa laminin receptor (67 LR). The relationship between the 67 LR and its precursor 37 LRP is not completely understood, but previous observations have suggested that 37 LRP can undergo homo- and/or hetero- dimerization with Galectin-3 (Gal-3) to form mature 67 LR. Gal-3 is the only member of the chimera-type group of galectins, and has one C-terminal carbohydrate recognition domain (CRD) that is responsible for binding the ß-galactoside moieties of mono- or oligosaccharides on several host and microbial molecules. The aim of this work was to investigate homo- and hetero-dimerization among the 37 LRP and Gal-3 to form mature 67 LR in mammalian cells using bimolecular fluorescence complementation (BiFC).Keywords: 37 LRP, 67 LR, Gal-3, BiFC
Procedia PDF Downloads 5041296 Human Resource Management Practices and Employee Retention in Public Higher Learning Institutions in the Maldives
Authors: Shaheeb Abdul Azeez, Siong-Choy Chong
Abstract:
Background: Talent retention is increasingly becoming a major challenge for many industries due to the high turnover rate. Public higher learning institutions in the Maldives have a similar situation with the turnover of their employees'. This paper is to identify whether Human Resource Management (HRM) practices have any impact on employee retention in public higher learning institutions in the Maldives. Purpose: This paper aims to identify the influence of HRM practices on employee retention in public higher learning institutions in the Maldives. A total of 15 variables used in this study; 11 HRM practices as independent variables (leadership, rewards, salary, employee participation, compensation, training and development, career development, recognition, appraisal system and supervisor support); job satisfaction and motivation as mediating variables; demographic profile as moderating variable and employee retention as dependent variable. Design/Methodology/Approach: A structured self-administered questionnaire was used for data collection. A total of 300 respondents were selected as the study sample, representing the academic and administrative from public higher learning institutions using a stratified random sampling method. AMOS was used to test the hypotheses constructed. Findings: The results suggest that there is no direct effect between the independent variable and dependent variable. Also, the study concludes that no moderate effects of demographic profile between independent and dependent variables. However, the mediating effects of job satisfaction and motivation in the relationship between HRM practices and employee retention were significant. Salary had a significant influence on job satisfaction, whilst both compensation and recognition have significant influence on motivation. Job satisfaction and motivation were also found to significantly influence employee retention. Research Limitations: The study consists of many variables more time consuming for the respondents to answer the questionnaire. The study is focussed only on public higher learning institutions in the Maldives due to no participation from the private sector higher learning institutions. Therefore, the researcher is unable to identify the actual situation of the higher learning industry in the Maldives. Originality/Value: To our best knowledge, no study has been conducted using the same framework throughout the world. This study is the initial study conducted in the Maldives in this study area and can be used as a baseline for future researches. But there are few types of research conducted on the same subject throughout the world. Some of them concluded with positive findings while others with negative findings. Also, they have used 4 to 7 HRM practices as their study framework.Keywords: human resource management practices, employee retention, motivation, job satisfaction
Procedia PDF Downloads 1561295 Gender and Science: Is the Association Universal?
