Search results for: linear FM chirp
2425 Synthesis of Filtering in Stochastic Systems on Continuous-Time Memory Observations in the Presence of Anomalous Noises
Authors: S. Rozhkova, O. Rozhkova, A. Harlova, V. Lasukov
Abstract:
We have conducted the optimal synthesis of root-mean-squared objective filter to estimate the state vector in the case if within the observation channel with memory the anomalous noises with unknown mathematical expectation are complement in the function of the regular noises. The synthesis has been carried out for linear stochastic systems of continuous-time.Keywords: mathematical expectation, filtration, anomalous noise, memory
Procedia PDF Downloads 2472424 Comparative Settlement Analysis on the under of Embankment with Empirical Formulas and Settlement Plate Measurement for Reducing Building Crack around of Embankments
Authors: Safitri Nur Wulandari, M. Ivan Adi Perdana, Prathisto L. Panuntun Unggul, R. Dary Wira Mahadika
Abstract:
In road construction on the soft soil, we need a soil improvement method to improve the soil bearing capacity of the land base so that the soil can withstand the traffic loads. Most of the land in Indonesia has a soft soil, where soft soil is a type of clay that has the consistency of very soft to medium stiff, undrained shear strength, Cu <0:25 kg/cm2, or the estimated value of NSPT <5 blows/ft. This study focuses on the analysis of the effect on preloading load (embarkment) to the amount of settlement ratio on the under of embarkment that will impact on the building cracks around of embarkment. The method used in this research is a superposition method for embarkment distribution on 27 locations with undisturbed soil samples at some borehole point in Java and Kalimantan, Indonesia. Then correlating the results of settlement plate monitoring on the field with Asaoka method. The results of settlement plate monitoring taken from an embarkment of Ahmad Yani airport in Semarang on 32 points. Where the value of Cc (index compressible) soil data based on some laboratory test results, while the value of Cc is not tested obtained from empirical formula Ardhana and Mochtar, 1999. From this research, the results of the field monitoring showed almost the same results with an empirical formulation with the standard deviation of 4% where the formulation of the empirical results of this analysis obtained by linear formula. Value empirical linear formula is to determine the effect of compression heap area as high as 4,25 m is 3,1209x + y = 0.0026 for the slope of the embankment 1: 8 for the same analysis with an initial height of embankment on the field. Provided that at the edge of the embankment settlement worth is not equal to 0 but at a quarter of embankment has a settlement ratio average 0.951 and at the edge of embankment has a settlement ratio 0,049. The influence areas around of embankment are approximately 1 meter for slope 1:8 and 7 meters for slope 1:2. So, it can cause the building cracks, to build in sustainable development.Keywords: building cracks, influence area, settlement plate, soft soil, empirical formula, embankment
Procedia PDF Downloads 3442423 Estimation of Effective Mechanical Properties of Linear Elastic Materials with Voids Due to Volume and Surface Defects
Authors: Sergey A. Lurie, Yury O. Solyaev, Dmitry B. Volkov-Bogorodsky, Alexander V. Volkov
Abstract:
The media with voids is considered and the method of the analytical estimation of the effective mechanical properties in the theory of elastic materials with voids is proposed. The variational model of the porous media is discussed, which is based on the model of the media with fields of conserved dislocations. It is shown that this model is fully consistent with the known model of the linear elastic materials with voids. In the present work, the generalized model of the porous media is proposed in which the specific surface properties are associated with the field of defects-pores in the volume of the deformed body. Unlike typical surface elasticity model, the strain energy density of the considered model includes the special part of the surface energy with the quadratic form of the free distortion tensor. In the result, the non-classical boundary conditions take modified form of the balance equations of volume and surface stresses. The analytical approach is proposed in the present work which allows to receive the simple enough engineering estimations for effective characteristics of the media with free dilatation. In particular, the effective flexural modulus and Poisson's ratio are determined for the problem of a beam pure bending. Here, the known voids elasticity solution was expanded on the generalized model with the surface effects. Received results allow us to compare the deformed state of the porous beam with the equivalent classic beam to introduce effective bending rigidity. Obtained analytical expressions for the effective properties depend on the thickness of the beam as a parameter. It is shown that the flexural modulus of the porous beam is decreased with an increasing of its thickness and the effective Poisson's ratio of the porous beams can take negative values for the certain values of the model parameters. On the other hand, the