Search results for: protein malnutrition
1573 The Application of Karonda Friuts (Carissa carandas Linn.) for Ice Cream-Making
Authors: A. Pornpitakdumrong
Abstract:
The aim of this research study was to develop recipe of Karanda ice cream as healthy promoting ice cream by high protein, low fat and naturally raw material, which found in local area. The results were found that appropriate condition for Karanda ice cream including incubation period, temperature and frozen time, which were 8-12 hours, -20 to -25 °C and 2-4 hours, respectively. Small fruit variety Karanda should selected only ripe fruits for Karanda ice cream made. Because of unripe fruits were contained resin and need to be air dried for reducing level of resin. Therefore, large fruit variety Karanda can be use both ripe and unripe fruits for Karanda ice cream made by without any astringent and bitter taste. However, small fruit variety Karanda was proper to made ice cream for trade, because occurring of industry to select the ripe fruits and commercially frozen, which be providing for the whole year compared with large variety fruits were rarely, low harvesting amount and short shelf life. Karanda ice cream produced from flesh part was attractive but was not accepted by consumers. It may due to resin contained with Karanda pulp, which led to be rough texture of ice cream. We were choose only Karanda juice, which was more appropriated and used Karanda juice with water by 1:1 ratio, because undiluted juice was sour taste. Most acceptance recipe of karanda ice cream product was sixth recipe by 91% of consumers, which was contained soy protein to made ice cream was delicate and swell, milk powder (little amount) to made ice cream was greasy, corn powder as stabilizer and undiluted coconut milk (little amount) to improve ice cream odor and similar to apricot odor.Keywords: karonda fruits, Carissa carandas Linn, ice cream, healthy ice cream
Procedia PDF Downloads 4111572 Effect of Different Levels of Fibrolytic Enzyme on Feed Digestibility and Production Performance in Lactating Dairy Cows
Authors: Hazrat Salman Sidique, Muhammad Tahir Khan, Haq Aman Ullah, Muhammad Mobashar, Muhammad Ishtiaq Sohail Mehmood
Abstract:
The poor quality conventional feed for the livestock production in Pakistan are wheat straw, tops of sugar cane and tree leaves. To enhance the nutritive value of feed, this study focused on investigating the effects of fibrolytic enzyme (Fibrozyme®, Alltech Inc. Company, USA) at different levels i.e. 0, 5, 10, and 15g/kg of total mix ration on feed intake, digestibility, milk yield and composition, and economics of the ration in Holstein Friesians cows. Twelve Holstein Friesians cows of almost the same age, and lactation stage were randomly allocated into 4 equal groups i.e. A, B, C, and D. Four experimental rations supplemented with Fibrozyme® 0g, 5g, 10g, and 15g/Kg of total mix ration were assigned to these sets correspondingly. The dry matter intake was linearly and significantly (P<0.05) improved. A significant effect of Fibrozyme® was observed for organic matter digestibility, ether extract digestibility, crude fiber digestibility, nitrogen free extract digestibility, and acid detergent fiber digestibility while the results were statistically non-significant for crude protein digestibility, neutral detergent fiber digestibility, and ash digestibility. Milk yield and composition except fat were significantly (P<0.05) increased in all Fibrozyme® treated groups. This study concludes that supplementation of Fibrozyme® at the rate of 15g/Kg total mix ration improved the dry matter intake, nutrients digestibility, and milk production and constituents like protein, lactose, and solid not fat. Therefore, treatment of total mix ration with Fibrozyme® was desirably reasonable and profitable.Keywords: digestibility, fibrozyme, TMR, digestibility, lactating cow
Procedia PDF Downloads 1121571 Comprehensive Analysis of RNA m5C Regulator ALYREF as a Suppressive Factor of Anti-tumor Immune and a Potential Tumor Prognostic Marker in Pan-Cancer
Authors: Yujie Yuan, Yiyang Fan, Hong Fan
Abstract:
Objective: The RNA methylation recognition protein Aly/REF export factor (ALYREF) is considered one type of “reader” protein acting as a recognition protein of m5C, has been reported involved in several biological progresses including cancer initiation and progression. 5-methylcytosine (m5C) is a conserved and prevalent RNA modification in all species, as accumulating evidence suggests its role in the promotion of tumorigenesis. It has been claimed that ALYREF mediates nuclear export of mRNA with m5C modification and regulates biological effects of cancer cells. However, the systematical regulatory pathways of ALYREF in cancer tissues have not been clarified, yet. Methods: The expression level of ALYREF in pan-cancer and their normal tissues was compared through the data acquired from The Cancer Genome Atlas (TCGA). The University of Alabama at Birmingham Cancer data analysis Portal UALCAN was used to analyze the relationship between ALYREF and clinical pathological features. The relationship between the expression level of ALYREF and prognosis of pan-cancer, and the correlation genes of ALYREF were figured out by using Gene Expression Correlation Analysis database GEPIA. Immune related genes were obtained from TISIDB (an integrated repository portal for tumor-immune system interactions). Immune-related research was conducted by using Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) and TIMER. Results: Based on the data acquired from TCGA, ALYREF has an obviously higher-level expression in various types of cancers compared with relevant normal tissues excluding thyroid carcinoma and kidney chromophobe. The immunohistochemical images on The Human Protein Atlas showed that ALYREF can be detected in cytoplasm, membrane, but mainly located in nuclear. In addition, a higher expression level of ALYREF in tumor tissue generates a poor prognosis in majority of cancers. According to the above results, cancers with a higher expression level of ALYREF compared with normal tissues and a significant correlation between ALYREF and prognosis were selected for further analysis. By using TISIDB, we found that portion of ALYREF co-expression genes (such as BIRC5, H2AFZ, CCDC137, TK1, and PPM1G) with high Pearson correlation coefficient (PCC) were involved in anti-tumor immunity or affect resistance or sensitivity to T cell-mediated killing. Furthermore, based on the results acquired from GEPIA, there was significant correlation between ALYREF and PD-L1. It was exposed that there is a negative correlation between the expression level of ALYREF and ESTIMATE score. Conclusion: The present study indicated that ALYREF plays a vital and universal role in cancer initiation and progression of pan-cancer through regulating mitotic progression, DNA synthesis and metabolic process, and RNA processing. The correlation between ALYREF and PD-L1 implied ALYREF may affect the therapeutic effect of immunotherapy of tumor. More evidence revealed that ALYREF may play an important role in tumor immunomodulation. The correlation between ALYREF and immune cell infiltration level indicated that ALYREF can be a potential therapeutic target. Exploring the regulatory mechanism of ALYREF in tumor tissues may expose the reason for poor efficacy of immunotherapy and offer more directions of tumor treatment.Keywords: ALYREF, pan-cancer, immunotherapy, PD-L1
Procedia PDF Downloads 711570 Polymeric Microspheres for Bone Tissue Engineering
Authors: Yamina Boukari, Nashiru Billa, Andrew Morris, Stephen Doughty, Kevin Shakesheff
Abstract:
Poly (lactic-co-glycolic) acid (PLGA) is a synthetic polymer that can be used in bone tissue engineering with the aim of creating a scaffold in order to support the growth of cells. The formation of microspheres from this polymer is an attractive strategy that would allow for the development of an injectable system, hence avoiding invasive surgical procedures. The aim of this study was to develop a microsphere delivery system for use as an injectable scaffold in bone tissue engineering and evaluate various formulation parameters on its properties. Porous and lysozyme-containing PLGA microspheres were prepared using the double emulsion solvent evaporation method from various molecular weights (MW). Scaffolds were formed by sintering to contain 1 -3mg of lysozyme per gram of scaffold. The mechanical and physical properties of the scaffolds were assessed along with the release of lysozyme, which was used as a model protein. The MW of PLGA was found to have an influence on microsphere size during fabrication, with increased MW leading to an increased microsphere diameter. An inversely proportional relationship was displayed between PLGA MW and mechanical strength of formed scaffolds across loadings for low, intermediate and high MW respectively. Lysozyme release from both microspheres and formed scaffolds showed an initial burst release phase, with both microspheres and scaffolds fabricated using high MW PLGA showing the lowest protein release. Following the initial burst phase, the profiles for each MW followed a similar slow release over 30 days. Overall, the results of this study demonstrate that lysozyme can be successfully incorporated into porous PLGA scaffolds and released over 30 days in vitro, and that varying the MW of the PLGA can be used as a method of altering the physical properties of the resulting scaffolds.Keywords: bone, microspheres, PLGA, tissue engineering