Authors: Neelam Kumar
Abstract:
Science is stratified, with an unequal distribution of research facilities and rewards among scientists. Gender stratification is one of the most prevalent phenomena in the world of science. In most countries gender segregation, horizontal as well as vertical, stands out in the field of science and engineering. India is no exception. This paper aims to examine: (1) gender and science associations, historical as well as contemporary, (2) women’s enrolment and gender differences in selection of academic fields, (2) women as professional researchers, (3) career path and recognition/trajectories. The paper reveals that in recent years the gender–science relationship has changed, but is not totally free from biases. Women’s enrolment into various science disciplines has shown remarkable and steady increase in most parts of the world, including India, yet they remain underrepresented in the S&T workforce, although to a lesser degree than in the past.Keywords: gender, science, universal, women
Procedia PDF Downloads 3081294 Current Environmental Accounting Disclosure Requirements and Compliance by Nigerian Oil Companies
Authors: Amina Jibrin Ahmed
Abstract:
The environment is mankind's natural habitat. Industrial activities over time have taken their toll on it in the form of deterioration and degradation. The petroleum industry is particularly notorious for its negative impact on its host environments. The realization that this poses a threat to sustainability led to the increased awareness and subsequent recognition of the importance of environmental disclosure in financial statements. This paper examines the laws and regulations put in place by the Nigerian Government to mitigate this impact, and the level of compliance by Shell Nigeria, the pioneer and largest oil company in the country. Based on the disclosure made, this paper finds there is indeed a high level of compliance by that company, and voluntary disclosure moreover.Keywords: environmental accounting, legitimacy theory, environmental impact assessment, environmental disclosure, host communities
Procedia PDF Downloads 5171293 Visual Aid and Imagery Ramification on Decision Making: An Exploratory Study Applicable in Emergency Situations
Authors: Priyanka Bharti
Abstract:
Decades ago designs were based on common sense and tradition, but after an enhancement in visualization technology and research, we are now able to comprehend the cognitive ability involved in the decoding of the visual information. However, many fields in visuals need intense research to deliver an efficient explanation for the events. Visuals are an information representation mode through images, symbols and graphics. It plays an impactful role in decision making by facilitating quick recognition, comprehension, and analysis of a situation. They enhance problem-solving capabilities by enabling the processing of more data without overloading the decision maker. As research proves that, visuals offer an improved learning environment by a factor of 400 compared to textual information. Visual information engages learners at a cognitive level and triggers the imagination, which enables the user to process the information faster (visuals are processed 60,000 times faster in the brain than text). Appropriate information, visualization, and its presentation are known to aid and intensify the decision-making process for the users. However, most literature discusses the role of visual aids in comprehension and decision making during normal conditions alone. Unlike emergencies, in a normal situation (e.g. our day to day life) users are neither exposed to stringent time constraints nor face the anxiety of survival and have sufficient time to evaluate various alternatives before making any decision. An emergency is an unexpected probably fatal real-life situation which may inflict serious ramifications on both human life and material possessions unless corrective measures are taken instantly. The situation demands the exposed user to negotiate in a dynamic and unstable scenario in the absence or lack of any preparation, but still, take swift and appropriate decisions to save life/lives or possessions. But the resulting stress and anxiety restricts cue sampling, decreases vigilance, reduces the capacity of working memory, causes premature closure in evaluating alternative options, and results in task shedding. Limited time, uncertainty, high stakes and vague goals negatively affect cognitive abilities to take appropriate decisions. More so, theory of natural decision making by experts has been understood with far more depth than that of an ordinary user. Therefore, in this study, the author aims to understand the role of visual aids in supporting rapid comprehension to take appropriate decisions during an emergency situation.Keywords: cognition, visual, decision making, graphics, recognition
Procedia PDF Downloads 2681292 Systematics of Water Lilies (Genus Nymphaea L.) Using 18S rDNA Sequences
Authors: M. Nakkuntod, S. Srinarang, K.W. Hilu
Abstract:
Water lily (Nymphaea L.) is the largest genus of Nymphaeaceae. This family is composed of six genera (Nuphar, Ondinea, Euryale, Victoria, Barclaya, Nymphaea). Its members are nearly worldwide in tropical and temperate regions. The classification of some species in Nymphaea is ambiguous due to high variation in leaf and flower parts such as leaf margin, stamen appendage. Therefore, the phylogenetic relationships based on 18S rDNA were constructed to delimit this genus. DNAs of 52 specimens belonging to water lily family were extracted using modified conventional method containing cetyltrimethyl ammonium bromide (CTAB). The results showed that the amplified fragment is about 1600 base pairs in size. After analysis, the aligned sequences presented 9.36% for variable characters comprising 2.66% of parsimonious informative sites and 6.70% of singleton sites. Moreover, there are 6 regions of 1-2 base(s) for insertion/deletion. The phylogenetic trees based on maximum parsimony and maximum likelihood with high bootstrap support indicated that genus Nymphaea was a paraphyletic group because of Ondinea, Victoria and Euryale disruption. Within genus Nymphaea, subgenus Nymphaea is a basal lineage group which cooperated with Euryale and Victoria. The other four subgenera, namely Lotos, Hydrocallis, Brachyceras and Anecphya were included the same large clade which Ondinea was placed within Anecphya clade due to geographical sharing.Keywords: nrDNA, phylogeny, taxonomy, waterlily
Procedia PDF Downloads 1431291 Use of Indian Food Mascot Design as an Advertising Tool in Maintaining and Growing the Brand Name
Authors: Preeti Yadav, Dandeswar Bisoyi, Debkumar Chakrabarti
Abstract:
Mascots provide memories to viewers, and numerous promotional campaigns with different appearances, continue to trigger viewers and capture their interest. This study investigates the effect of Indian food mascot designs and influence on enhancing communication; thereby, building long-term brand recognition by the consumers. This paper presents a descriptive approach to Indian food mascot design as an advertising tool, and its research adopts a quantitative methodology. The study confirms that mascots have an ability to communicate a message in an effective manner; all though they are simple in terms of design and fashion trend, they have the capability to build positive reactions.Keywords: food mascot, brand recognitions, advertising, humour
Procedia PDF Downloads 1761290 Neo-Liberal Challenge - Apple in China
Authors: Mark McKeown
Abstract:
Press articles opining on how China has become the West’s biggest threat have become so common as to feel like old news. Since the United States shifted diplomatic recognition from Taiwan to the People’s Republic of China in 1979 the relationship between the world’s two largest economies has been at best a brittle one. This coiled tension has grown as trade between the two countries snaked ever upwards. As a byproduct of globalization Apple have focused much of their production and assembly in China. This has left the U.S. Big Tech company with several challenges. This paper focusses on the tightrope Apple now has to traverse. The majority of the data and analysis within this paper is sourced from my current ongoing PhD research on the influence of Big Tech lobbying on U.S. foreign policy. One of the main conclusions from this analysis is Apple has to adopt a carefully nuanced strategy of appeasement to avoid friction, with both the governments of China and the United States.Keywords: apple, China, Taiwan, war
Procedia PDF Downloads 651289 Kohonen Self-Organizing Maps as a New Method for Determination of Salt Composition of Multi-Component Solutions
Authors: Sergey A. Burikov, Tatiana A. Dolenko, Kirill A. Gushchin, Sergey A. Dolenko
Abstract:
The paper presents the results of clusterization by Kohonen self-organizing maps (SOM) applied for analysis of array of Raman spectra of multi-component solutions of inorganic salts, for determination of types of salts present in the solution. It is demonstrated that use of SOM is a promising method for solution of clusterization and classification problems in spectroscopy of multi-component objects, as attributing a pattern to some cluster may be used for recognition of component composition of the object.Keywords: Kohonen self-organizing maps, clusterization, multi-component solutions, Raman spectroscopy
Procedia PDF Downloads 4431288 The Design of English Materials to Communicate the Identity of Mueang Distict, Samut Songkram for Ecotourism
Authors: Kitda Praraththajariya
Abstract:
The main purpose of this research was to study how to communicate the identity of the Mueang district, Samut Songkram province for ecotourism. The qualitative data was collected through studying related materials, exploring the area, in-depth interviews with three groups of people: three directly responsible officers who were key informants of the district, twenty foreign tourists and five Thai tourist guides. A content analysis was used to analyze the qualitative data. The two main findings of the study were as follows: 1. The identity of Amphur (District) Mueang, Samut Songkram province. This establishment was near the Mouth of Maekong River for normal people and tourists, consisting of rest accommodations. There are restaurants where food and drinks are served, rich mangrove forests, Hoy Lod (Razor Clam) and mangrove trees. Don Hoy Lod, is characterized by muddy beaches, is a coastal wetland for Ramsar Site. It is at 1099th ranging where the greatest number of Hoy Lod (Razor Clam) can be seen from March to May each year. 2. The communication of the identity of Amphur Mueang, Samut Songkram province which the researcher could find and design to present in English materials can be summed up in 4 items: 1) The history of Amphur Mueang, Samut Songkram province 2) Wat Phet Samut Worrawihan 3) The Learning source of Ecotourism: Don Hoy Lod and Mangrove forest 4) How to keep Amphur Mueang, Samut Songkram province for ecotourism.Keywords: foreigner tourists, signified, semiotics, ecotourism