effective shear modulus is constant under variation of all values of the non-classical model parameters. Solutions received for a beam pure bending and the hydrostatic loading of the porous media are compared. It is shown that an analytical estimation for the bulk modulus of the porous material under hydrostatic compression gives an asymptotic value for the effective bulk modulus of the porous beam in the case of beam thickness increasing. Additionally, it is shown that the scale effects appear due to the surface properties of the porous media. Obtained results allow us to offer the procedure of an experimental identification of the non-classical parameters in the theory of the linear elastic materials with voids based on the bending tests for samples with different thickness. Finally, the problem of implementation of the Saint-Venant hypothesis for the transverse stresses in the porous beam are discussed. These stresses are different from zero in the solution of the voids elasticity theory, but satisfy the integral equilibrium equations. In this work, the exact value of the introduced surface parameter was found, which provides the vanishing of the transverse stresses on the free surfaces of a beam.Keywords: effective properties, scale effects, surface defects, voids elasticity
Procedia PDF Downloads 4182422 Characterization of Forest Fire Fuel in Shivalik Himalayas Using Hyperspectral Remote Sensing
Authors: Neha Devi, P. K. Joshi
Abstract:
Fire fuel map is one of the most critical factors for planning and managing the fire hazard and risk. One of the most significant forms of global disturbance, impacting community dynamics, biogeochemical cycles and local and regional climate across a wide range of ecosystems ranging from boreal forests to tropical rainforest is wildfire Assessment of fire danger is a function of forest type, fuelwood stock volume, moisture content, degree of senescence and fire management strategy adopted in the ground. Remote sensing has potential of reduction the uncertainty in mapping fuels. Hyperspectral remote sensing is emerging to be a very promising technology for wildfire fuels characterization. Fine spectral information also facilitates mapping of biophysical and chemical information that is directly related to the quality of forest fire fuels including above ground live biomass, canopy moisture, etc. We used Hyperion imagery acquired in February, 2016 and analysed four fuel characteristics using Hyperion sensor data on-board EO-1 satellite, acquired over the Shiwalik Himalayas covering the area of Champawat, Uttarakhand state. The main objective of this study was to present an overview of methodologies for mapping fuel properties using hyperspectral remote sensing data. Fuel characteristics analysed include fuel biomass, fuel moisture, and fuel condition and fuel type. Fuel moisture and fuel biomass were assessed through the expression of the liquid water bands. Fuel condition and type was assessed using green vegetation, non-photosynthetic vegetation and soil as Endmember for spectral mixture analysis. Linear Spectral Unmixing, a partial spectral unmixing algorithm, was used to identify the spectral abundance of green vegetation, non-photosynthetic vegetation and soil.Keywords: forest fire fuel, Hyperion, hyperspectral, linear spectral unmixing, spectral mixture analysis
Procedia PDF Downloads 1642421 Novel Hole-Bar Standard Design and Inter-Comparison for Geometric Errors Identification on Machine-Tool
Authors: F. Viprey, H. Nouira, S. Lavernhe, C. Tournier
Abstract:
Manufacturing of freeform parts may be achieved on 5-axis machine tools currently considered as a common means of production. In particular, the geometrical quality of the freeform parts depends on the accuracy of the multi-axis structural loop, which is composed of several component assemblies maintaining the relative positioning between the tool and the workpiece. Therefore, to reach high quality of the geometries of the freeform parts the geometric errors of the 5 axis machine should be evaluated and compensated, which leads one to master the deviations between the tool and the workpiece (volumetric accuracy). In this study, a novel hole-bar design was developed and used for the characterization of the geometric errors of a RRTTT 5-axis machine tool. The hole-bar standard design is made of Invar material, selected since it is less sensitive to thermal drift. The proposed design allows once to extract 3 intrinsic parameters: one linear positioning and two straightnesses. These parameters can be obtained by measuring the cylindricity of 12 holes (bores) and 11 cylinders located on a perpendicular plane. By mathematical analysis, twelve 3D points coordinates can be identified and correspond to the intersection of each hole axis with the least square plane passing through two perpendicular neighbour cylinders axes. The hole-bar was calibrated using a precision CMM at LNE traceable the SI meter definition. The reversal technique was applied in order to separate the error forms of the hole bar from the motion errors of the mechanical guiding systems. An inter-comparison was additionally conducted between four NMIs (National Metrology Institutes) within the EMRP IND62: JRP-TIM project. Afterwards, the hole-bar was integrated in RRTTT 5-axis machine tool to identify its volumetric errors. Measurements were carried out in real time and combine raw data acquired by the Renishaw RMP600 touch probe and the linear and rotary encoders. The geometric errors of the 5 axis machine were also evaluated by an accurate laser tracer interferometer system. The results were compared to those obtained with the hole bar.Keywords: volumetric errors, CMM, 3D hole-bar, inter-comparison