Procedia PDF Downloads 4251569 Double Fortified Salt-An Effective Measure to Prevent Micronutrient Deficiencies in Indian Pregnant Women
Authors: Kejal Joshi Reddy, Sirimavo Nair
Abstract:
Micronutrient malnutrition affects pregnant women and children extremely with reference to growth manifestations in gestation as well as after birth. Early fetal development affected by iodine and iron deficiency leads to poor life quality. Various researchers have found interesting interrelations between iron and iodine. A few studies on impact assessment of DFS supplementation during pregnancy have been reported in India. Aim To provide meaningful contribution by assessing the efficacy of DFS supplementation on iodine and iron status of pregnant women. Design An interventional study. Setting A semi government hospital of urban Vadodara. Subjects Pregnant women (n=150) enrolled during first trimester (< 12 weeks) and followed up till the end of gestation, n=75 were divided in experimental (DFS supplemented) and control (Non supplemented) group. Results Impact on iron and iodine status was assessed by Hb concentration and UIE respectively. Mean Hb improved significantly (p < 0.001) (+0.42 g/dl) in experimental group and reduced non significantly (-0.20 g/dl) in control group at the end, since DFS provided additional 93 mg of iron within 6 months. Median UIE improved non significantly (278.6 to 299.01µg/L) in experimental group and decreased significantly (p < 0.05) (376.59 to 288.66 µg/L) in control group. Conclusion DFS could improve iron and iodine status of experimental group compared to control group. It is an effective measure to control two essential micronutrient deficiencies together.Keywords: DFS supplementation, anemia, pregnancy, iodine deficiency, iron
Procedia PDF Downloads 4701568 Genomic and Proteomic Variability in Glycine Max Genotypes in Response to Salt Stress
Authors: Faheema Khan
Abstract:
To investigate the ability of sensitive and tolerant genotype of Glycine max to adapt to a saline environment in a field, we examined the growth performance, water relation and activities of antioxidant enzymes in relation to photosynthetic rate, chlorophyll a fluorescence, photosynthetic pigment concentration, protein and proline in plants exposed to salt stress. Ten soybean genotypes (Pusa-20, Pusa-40, Pusa-37, Pusa-16, Pusa-24, Pusa-22, BRAGG, PK-416, PK-1042, and DS-9712) were selected and grown hydroponically. After 3 days of proper germination, the seedlings were transferred to Hoagland’s solution (Hoagland and Arnon 1950). The growth chamber was maintained at a photosynthetic photon flux density of 430 μmol m−2 s−1, 14 h of light, 10 h of dark and a relative humidity of 60%. The nutrient solution was bubbled with sterile air and changed on alternate days. Ten-day-old seedlings were given seven levels of salt in the form of NaCl viz., T1 = 0 mM NaCl, T2=25 mM NaCl, T3=50 mM NaCl, T4=75 mM NaCl, T5=100 mM NaCl, T6=125 mM NaCl, T7=150 mM NaCl. The investigation showed that genotype Pusa-24, PK-416 and Pusa-20 appeared to be the most salt-sensitive. genotypes as inferred from their significantly reduced length, fresh weight and dry weight in response to the NaCl exposure. Pusa-37 appeared to be the most tolerant genotype since no significant effect of NaCl treatment on growth was found. We observed a greater decline in the photosynthetic variables like photosynthetic rate, chlorophyll fluorescence and chlorophyll content, in salt-sensitive (Pusa-24) genotype than in salt-tolerant Pusa-37 under high salinity. Numerous primers were verified on ten soybean genotypes obtained from Operon technologies among which 30 RAPD primers shown high polymorphism and genetic variation. The Jaccard’s similarity coefficient values for each pairwise comparison between cultivars were calculated and similarity coefficient matrix was constructed. The closer varieties in the cluster behaved similar in their response to salinity tolerance. Intra-clustering within the two clusters precisely grouped the 10 genotypes in sub-cluster as expected from their physiological findings.Salt tolerant genotype Pusa-37, was further analysed by 2-Dimensional gel electrophoresis to analyse the differential expression of proteins at high salt stress. In the Present study, 173 protein spots were identified. Of these, 40 proteins responsive to salinity were either up- or down-regulated in Pusa-37. Proteomic analysis in salt-tolerant genotype (Pusa-37) led to the detection of proteins involved in a variety of biological processes, such as protein synthesis (12 %), redox regulation (19 %), primary and secondary metabolism (25 %), or disease- and defence-related processes (32 %). In conclusion, the soybean plants in our study responded to salt stress by changing their protein expression pattern. The photosynthetic, biochemical and molecular study showed that there is variability in salt tolerance behaviour in soybean genotypes. Pusa-24 is the salt-sensitive and Pusa-37 is the salt-tolerant genotype. Moreover this study gives new insights into the salt-stress response in soybean and demonstrates the power of genomic and proteomic approach in plant biology studies which finally could help us in identifying the possible regulatory switches (gene/s) controlling the salt tolerant genotype of the crop plants and their possible role in defence mechanism.Keywords: glycine max, salt stress, RAPD, genomic and proteomic variability
Procedia PDF Downloads 4231567 Insecurity as a Challenge to Nutritional Status of Children and Mothers in Dansadau, Maru Local Government Area Zamfara State, North Western Nigeria
Authors: Mohammed Hussaini
Abstract:
This paper discusses insecurity as a challenge to the nutritional Status of children and mothers in Dansadau, Maru Local Government area of Zamfara state, Northwestern Nigeria. A Descriptive survey design was used in the study. Objectives of the study were formulated to guide the study. 20 Health workers and 100 mothers were used as population of the study; the instrument validation for data collection was interview. The interview structure was validated by 3 experts, the data collected was analyzed and presented using descriptive standard score (Z-score). The study revealed that, Nutritional Status of children and mothers in Northwest Nigeria specifically Zamfara state is low. This mostly affect children and mother as a result of serious insecurity challenge in the region, consisting of banditry and kidnapping, killing of farmers, destruction of farmland, burning of farm products. The study recommended that the focus is on implementing strong communication strategies to enhance short-term relief initiatives, both governmental and non-governmental organizations should actively play a role in initiating lasting change, especially when tackling issues of insecurity and effectively addressing the rise of armed banditry and other security concerns requires a sophisticated and nuanced strategy.Keywords: insecurity, malnutrition, children, mothers
Procedia PDF Downloads 551566 Modulation of Tamoxifen-Induced Cytotoxicity in Breast Cancer Cell Lines by 3-Bromopyruvate
Authors: Yasmin M. Attia, Hanan S. El-Abhar, Mahmoud M. Al Marzabani, Samia A. Shouman
Abstract:
Background: Tamoxifen (TAM) is the most commonly used hormone therapy for the treatment of early and metastatic breast cancer. Although it significantly decreases the tumor recurrence rate and provides an overall benefit, as much as 20–30% of women still relapse during or after long-term therapy. 3-Bromopyruvate (3-BP) is a promising agent with impressive antitumor effects in several models of animal tumors and cell lines. Aim: This study was designed to investigate the combined effect of (TAM) and (3-BP) in breast cancer cells and to explore their molecular interaction via assessment of apoptotic, angiogenic, and metastatic markers. Methods: In vitro cytotoxicity study was carried out for both compounds to determine the combination regimen producing a synergistic effect and mechanistic pathways were studied using RT-PCR and western techniques. Moreover, the anti-oncolytic and anti-angiogenic potentials were assessed in mice bearing solid Ehrlich carcinoma (SEC). Results: The combined treatment significantly increased the expressions and protein levels of caspase 7, 9, and 3 and decreased of angiogenic markers VEGF, HIF-1α, and HK2 compared to cells treated with either drug individually. However, there were no significant changes in MMP-2 and MMP-9 protein levels. Interestingly, the in vivo results supported the in vitro findings; there was a decrease in the tumor volume and VEFG using immunohistochemistry in the combination-treated groups compared to either TAM or 3-BP treated one. Conclusion: 3-BP synergizes the cytotoxic effect of TAM by increasing apoptosis and decreasing angiogenesis which makes this combination a promising regimen to be applied clinically.Keywords: tamoxifen, 3-bromopyruvate, breast cancer, cytotoxicity, angiogenesis
Procedia PDF Downloads 2271565 Computational Insights Into Allosteric Regulation of Lyn Protein Kinase: Structural Dynamics and Impacts of Cancer-Related Mutations
Authors: Mina Rabipour, Elena Pallaske, Floyd Hassenrück, Rocio Rebollido-Rios
Abstract:
Protein tyrosine kinases, including Lyn kinase of the Src family kinases (SFK), regulate cell proliferation, survival, and differentiation. Lyn kinase has been implicated in various cancers, positioning it as a promising therapeutic target. However, the conserved ATP-binding pocket across SFKs makes developing selective inhibitors challenging. This study aims to address this limitation by exploring the potential for allosteric modulation of Lyn kinase, focusing on how its structural dynamics and specific oncogenic mutations impact its conformation and function. To achieve this, we combined homology modeling, molecular dynamics simulations, and data science techniques to conduct microsecond-length simulations. Our approach allowed a detailed investigation into the interplay between Lyn’s catalytic and regulatory domains, identifying key conformational states involved in allosteric regulation. Additionally, we evaluated the structural effects of Dasatinib, a competitive inhibitor, and ATP binding on Lyn active conformation. Notably, our simulations show that cancer-related mutations, specifically I364L/N and E290D/K, shift Lyn toward an inactive conformation, contrasting with the active state of the wild-type protein. This may suggest how these mutations contribute to aberrant signaling in cancer cells. We conducted a dynamical network analysis to assess residue-residue interactions and the impact of mutations on the Lyn intramolecular network. This revealed significant disruptions due to mutations, especially in regions distant from the ATP-binding site. These disruptions suggest potential allosteric sites as therapeutic targets, offering an alternative strategy for Lyn inhibition with higher specificity and fewer off-target effects compared to ATP-competitive inhibitors. Our findings provide insights into Lyn kinase regulation and highlight allosteric sites as avenues for selective drug development. Targeting these sites may modulate Lyn activity in cancer cells, reducing toxicity and improving outcomes. Furthermore, our computational strategy offers a scalable approach for analyzing other SFK members or kinases with similar properties, facilitating the discovery of selective allosteric modulators and contributing to precise cancer therapies.Keywords: lyn tyrosine kinase, mutation analysis, conformational changes, dynamic network analysis, allosteric modulation, targeted inhibition
Procedia PDF Downloads 171564 Cancer Stem Cell-Associated Serum Proteins Obtained by Maldi TOF/TOF Mass Spectrometry in Women with Triple-Negative Breast Cancer
Authors: Javier Enciso-Benavides, Fredy Fabian, Carlos Castaneda, Luis Alfaro, Alex Choque, Aparicio Aguilar, Javier Enciso
Abstract:
Background: The use of biomarkers in breast cancer diagnosis, therapy, and prognosis has gained increasing interest. Cancer stem cells (CSCs) are a subpopulation of tumor cells that can drive tumor initiation and may cause relapse. Therefore, due to the importance of diagnosis, therapy, and prognosis, several biomarkers that characterize CSCs have been identified; however, in treatment-naïve triple-negative breast tumors, there is an urgent need to identify new biomarkers and therapeutic targets. According to this, the aim of this study was to identify serum proteins associated with cancer stem cells and pluripotency in women with triple-negative breast tumors in order to subsequently identify a biomarker for this type of breast tumor. Material and Methods: Whole blood samples from 12 women with histopathologically diagnosed triple-negative breast tumors were used after obtaining informed consent from the patient. Blood serum was obtained by conventional procedure and frozen at -80ºC. Identification of cancer stem cell-associated proteins was performed by matrix-assisted laser desorption/ionisation-assisted laser desorption/ionisation mass spectrometry (MALDI-TOF MS), protein analysis was obtained using the AB Sciex TOF/TOF™ 5800 system (AB Sciex, USA). Sequences not aligned by ProteinPilot™ software were analyzed by Protein BLAST. Results: The following proteins related to pluripotency and cancer stem cells were identified by MALDI TOF/TOF mass spectrometry: A-chain, Serpin A12 [Homo sapiens], AIEBP [Homo sapiens], Alpha-one antitrypsin, AT {internal fragment} [human, partial peptide, 20 aa] [Homo sapiens], collagen alpha 1 chain precursor variant [Homo sapiens], retinoblastoma-associated protein variant [Homo sapiens], insulin receptor, CRA_c isoform [Homo sapiens], Hydroxyisourate hydrolase [Streptomyces scopuliridis], MUCIN-6 [Macaca mulatta], Alpha-actinin-3 [Chrysochloris asiatica], Polyprotein M, CRA_d isoform, partial [Homo sapiens], Transcription factor SOX-12 [Homo sapiens]. Recommendations: The serum proteins identified in this study should be investigated in the exosome of triple-negative breast cancer stem cells and in the blood serum of women without breast cancer. Subsequently, proteins found only in the blood serum of women with triple-negative breast cancer should be identified in situ in triple-negative breast cancer tissue in order to identify a biomarker to study the evolution of this type of cancer, or that could be a therapeutic target. Conclusions: Eleven cancer stem cell-related serum proteins were identified in 12 women with triple-negative breast cancer, of which MUCIN-6, retinoblastoma-associated protein variant, transcription factor SOX-12, and collagen alpha 1 chain are the most representative and have not been studied so far in this type of breast tumor. Acknowledgement: This work was supported by Proyecto CONCYTEC–Banco Mundial “Mejoramiento y Ampliacion de los Servicios del Sistema Nacional de Ciencia Tecnología e Innovacion Tecnologica” 8682-PE (104-2018-FONDECYT-BM-IADT-AV).Keywords: triple-negative breast cancer, MALDI TOF/TOF MS, serum proteins, cancer stem cells
Procedia PDF Downloads 2161563 Shielding Engineered Islets with Mesenchymal Stem Cells Enhance Survival under Hypoxia by Inhibiting p38 MAPK
Authors: Bhawna Chandravanshi, Ramesh Bhonde
Abstract:
In the present study, we focused on the improvisation of islet survival in hypoxia. The Islet-like cell aggregates (ICAs) derived from Wharton's jelly mesenchymal stem cells (WJ-MSC) were cultured with and without WJ-MSC for 48h in hypoxia and normoxia and tested for their direct trophic effect on β cell survival. The WJ MSCs themselves secreted insulin upon glucose challenge and expressed the pancreatic markers at both transcription and translational level (C-peptide, Insulin, Glucagon and Glut 2). Direct contact of MSCs with ICAs facilitate the highest viability under hypoxia as evidenced by fluorescein diacetate/propidium iodide and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cytokine analysis of the co-cultured ICAs revealed amplification of anti-inflammatory cytokine-like TGFβ and TNFα accompanied by depletion of pro-inflammatory cytokines. The increment in VEGF and PDGFa was also seen showing their ability to vascularize upon transplantation. This was further accompanied by reduction in total reactive oxygen species, nitric oxide, and super oxide ions and down-regulation of Caspase3, Caspase8, p53 and up regulation of Bcl2 confirming prevention of apoptosis in ICAs. There was a significant reduction in the expression of p38 protein in the presence of MSCs making the ICAs responsive to glucose. Taken together our data demonstrate for the first time that the WJ-MSC expressed pancreatic markers and their supplementation protected engineered islets against hypoxia, oxidative stress, and inflammatory cytokines by inhibiting p38 MAPK protein.Keywords: hypoxia, islet-like cell aggregates, inflammatory cytokines, oxidative stress