Procedia PDF Downloads 2391287 Random Forest Classification for Population Segmentation
Authors: Regina Chua
Abstract:
To reduce the costs of re-fielding a large survey, a Random Forest classifier was applied to measure the accuracy of classifying individuals into their assigned segments with the fewest possible questions. Given a long survey, one needed to determine the most predictive ten or fewer questions that would accurately assign new individuals to custom segments. Furthermore, the solution needed to be quick in its classification and usable in non-Python environments. In this paper, a supervised Random Forest classifier was modeled on a dataset with 7,000 individuals, 60 questions, and 254 features. The Random Forest consisted of an iterative collection of individual decision trees that result in a predicted segment with robust precision and recall scores compared to a single tree. A random 70-30 stratified sampling for training the algorithm was used, and accuracy trade-offs at different depths for each segment were identified. Ultimately, the Random Forest classifier performed at 87% accuracy at a depth of 10 with 20 instead of 254 features and 10 instead of 60 questions. With an acceptable accuracy in prioritizing feature selection, new tools were developed for non-Python environments: a worksheet with a formulaic version of the algorithm and an embedded function to predict the segment of an individual in real-time. Random Forest was determined to be an optimal classification model by its feature selection, performance, processing speed, and flexible application in other environments.Keywords: machine learning, supervised learning, data science, random forest, classification, prediction, predictive modeling
Procedia PDF Downloads 941286 Emotion Detection in a General Human-Robot Interaction System Optimized for Embedded Platforms
Authors: Julio Vega
Abstract:
Expression recognition is a field of Artificial Intelligence whose main objectives are to recognize basic forms of affective expression that appear on people’s faces and contributing to behavioral studies. In this work, a ROS node has been developed that, based on Deep Learning techniques, is capable of detecting the facial expressions of the people that appear in the image. These algorithms were optimized so that they can be executed in real time on an embedded platform. The experiments were carried out in a PC with a USB camera and in a Raspberry Pi 4 with a PiCamera. The final results shows a plausible system, which is capable to work in real time even in an embedded platform.Keywords: python, low-cost, raspberry pi, emotion detection, human-robot interaction, ROS node
Procedia PDF Downloads 1291285 Obstacle Detection and Path Tracking Application for Disables
Authors: Aliya Ashraf, Mehreen Sirshar, Fatima Akhtar, Farwa Kazmi, Jawaria Wazir
Abstract:
Vision, the basis for performing navigational tasks, is absent or greatly reduced in visually impaired people due to which they face many hurdles. For increasing the navigational capabilities of visually impaired people a desktop application ODAPTA is presented in this paper. The application uses camera to capture video from surroundings, apply various image processing algorithms to get information about path and obstacles, tracks them and delivers that information to user through voice commands. Experimental results show that the application works effectively for straight paths in daylight.Keywords: visually impaired, ODAPTA, Region of Interest (ROI), driver fatigue, face detection, expression recognition, CCD camera, artificial intelligence
Procedia PDF Downloads 5491284 Evaluation of Cognitive Benefits among Differently Abled Subjects with Video Game as Intervention
Authors: H. Nagendra, Vinod Kumar, S. Mukherjee
Abstract:
In this study, the potential benefits of playing action video game among congenitally deaf and dumb subjects is reported in terms of EEG ratio indices. The frontal and occipital lobes are associated with development of motor skills, cognition, and visual information processing and color recognition. The sixteen hours of First-Person shooter action video game play resulted in the increase of the ratios β/(α+θ) and β/θ in frontal and occipital lobes. This can be attributed to the enhancement of certain aspect of cognition among deaf and dumb subjects.Keywords: cognitive enhancement, video games, EEG band powers, deaf and dumb subjects
Procedia PDF Downloads 436