Procedia PDF Downloads 3842420 Machine Learning Approach for Predicting Students’ Academic Performance and Study Strategies Based on Their Motivation
Authors: Fidelia A. Orji, Julita Vassileva
Abstract:
This research aims to develop machine learning models for students' academic performance and study strategy prediction, which could be generalized to all courses in higher education. Key learning attributes (intrinsic, extrinsic, autonomy, relatedness, competence, and self-esteem) used in building the models are chosen based on prior studies, which revealed that the attributes are essential in students’ learning process. Previous studies revealed the individual effects of each of these attributes on students’ learning progress. However, few studies have investigated the combined effect of the attributes in predicting student study strategy and academic performance to reduce the dropout rate. To bridge this gap, we used Scikit-learn in python to build five machine learning models (Decision Tree, K-Nearest Neighbour, Random Forest, Linear/Logistic Regression, and Support Vector Machine) for both regression and classification tasks to perform our analysis. The models were trained, evaluated, and tested for accuracy using 924 university dentistry students' data collected by Chilean authors through quantitative research design. A comparative analysis of the models revealed that the tree-based models such as the random forest (with prediction accuracy of 94.9%) and decision tree show the best results compared to the linear, support vector, and k-nearest neighbours. The models built in this research can be used in predicting student performance and study strategy so that appropriate interventions could be implemented to improve student learning progress. Thus, incorporating strategies that could improve diverse student learning attributes in the design of online educational systems may increase the likelihood of students continuing with their learning tasks as required. Moreover, the results show that the attributes could be modelled together and used to adapt/personalize the learning process.Keywords: classification models, learning strategy, predictive modeling, regression models, student academic performance, student motivation, supervised machine learning
Procedia PDF Downloads 1282419 Discrimination of Bio-Analytes by Using Two-Dimensional Nano Sensor Array
Authors: P. Behera, K. K. Singh, D. K. Saini, M. De
Abstract:
Implementation of 2D materials in the detection of bio analytes is highly advantageous in the field of sensing because of its high surface to volume ratio. We have designed our sensor array with different cationic two-dimensional MoS₂, where surface modification was achieved by cationic thiol ligands with different functionality. Green fluorescent protein (GFP) was chosen as signal transducers for its biocompatibility and anionic nature, which can bind to the cationic MoS₂ surface easily, followed by fluorescence quenching. The addition of bio-analyte to the sensor can decomplex the cationic MoS₂ and GFP conjugates, followed by the regeneration of GFP fluorescence. The fluorescence response pattern belongs to various analytes collected and transformed to linear discriminant analysis (LDA) for classification. At first, 15 different proteins having wide range of molecular weight and isoelectric points were successfully discriminated at 50 nM with detection limit of 1 nM. The sensor system was also executed in biofluids such as serum, where 10 different proteins at 2.5 μM were well separated. After successful discrimination of protein analytes, the sensor array was implemented for bacteria sensing. Six different bacteria were successfully classified at OD = 0.05 with a detection limit corresponding to OD = 0.005. The optimized sensor array was able to classify uropathogens from non-uropathogens in urine medium. Further, the technique was applied for discrimination of bacteria possessing resistance to different types and amounts of drugs. We found out the mechanism of sensing through optical and electrodynamic studies, which indicates the interaction between bacteria with the sensor system was mainly due to electrostatic force of interactions, but the separation of native bacteria from their drug resistant variant was due to Van der Waals forces. There are two ways bacteria can be detected, i.e., through bacterial cells and lysates. The bacterial lysates contain intracellular information and also safe to analysis as it does not contain live cells. Lysates of different drug resistant bacteria were patterned effectively from the native strain. From unknown sample analysis, we found that discrimination of bacterial cells is more sensitive than that of lysates. But the analyst can prefer bacterial lysates over live cells for safer analysis.Keywords: array-based sensing, drug resistant bacteria, linear discriminant analysis, two-dimensional MoS₂