Procedia PDF Downloads 2631562 Impact of Cd and Pb Impregnation on the Health of an Adult Population Neighbouring a Landfill
Authors: M. Cabral, A. Verdin, G. Garçon, A. Touré, C. Diop, M. Fall, S. Bouhsina, D. Dewaele, F.Cazier, A. Tall Dia, P. Shirali, A. Diouf
Abstract:
This case-control study dealt with the health adverse effects within the population neighboring the Mbeubeuss waste dump, which is located near the district of Malika (Diamalaye II) in Dakar (Senegal). All the household and industrial waste arising from Dakar are stored in this open landfill without being covered and are therefore possible sources of Pb and Cd contaminated air emissions and lixiviates. The objective of this study is part of improving the health of the population neighboring Mbeubeuss by determining Pb and Cd concentrations both in environment and humans, and studying possible renal function alterations within the adults. Soil and air samples were collected in the control site (Darou Salam) and the waste dump neighboring site (Diamalaye II). Control and exposed adults were recruited as living in Darou Salam (n = 52) and in Diamalaye II (n = 77). Pb and Cd concentrations in soil, air and biological samples were determined. Moreover, we were interested in analyzing some impregnation (zinc protoporphyrin, d-aminolevulinic acid dehydratase) and oxidative stress biomarkers (malonedialdehyde, gluthatione status), in addition to several nephrotoxicity parameters (creatinuria, proteinuria, lactate dehydrogenase, CC16 protein, glutathione S-transferase-alpha and retinol binding protein) in blood and/or urine. The results showed the significant Pb and Cd contamination of the soil and air samples derived from the landfill, and therefore of the neighboring population of adults. This critical exposure to environmental Pb and Cd had some harmful consequences for their health, as shown by the reported oxidative stress and nephrotoxicity signs.Keywords: Pb and Cd environmental exposure, impregnation markers, landfill, nephrotoxicity markers
Procedia PDF Downloads 4441561 Folding of β-Structures via the Polarized Structure-Specific Backbone Charge (PSBC) Model
Authors: Yew Mun Yip, Dawei Zhang
Abstract:
Proteins are the biological machinery that executes specific vital functions in every cell of the human body by folding into their 3D structures. When a protein misfolds from its native structure, the machinery will malfunction and lead to misfolding diseases. Although in vitro experiments are able to conclude that the mutations of the amino acid sequence lead to incorrectly folded protein structures, these experiments are unable to decipher the folding process. Therefore, molecular dynamic (MD) simulations are employed to simulate the folding process so that our improved understanding of the folding process will enable us to contemplate better treatments for misfolding diseases. MD simulations make use of force fields to simulate the folding process of peptides. Secondary structures are formed via the hydrogen bonds formed between the backbone atoms (C, O, N, H). It is important that the hydrogen bond energy computed during the MD simulation is accurate in order to direct the folding process to the native structure. Since the atoms involved in a hydrogen bond possess very dissimilar electronegativities, the more electronegative atom will attract greater electron density from the less electronegative atom towards itself. This is known as the polarization effect. Since the polarization effect changes the electron density of the two atoms in close proximity, the atomic charges of the two atoms should also vary based on the strength of the polarization effect. However, the fixed atomic charge scheme in force fields does not account for the polarization effect. In this study, we introduce the polarized structure-specific backbone charge (PSBC) model. The PSBC model accounts for the polarization effect in MD simulation by updating the atomic charges of the backbone hydrogen bond atoms according to equations derived between the amount of charge transferred to the atom and the length of the hydrogen bond, which are calculated from quantum-mechanical calculations. Compared to other polarizable models, the PSBC model does not require quantum-mechanical calculations of the peptide simulated at every time-step of the simulation and maintains the dynamic update of atomic charges, thereby reducing the computational cost and time while accounting for the polarization effect dynamically at the same time. The PSBC model is applied to two different β-peptides, namely the Beta3s/GS peptide, a de novo designed three-stranded β-sheet whose structure is folded in vitro and studied by NMR, and the trpzip peptides, a double-stranded β-sheet where a correlation is found between the type of amino acids that constitute the β-turn and the β-propensity.Keywords: hydrogen bond, polarization effect, protein folding, PSBC
Procedia PDF Downloads 2701560 Changes of Acute-phase Reactants in Systemic Sclerosis During Long-term Rituximab Therapy
Authors: Liudmila Garzanova, Lidia Ananyeva, Olga Koneva, Olga Ovsyannikova, Oxana Desinova, Mayya Starovoytova, Rushana Shayahmetova, Anna Khelkovskaya-Sergeeva
Abstract:
Objectives. C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) are associated with severe course, increased morbidity and mortality in systemic sclerosis (SSc). The aim of our study was to assess changes in CRP and ESR in SSc patients during long-term RTX therapy. Methods. This study included 113 patients with SSc. Mean age was 48.1±13 years, female-85%. The mean disease duration was 6±5 years. The diffuse cutaneous subset of the disease had 55% of patients. All pts had interstitial lung disease (ILD). All patients received prednisolone at a mean dose of 11.6±4.8 mg/day, and 53 of them - were immunosuppressants at inclusion. Patients received RTX due to the ineffectiveness of previous therapy for ILD. The parameters were evaluated over the periods: at baseline (point 0), 13±2.3 month (point 1, n=113), 42±14 month (point 2, n=80) and 79±6.5 month (point 3, n=25) after initiation of RTX therapy. Cumulative mean dose of RTX at point 1 = 1.7±0.6g, at point 2 = 3±1.5g, and at point 3 = 3.8±2.4g. The results are presented in the form of mean values, delta(Δ)-difference between the baseline parameter and follow-up point. Results. There was an improvement in studied parameters on RTX therapy. There was a significant decrease of ESR, CRP and activity index (EScSG-AI) at all observation points (p=0.001). In point 1: ΔCRP was 6.7 mg/l, ΔESR = 7.4 mm/h, ΔActivity index (EScSG-AI) = 1.7. In point 2: ΔCRP was 8.7 mg/l, ΔESR = 7.5 mm/h, ΔActivity index (EScSG-AI) = 1.9. In point 3: ΔCRP was 16.1 mg/l, ΔESR = 11 mm/h, ΔActivity index (EScSG-AI) = 2.1. Conclusion. There was a significant decrease in CRP and ESR during long-term RTX therapy, which correlated with a decrease in the disease activity index. RTX is an effective treatment option for SSc with an elevation of acute-phase reactants.Keywords: C-reactive protein, interstitial lung disease, systemic sclerosis, rituximab
Procedia PDF Downloads 301559 Effects of Advanced Periodontal Disease on Hematological Parameters in Adult Dogs
Authors: Mahzad Yousefi, Azin Tavakoli
Abstract:
Periodontal disease is an inflammatory reaction; therefore, it is predicted that changes may occur in some inflammatory parameters that can be detected in routine blood tests. The objective of this study was to evaluate the hematological and biochemistry changes that occur in dogs affected with advanced stages of periodontal disease. 87 dogs were diagnosed with periodontal disease (PD group), and 76 healthy dogs entered the study. The PD dogs had been affected with periodontitis stage 3 or 4 and were candidates for any dental extractions. The healthy dogs were either referred for annual checkups or for issuing health travel certificates that their owners asked for complete lab tests. Neither the diseased nor healthy subjects had a history of infectious, or other general health problems or surgery in the past 3 months. Age, as well as all hematologic including PCV, WBC and RBC count, Hb, MCV, MCH, MCHC, PLT, CBC, NLR, and biochemistry data, including total protein, albumin, glucose, BUN, Creatinine, ALT, AST, and ALP, were recorded and analyzed statistically. Results confirmed that aging has a significant direct relationship with the advanced stages of periodontal disease. Mild leukocytosis occurred in the diseased group; however, it was not significant. Also, the mean total protein of the PD group was lower than that of the healthy dogs, and serum levels of albumin were found to be lower significantly in the diseased group (P<0.05). Mean ±SD amount of Platelet, MCH, and ALT were significantly higher in the diseased group in comparison to the healthy dogs (P<0.05). No significant differences were reported in other evaluated parameters. It is concluded that CBC indices of PD dogs are not systemic inflammatory; however, only a decrease in albumin showed inflammatory responses. Some indices in routine laboratory tests can be changed significantly during advanced stages of the periodontal disease dogs.Keywords: periodontal disease, dogs, hematological factors, advanced stages, blood tests
Procedia PDF Downloads 651558 Effect of Substituting Groundnut Cake with Remnant of Food Composite on Survival and Growth of Clarias gariepinus and Oreochromis niloticus Fingerlings
Authors: M. Y. Abubakar, M. Yunisa, A. N. Muhammad
Abstract:
Constraining the production Clarias gariepinus and Oreochromis niloticus culture is the prohibitive cost of feed. We assess the performance of the species fingerlings on diets substituted with composite. Four dietary treatments (0%, 25%, 45%, and 75%) for C. gariepinus and five (0%, 25%, 50%, 75%, and whole food composite) for O. niloticus were formulated and each fed to 15 fingerlings for C. gariepinus and 10 fingerlings for O. niloticus stocked in 75ltrs plastic bowls, replicated trice in a completely randomized design. The experiment lasted 56 days. Percent survival rate was significantly (p < 0.05) higher (57.78 ± 9.69) in C. gariepinus fed diet III. The growth and nutrient utilization indices were least in the fish fed diet IV, which was significantly (p < 0.05) lower than in other treatments. Fish fed dietary treatment III, recorded the best in growth and nutrient utilization indices and was significantly higher (p < 0.05) than those fed dietary treatments I & II which were non-significant (p > 0.05) and higher than those fed 75% substitution. Better profit index was in the fish fed diet with 50% substitution level. For O. niloticus, the survival (172.62 ± 39.03) was significantly higher (p < 0.05) in those fed 25% substituted diet. For growth indices, the least performed were those fed whole composite while other treatments were non-significant (p > 0.05) different from each other. In terms of nutrient utilization, fish fed diet substituted at 0%, 25%, 50% and 75% food composite had similar food conversion ratio and protein efficiency ratio. However, there was no significant difference in the profit index among the whole treatment. It can be concluded that food composite from Sokoto house-holds can optimally replace groundnut cake up to 50% level as a protein source in the diets of Clarias gariepinus and O. niloticus fingerlings without adverse effects on survival, growth, and nutrient utilization.Keywords: food composite, nutrient utilization, C. gariepinus, O. niloticus household, substitution levels
Procedia PDF Downloads 2001557 Quartz Crystal Microbalance Based Hydrophobic Nanosensor for Lysozyme Detection
Authors: F. Yılmaz, Y. Saylan, A. Derazshamshir, S. Atay, A. Denizli
Abstract:
Quartz crystal microbalance (QCM), high-resolution mass-sensing technique, measures changes in mass on oscillating quartz crystal surface by measuring changes in oscillation frequency of crystal in real time. Protein adsorption techniques via hydrophobic interaction between protein and solid support, called hydrophobic interaction chromatography (HIC), can be favorable in many cases. Some nanoparticles can be effectively applied for HIC. HIC takes advantage of the hydrophobicity of proteins by promoting its separation on the basis of hydrophobic interactions between immobilized hydrophobic ligands and nonpolar regions on the surface of the proteins. Lysozyme is found in a variety of vertebrate cells and secretions, such as spleen, milk, tears, and egg white. Its common applications are as a cell-disrupting agent for extraction of bacterial intracellular products, as an antibacterial agent in ophthalmologic preparations, as a food additive in milk products and as a drug for treatment of ulcers and infections. Lysozyme has also been used in cancer chemotherapy. The aim of this study is the synthesis of hydrophobic nanoparticles for Lysozyme detection. For this purpose, methacryoyl-L-phenylalanine was chosen as a hydrophobic matrix. The hydrophobic nanoparticles were synthesized by micro-emulsion polymerization method. Then, hydrophobic QCM nanosensor was characterized by Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM) and zeta size analysis. Hydrophobic QCM nanosensor was tested for real-time detection of Lysozyme from aqueous solution. The kinetic and affinity studies were determined by using Lysozyme solutions with different concentrations. The responses related to a mass (Δm) and frequency (Δf) shifts were used to evaluate adsorption properties.Keywords: nanosensor, HIC, lysozyme, QCM
Procedia PDF Downloads 3491556 Role of Functional Divergence in Specific Inhibitor Design: Using γ-Glutamyltranspeptidase (GGT) as a Model Protein
Authors: Ved Vrat Verma, Rani Gupta, Manisha Goel
Abstract:
γ-glutamyltranspeptidase (GGT: EC 2.3.2.2) is an N-terminal nucleophile hydrolase conserved in all three domains of life. GGT plays a key role in glutathione metabolism where it catalyzes the breakage of the γ-glutamyl bonds and transfer of γ-glutamyl group to water (hydrolytic activity) or amino acids or short peptides (transpeptidase activity). GGTs from bacteria, archaea, and eukaryotes (human, rat and mouse) are homologous proteins sharing >50% sequence similarity and conserved four layered αββα sandwich like three dimensional structural fold. These proteins though similar in their structure to each other, are quite diverse in their enzyme activity: some GGTs are better at hydrolysis reactions but poor in transpeptidase activity, whereas many others may show opposite behaviour. GGT is known to be involved in various diseases like asthma, parkinson, arthritis, and gastric cancer. Its inhibition prior to chemotherapy treatments has been shown to sensitize tumours to the treatment. Microbial GGT is known to be a virulence factor too, important for the colonization of bacteria in host. However, all known inhibitors (mimics of its native substrate, glutamate) are highly toxic because they interfere with other enzyme pathways. However, a few successful efforts have been reported previously in designing species specific inhibitors. We aim to leverage the diversity seen in GGT family (pathogen vs. eukaryotes) for designing specific inhibitors. Thus, in the present study, we have used DIVERGE software to identify sites in GGT proteins, which are crucial for the functional and structural divergence of these proteins. Since, type II divergence sites vary in clade specific manner, so type II divergent sites were our focus of interest throughout the study. Type II divergent sites were identified for pathogen vs. eukaryotes clusters and sites were marked on clade specific representative structures HpGGT (2QM6) and HmGGT (4ZCG) of pathogen and eukaryotes clade respectively. The crucial divergent sites within 15 A radii of the binding cavity were highlighted, and in-silico mutations were performed on these sites to delineate the role of these sites on the mechanism of catalysis and protein folding. Further, the amino acid network (AAN) analysis was also performed by Cytoscape to delineate assortative mixing for cavity divergent sites which could strengthen our hypothesis. Additionally, molecular dynamics simulations were performed for wild complexes and mutant complexes close to physiological conditions (pH 7.0, 0.1 M ionic strength and 1 atm pressure) and the role of putative divergence sites and structural integrities of the homologous proteins have been analysed. The dynamics data were scrutinized in terms of RMSD, RMSF, non-native H-bonds and salt bridges. The RMSD, RMSF fluctuations of proteins complexes are compared, and the changes at protein ligand binding sites were highlighted. The outcomes of our study highlighted some crucial divergent sites which could be used for novel inhibitors designing in a species-specific manner. Since, for drug development, it is challenging to design novel drug by targeting similar protein which exists in eukaryotes, so this study could set up an initial platform to overcome this challenge and help to deduce the more effective targets for novel drug discovery.Keywords: γ-glutamyltranspeptidase, divergence, species-specific, drug design
Procedia PDF Downloads 2701555 Fatty Acids and Inflammatory Protein Biomarkers in Freshly Frozen Plasma Samples from Patients with and without COVID-19
Authors: Niharika Bala, Alaa Habib, Marianne Kozuch, Nancy Denslow, Sarah Glover, Abdel Alli
Abstract:
The Coronavirus disease 2019 (COVID-19) is a viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and associated with systemic inflammation. Inflammation is an important process that follows infection and facilitates the repair of damaged tissue. Polyunsaturated fatty acids play an important role in the inflammatory process. These lipids can target transcription factors to modulate gene expression and protein function. Here, we evaluated whether differences in basal levels of different types of biomarkers can be detected in freshly frozen plasma samples from patients with and without COVID-19. Fatty acid methyl ester (FAME) analysis showed a decrease in arachidic acid and myristic acid but an increase in caprylic acid, palmitic acid, and eicosenoic acid in the plasma of COVID-19 patients compared to non-COVID19 patients. Multiple chemokines, including IP-10, MCP-1, and MIP-1 beta, were increased in the COVID-19 group compared to the non-COVID-19 group. Similarly, cytokines, including IL-1 alpha and IL-8, and cell adhesion and inflammatory response markers, including ICAM-1 and E-selectin, were greater in the plasma of COVID-19 patients compared to non-COVID-19 patients. A baseline signature of specific polyunsaturated fatty acids, cytokines, and chemokines present in the plasma after COVID-19 viral infection may serve as biomarkers that can be useful in various applications, including determination of severity of infection, indication of disease prognosis, and consideration for therapeutic options.Keywords: SARS-CoV-2, COVID-19, fatty acids, inflammation, cytokines, chemokines
Procedia PDF Downloads 121554 Amyloid Deposition in Granuloma of Tuberculosis Patients: A Pilot Study
Authors: Shreya Ghosh, Akansha Garg, Chayanika Kala, Ashwani Kumar Thakur
Abstract:
Background: Granuloma formation is one of the characteristic features of tuberculosis. Besides, chronic inflammation underlying tuberculosis is often indicated by an increase in the concentration of serum amyloid A (SAA) protein. The connection between tuberculosis and SAA-driven secondary amyloidosis is well documented. However, SAA-derived amyloid deposition start sites are not well understood in tuberculosis and other chronic inflammatory conditions. It was hypothesized that granuloma could be a potential site for an amyloid deposition because both SAA protein and proteases that cleave SAA into aggregation-prone fragments are reported to be present in the granuloma. Here the authors have shown the presence of SAA-derived amyloid deposits in the granuloma of tuberculosis patients. Methodology: Over a period of two years, tuberculosis patients were screened, and biopsies were collected from the affected organs of the patients. The gold standard, Congo red dye staining, was used to identify amyloid deposits in the tissue sections of tuberculosis patients containing granulomatous structure. Results: 11 out of 150 FFPE biopsy specimens of tuberculosis patients showed eosinophilic hyaline-rich deposits surrounding granuloma. Upon Congo red staining, these deposits exhibited characteristic apple-green birefringence under polarized light, confirming amyloid deposits. Further, upon immunohistochemical staining with anti-SAA, the amyloid enriched areas showed positive immunoreactivity. Conclusion: In this pilot study, we have shown that granuloma can be a potential site for serum amyloid A-derived amyloid formation in tuberculosis patients. Moreover, the presence of amyloid gave significant cues that granuloma might be a probable amyloid deposition start in tuberculosis patients. This study will set a stage to expand the clinical and fundamental research in the understanding of amyloid formation in granuloma underlying tuberculosis and chronic inflammatory conditions.Keywords: amyloid, granuloma, periphery, serum amyloid A, tuberculosis
Procedia PDF Downloads 1981553 Cytotoxicological Evaluation of a Folate Receptor Targeting Drug Delivery System Based on Cyclodextrins
Authors: Caroline Mendes, Mary McNamara, Orla Howe
Abstract:
For chemotherapy, a drug delivery system should be able to specifically target cancer cells and deliver the therapeutic dose without affecting normal cells. Folate receptors (FR) can be considered key targets since they are commonly over-expressed in cancer cells and they are the molecular marker used in this study. Here, cyclodextrin (CD) has being studied as a vehicle for delivering the chemotherapeutic drug, methotrexate (MTX). CDs have the ability to form inclusion complexes, in which molecules of suitable dimensions are included within the CD cavity. In this study, β-CD has been modified using folic acid so as to specifically target the FR molecular marker. Thus, the system studied here for drug delivery consists of β-CD, folic acid and MTX (CDEnFA:MTX). Cellular uptake of folic acid is mediated with high affinity by folate receptors while the cellular uptake of antifolates, such as MTX, is mediated with high affinity by the reduced folate carriers (RFCs). This study addresses the gene (mRNA) and protein expression levels of FRs and RFCs in the cancer cell lines CaCo-2, SKOV-3, HeLa, MCF-7, A549 and the normal cell line BEAS-2B, quantified by real-time polymerase chain reaction (real-time PCR) and flow cytometry, respectively. From that, four cell lines with different levels of FRs, were chosen for cytotoxicity assays of MTX and CDEnFA:MTX using the MTT assay. Real-time PCR and flow cytometry data demonstrated that all cell lines ubiquitously express moderate levels of RFC. These experiments have also shown that levels of FR protein in CaCo-2 cells are high, while levels in SKOV-3, HeLa and MCF-7 cells are moderate. A549 and BEAS-2B cells express low levels of FR protein. FRs are highly expressed in all the cancer cell lines analysed when compared to the normal cell line BEAS-2B. The cell lines CaCo-2, MCF-7, A549 and BEAS-2B were used in the cell viability assays. 48 hours treatment with the free drug and the complex resulted in IC50 values of 93.9 µM ± 9.2 and 56.0 µM ± 4.0 for CaCo-2 for free MTX and CDEnFA:MTX respectively, 118.2 µM ± 10.8 and 97.8 µM ± 12.3 for MCF-7, 36.4 µM ± 6.9 and 75.0 µM ± 8.5 for A549 and 132.6 µM ± 12.1 and 288.1 µM ± 16.3 for BEAS-2B. These results demonstrate that MTX is more toxic towards cell lines expressing low levels of FR, such as the BEAS-2B. More importantly, these results demonstrate that the inclusion complex CDEnFA:MTX showed greater cytotoxicity than the free drug towards the high FR expressing CaCo-2 cells, indicating that it has potential to target this receptor, enhancing the specificity and the efficiency of the drug.Keywords: cyclodextrins, cancer treatment, drug delivery, folate receptors, reduced folate carriers
Procedia PDF Downloads 3021552 Development of Programmed Cell Death Protein 1 Pathway-Associated Prognostic Biomarkers for Bladder Cancer Using Transcriptomic Databases
Authors: Shu-Pin Huang, Pai-Chi Teng, Hao-Han Chang, Chia-Hsin Liu, Yung-Lun Lin, Shu-Chi Wang, Hsin-Chih Yeh, Chih-Pin Chuu, Jiun-Hung Geng, Li-Hsin Chang, Wei-Chung Cheng, Chia-Yang Li
Abstract:
The emergence of immune checkpoint inhibitors (ICIs) targeting proteins like PD-1 and PD-L1 has changed the treatment paradigm of bladder cancer. However, not all patients benefit from ICIs, with some experiencing early death. There's a significant need for biomarkers associated with the PD-1 pathway in bladder cancer. Current biomarkers focus on tumor PD-L1 expression, but a more comprehensive understanding of PD-1-related biology is needed. Our study has developed a seven-gene risk score panel, employing a comprehensive bioinformatics strategy, which could serve as a potential prognostic and predictive biomarker for bladder cancer. This panel incorporates the FYN, GRAP2, TRIB3, MAP3K8, AKT3, CD274, and CD80 genes. Additionally, we examined the relationship between this panel and immune cell function, utilizing validated tools such as ESTIMATE, TIDE, and CIBERSORT. Our seven-genes panel has been found to be significantly associated with bladder cancer survival in two independent cohorts. The panel was also significantly correlated with tumor infiltration lymphocytes, immune scores, and tumor purity. These factors have been previously reported to have clinical implications on ICIs. The findings suggest the potential of a PD-1 pathway-based transcriptomic panel as a prognostic and predictive biomarker in bladder cancer, which could help optimize treatment strategies and improve patient outcomes.Keywords: bladder cancer, programmed cell death protein 1, prognostic biomarker, immune checkpoint inhibitors, predictive biomarker
Procedia PDF Downloads 791551 Evaluation of Visco-Elastic Properties and Microbial Quality of Oat-Based Dietetic Food
Authors: Uchegbu Nneka Nkechi, Okoye Ogochukwu Peace
Abstract:
The evaluation of the visco-elastic properties and microbial quality of a formulated oat-based dietetic food were investigated. Oat flour, pumpkin seed flour, carrot flour and skimmed milk powder were blended in varying proportions to formulate a product with codes OCF, which contains 70% oat flour, 10 % carrot flour, 10 % pumpkin seed flour and 10% skimmed milk powder, OCF which contains 65 % oat flour, 10 % carrot flour, 10 % pumpkin seed flour and 15 % skimmed milk powder, OCF which contains 60 % oat flour, 10 % carrot flour, 10 % pumpkin seed flour and 20 % skimmed milk powder, OCF which contains 55 % oat flour, 10 % carrot flour, 10 % pumpkin seed flour and 25 % skimmed milk powder and OF with 95 % oat as the commercial control. All the samples were assessed for their proximate composition, microbial quality and visco-elastic properties. The moisture content was highest at sample OF (10.73%) and lowest at OCF (7.10%) (P<0.05). Crude protein ranged from 13.38%-22.86%, with OCF having the highest (P<0.05) protein content and OF having the lowest. Crude fat was 3.74% for OCF and 6.31% for OF. Crude fiber ranged from 3.58% - 17.39% with OF having the lowest (P<0.05) fiber content and OCF having the highest. Ash content was 1.30% for OCF and 2.75% for OCF. There was no mold growth in the samples. The total viable ml/wl count ranged from 1.5×10³ cfu/g - 2.6×10³ cfu/g, with OCF having the lowest and OF having the highest (P<0.05) total viable count. The peak viscosity of the sample ranged from 75.00 cP-2895.00 cP, with OCF having the lowest and OF having the highest value. The final viscosity was 130.50 cP in OCF and 3572.50 cP in OF. The setback viscosity was 58.00 cP in OCF and 1680.50 cP in OF. The peak time was 6.93 mins in OCF to 5.57 mins in OF. There was no pasting temperature for all samples except the OF, which had 86.43. Sample OF was the highest in terms of overall acceptability. This study showed that the oat-based composite flour produced had a nutritional profile that would be acceptable for the aged population.Keywords: dietetic, pumpkin, visco-elastic, microbial
Procedia PDF Downloads 1971550 Potential Growth of Tomato Plants in Induced Saline Soil with Rhizobacteria (PGPR)
Authors: Arfan Ali, Idrees Ahmad Nasir
Abstract:
The critical evaluation of tolerance in tomato plants against the induced saline soil were assessed by transcript analysis of genes coding for products potentially involved in stress tolerance. A reverse transcriptase PCR experiment was performed with Hsp90-1, MT2, and GR1like protein genes using RNA isolated from different tissues of tomato plants. Four strains of Bacillus magisterium were inoculated with 100 Mm & 200 Mm concentrations of salt. Eleven treatments each ten replica pots were installed in green house experiment and the parameters taken into account were morphological (length, weight, number of leaves, leaf surface area), chemical (anthocyanin, chlorophyll-a, chlorophyll-b, carotenoids) and biological (gene expression). Results bare a response i.e. highest response of MT2 like gene was at 24 hpi and the highest levels of GR1 like protein transcript accumulation were detected at 36 hpi. The chemical and morphological parameters at diverse salt concentrations bequeath superlative response amongst strains which candidly flank on Zm7 and Zm4. Therefore, Bacillus magisterium Zm7 strains and somehow Zm4 strain can be used in saline condition to make plants tolerant. The overall performance of strains Zm7, Zm6, and Zm4 was found better for all studied traits under salt stress conditions. Significant correlations among traits root length, shoot length, number of leaves, leaf surface area, carotenoids, anthocyanin, chlorophyll-a and chlorophyll-b were found and suggested that the salt tolerance in tomato may be improved through the use of PGPR strains.Keywords: Bacillus magisterium, gene expression glutathione reductase, metallothionein, PGPR, Rhizobacteria, saline
Procedia PDF Downloads 4381549 IL-33 Production in Murine Macrophages via PGE2-E Prostanoid Receptor 2/4 Signaling
Authors: Sachin K. Samuchiwal, Barbara Balestrieri, Amanda Paskavitz, Hannah Raff, Joshua A. Boyce
Abstract:
IL-33, a recently discovered member of the IL-1 cytokine family, binds to the TLR/IL1R super family receptor ST2 and induces type 2 immune responses. IL-33 is constitutively expressed in structural cells at barrier sites such as skin, lung, and intestine, and also inducibly expressed by hematopoietic cells including macrophages. Stimulation of macrophages by Lipopolysaccharide (LPS) can induce de novo IL-33 expression, and also causes the production of prostaglandin-E2 (PGE2) via cyclooxygenase (COX)-2 and microsomal PGE2 synthase-1 (mPGES-1). Because PGE2 can regulate macrophage functions through both autocrine and paracrine mechanisms, the potential interplay of endogenous PGE2 on IL-33 production was explored. Bone-marrow derived murine macrophages (bmMF) that lack either mPGES-1 or EP2 receptor expression were stimulated with LPS in the absence or presence of exogenous PGE2 along with pharmacological agonists and antagonists. The study results demonstrate that endogenous PGE2 markedly enhances LPS-induced IL-33 production by bmMFs via EP2 receptors. Moreover, exogenous PGE2 can amplify LPS-induced IL-33 expression dominantly by EP2 and partly by EP4 receptors by a pathway involving cAMP and exchange protein activated by cAMP (EPAC), but not protein kinase A (PKA). Though both IL-33 production and PGE2 generation in response to LPS require activation of both p38 MAPK and NF-κB, PGE2 did not influence this activation. In conclusion, it is demonstrated that endogenous PGE2 signaling through EP2 and EP4 receptors is a prerequisite for LPS-induced IL-33 production in bmMFs and the underlying cAMP mediated pathway involves EPAC. Since IL-33 is a critical pro-inflammatory cytokine in various pathological disorders, this PGE2-EP2/EP4-cAMP mediated pathway can be exploited to intervene in IL-33 driven pathologies.Keywords: bone marrow macrophages, EPAC, IL-33, PGE2
Procedia PDF Downloads 1911548 SIRT1 Gene Polymorphisms and Its Protein Level in Colorectal Cancer
Authors: Olfat Shaker, Miriam Wadie, Reham Ali, Ayman Yosry
Abstract:
Colorectal cancer (CRC) is a major cause of mortality and morbidity and accounts for over 9% of cancer incidence worldwide. Silent information regulator 2 homolog 1 (SIRT1) gene is located in the nucleus and exert its effects via modulation of histone and non-histone targets. They function in the cell via histone deacetylase (HDAC) and/or adenosine diphosphate ribosyl transferase (ADPRT) enzymatic activity. The aim of this work was to study the relationship between SIRT1 polymorphism and its protein level in colorectal cancer patients in comparison to control cases. This study includes 2 groups: thirty healthy subjects (control group) & one hundred CRC patients. All subjects were subjected to: SIRT-1 serum level was measured by ELISA and gene polymorphisms of rs12778366, rs375891 and rs3740051 were detected by real time PCR. For CRC patients clinical data were collected (size, site of tumor as well as its grading, obesity) CRC patients showed high significant increase in the mean level of serum SIRT-1 compared to control group (P<0.001). Mean serum level of SIRT-1 showed high significant increase in patients with tumor size ≥5 compared to the size < 5 cm (P<0.05). In CRC patients, percentage of T allele of rs12778366 was significantly lower than controls, CC genotype and C allele C of rs 375891 were significantly higher than control group. In CRC patients, the CC genotype of rs12778366, was 75% in rectosigmoid and 25% in cecum & ascending colon. According to tumor size, the percentage of CC genotype was 87.5% in tumor size ≥5 cm. Conclusion: serum level of SIRT-1 and T allele, C allele of rs12778366 and rs 375891 respectively can be used as diagnostic markers for CRC patients.Keywords: CRC, SIRT1, polymorphisms, ELISA
Procedia PDF Downloads 2181547 Impact of Mid-Day Meal on Nutritional Status of Primary School Children in Haryana, India
Authors: Vinti Davar
Abstract:
India is one among the many countries where child malnutrition is severe and also a major underlying cause of child mortality. The Mid Day Meal (MDM) program was launched to improve the nutritional status of children, attendance, and retention in schools. It was based on one meal provided to the children, who are attending elementary school (primary school). The objective of present study was to evaluate the impact of mid-day meal on the nutritional status of primary school children in Haryana, India. The present work was carried out on 1200 children between 6-11years of age, studying in primary schools in Haryana, India. Out of these 960 students as, the experimental group was selected from schools where mid-day meal is supplied by the government, and 240 students as control group where mid-day meal is not supplied. The mean height, weight, and BMI of children of both the groups were found to be significantly low as compared to NCHS standards. Stunting was found in 56.40% MDMB (Mid-day meal beneficiaries) and 62.50 % NMDMC (non- mid-day meal children).The weight of almost all subjects were low according to age indicating thinness. Anemia was more prevalent in MDMB as compared to NMDMC may be because school meals did not include vegetables. The consumption of energy, proteins, fat, calcium, iron, vitamins was significantly low (P ≤ .01) in both groups especially in girls of NMDM. The consumption of various food groups except vegetables was better in MDMB compared to NMDMC. It is concluded that with certain improvements, mid-meal can be beneficial in meeting everyday requirements of school going children.Keywords: foods, meals, nutritional status, school going children
Procedia PDF Downloads 3101546 Excited State Structural Dynamics of Retinal Isomerization Revealed by a Femtosecond X-Ray Laser
Authors: Przemyslaw Nogly, Tobias Weinert, Daniel James, Sergio Carbajo, Dmitry Ozerov, Antonia Furrer, Dardan Gashi, Veniamin Borin, Petr Skopintsev, Kathrin Jaeger, Karol Nass, Petra Bath, Robert Bosman, Jason Koglin, Matthew Seaberg, Thomas Lane, Demet Kekilli, Steffen Brünle, Tomoyuki Tanaka, Wenting Wu, Christopher Milne, Thomas A. White, Anton Barty, Uwe Weierstall, Valerie Panneels, Eriko Nango, So Iwata, Mark Hunter, Igor Schapiro, Gebhard Schertler, Richard Neutze, Jörg Standfuss
Abstract:
Ultrafast isomerization of retinal is the primary step in a range of photoresponsive biological functions including vision in humans and ion-transport across bacterial membranes. We studied the sub-picosecond structural dynamics of retinal isomerization in the light-driven proton pump bacteriorhodopsin using an X-ray laser. Twenty snapshots with near-atomic spatial and temporal resolution in the femtosecond regime show how the excited all-trans retinal samples conformational states within the protein binding pocket prior to passing through a highly-twisted geometry and emerging in the 13-cis conformation. The aspartic acid residues and functional water molecules in proximity of the retinal Schiff base respond collectively to formation and decay of the initial excited state and retinal isomerization. These observations reveal how the protein scaffold guides this remarkably efficient photochemical reaction.Keywords: bacteriorhodopsin, free-electron laser, retinal isomerization mechanism, time-resolved crystallography
Procedia PDF Downloads 2511545 Effect of Saffron Extract and Aerobic Exercises on Troponin T and Heart-Type Fatty Acid Binding Protein in Men with Type 2 Diabetes
Authors: Ahmad Abdi, M. Golzadeh Gangeraj, Alireza Barari, S. Shirali, S. Amini
Abstract:
Aims: Diabetes is one of the common metabolic diseases in the world that has the dire adverse effects such as nephropathy, retinopathy and cardiovascular problems. Pharmaceutical and non-pharmaceutical strategies for control and treatment of diabetes are provided. Exercise and nutrition as non-drug strategies for the prevention and control of diabetes are considered. Exercises may increase oxidative stress and myocardium injury, thus it is necessary to take nutrition strategies to help diabetic athletes. Methods: This study was a semi-experimental research. Therefore, 24 men with type 2 diabetes were selected and randomly divided in four groups (1. control, 2. saffron extract, 3. aerobic exercises, 4. compound aerobic exercises and saffron extract). Saffron extract with 100 mg/day was used. Aerobic exercises, three days a week, for eight weeks, with 55-70% of maximum heart rate were performed. At the end, levels of Heart-type fatty acid-binding protein (HFABP) and Troponin T were measured. Data were analyzed by Paired t, One-way ANOVA and Tukey tests. Results: The serum Troponin T increased significantly in saffron extract, aerobic exercises and compound saffron extract -aerobic exercises in type 2 diabetic men(P=0.024, P =0.013, P=0.005 respectively). Saffron extract consumption (100 mg/day) and aerobic exercises did not significantly influence the serum HFABP (P =0.365, P =0.188 respectively). But serum HFABP decreased significantly in compound saffron extract -aerobic exercises group (P =0.003). Conclusions: Raised cardiac Troponin T and HFABP concentration accepted as the standard biochemical markers for the diagnosis of cardiac injury. Saffron intake may beneficially protect the myocardium from injuries. Compound saffron extract -aerobic exercises can decrease levels of Troponin T and HFABP in men with type 2 diabetes.Keywords: Saffron, aerobic exercises, type 2 diabetes, HFABP, troponin T
Procedia PDF Downloads 2681544 First-Trimester Screening of Preeclampsia in a Routine Care
Authors: Tamar Grdzelishvili, Zaza Sinauridze
Abstract:
Introduction: Preeclampsia is a complication of the second trimester of pregnancy, which is characterized by high morbidity and multiorgan damage. Many complex pathogenic mechanisms are now implicated to be responsible for this disease (1). Preeclampsia is one of the leading causes of maternal mortality worldwide. Statistics are enough to convince you of the seriousness of this pathology: about 100,000 women die of preeclampsia every year. It occurs in 3-14% (varies significantly depending on racial origin or ethnicity and geographical region) of pregnant women, in 75% of cases - in a mild form, and in 25% - in a severe form. During severe pre-eclampsia-eclampsia, perinatal mortality increases by 5 times and stillbirth by 9.6 times. Considering that the only way to treat the disease is to end the pregnancy, the main thing is timely diagnosis and prevention of the disease. Identification of high-risk pregnant women for PE and giving prophylaxis would reduce the incidence of preterm PE. First-trimester screening model developed by the Fetal Medicine Foundation (FMF), which uses the Bayes-theorem to combine maternal characteristics and medical history together with measurements of mean arterial pressure, uterine artery pulsatility index, and serum placental growth factor, has been proven to be effective and have superior screening performance to that of traditional risk factor-based approach for the prediction of PE (2) Methods: Retrospective single center screening study. The study population consisted of women from the Tbilisi maternity hospital “Pineo medical ecosystem” who met the following criteria: they spoke Georgian, English, or Russian and agreed to participate in the study after discussing informed consent and answering questions. Prior to the study, the informed consent forms approved by the Institutional Review Board were obtained from the study subjects. Early assessment of preeclampsia was performed between 11-13 weeks of pregnancy. The following were evaluated: anamnesis, dopplerography of the uterine artery, mean arterial blood pressure, and biochemical parameter: Pregnancy-associated plasma protein A (PAPP-A). Individual risk assessment was performed with performed by Fast Screen 3.0 software ThermoFisher scientific. Results: A total of 513 women were recruited and through the study, 51 women were diagnosed with preeclampsia (34.5% in the pregnant women with high risk, 6.5% in the pregnant women with low risk; P<0.000 1). Conclusions: First-trimester screening combining maternal factors with uterine artery Doppler, blood pressure, and pregnancy-associated plasma protein-A is useful to predict PE in a routine care setting. More patient studies are needed for final conclusions. The research is still ongoing.Keywords: first-trimester, preeclampsia, screening, pregnancy-associated plasma protein
Procedia PDF Downloads 77