Procedia PDF Downloads 1432418 Performance Comparison of Non-Binary RA and QC-LDPC Codes
Abstract:
Repeat–Accumulate (RA) codes are subclass of LDPC codes with fast encoder structures. In this paper, we consider a nonbinary extension of binary LDPC codes over GF(q) and construct a non-binary RA code and a non-binary QC-LDPC code over GF(2^4), we construct non-binary RA codes with linear encoding method and non-binary QC-LDPC codes with algebraic constructions method. And the BER performance of RA and QC-LDPC codes over GF(q) are compared with BP decoding and by simulation over the Additive White Gaussian Noise (AWGN) channels.Keywords: non-binary RA codes, QC-LDPC codes, performance comparison, BP algorithm
Procedia PDF Downloads 3762417 Controller Design Using GA for SMC Systems
Authors: Susy Thomas, Sajju Thomas, Varghese Vaidyan
Abstract:
This paper considers SMCs using linear feedback with switched gains and proposes a method which can minimize the pole perturbation. The method is able to enhance the robustness property of the controller. A pre-assigned neighborhood of the ‘nominal’ positions is assigned and the system poles are not allowed to stray out of these bounds even when parameters variations/uncertainties act upon the system. A quasi SMM is maintained within the assigned boundaries of the sliding surface.Keywords: parameter variations, pole perturbation, sliding mode control, switching surface, robust switching vector
Procedia PDF Downloads 3642416 Implication of Built-Up Area, Vegetation, and Motorized Vehicles to Urban Microclimate in Bandung City Center
Authors: Ira Irawati, Muhammad Rangga Sururi
Abstract:
The expansion of built-up areas in many cities, particularly, as the consequences of urbanization process, is a common phenomenon in our contemporary world. As happened in many cities in developing world, this horizontal expansion let only a handful size of the area left for green open spaces, creating an extreme unbalance between built-up and green spaces. Combined with the high density and variety of human activities with its transportation modes; a process of urban heat island will occur, resulting in an increase in air temperature. This is one of the indicators of decreasing of the quality of urban microclimate. This paper will explore the effect of several variables of built-up areas and open spaces to the increase of air temperature using multiple linear regression analysis. We selected 11 zones within the radius of 1 km in Inner Bandung city center, and each zones measured within 300 m radius to represent the variety of land use, as well as the composition of buildings and green open spaces. By using a quantitative method which is multiple linear regression analysis, six dependent variables which are a) tree density-x1, b) shade level of tree-x2, c) surface area of buildings’ side which are facing west and east-x3, d) surface area of building side material-x4, e) surface area of pathway material, and f) numbers of motorized vehicles-x6; are calculated to find those influence to the air temperature as an independent variable-y. Finally, the relationship between those variables shows in this equation: y = 30.316 - 3.689 X1 – 6.563 X2 + 0.002 X3 – 2,517E6 X4 + 1.919E-9 X5 + 1.952E-4 X6. It shows that the existence of vegetation has a great impact on lowering temperature. In another way around, built up the area and motorized vehicles would increase the temperature. However, one component of built up area, the surface area of buildings’ sides which are facing west and east, has different result due to the building material is classified in low-middle heat capacity.Keywords: built-up area, microclimate, vehicles, urban heat island, vegetation
Procedia PDF Downloads 2592415 Modelling and Simulation of Aero-Elastic Vibrations Using System Dynamic Approach
Authors: Cosmas Pandit Pagwiwoko, Ammar Khaled Abdelaziz Abdelsamia
Abstract:
Flutter as a phenomenon of flow-induced and self-excited vibration has to be recognized considering its harmful effect on the structure especially in a stage of aircraft design. This phenomenon is also important for a wind energy harvester based on the fluttering surface due to its effective operational velocity range. This multi-physics occurrence can be presented by two governing equations in both fluid and structure simultaneously in respecting certain boundary conditions on the surface of the body. In this work, the equations are resolved separately by two distinct solvers, one-time step of each domain. The modelling and simulation of this flow-structure interaction in ANSYS show the effectiveness of this loosely coupled method in representing flutter phenomenon however the process is time-consuming for design purposes. Therefore, another technique using the same weak coupled aero-structure is proposed by using system dynamics approach. In this technique, the aerodynamic forces were calculated using singularity function for a range of frequencies and certain natural mode shapes are transformed into time domain by employing an approximation model of fraction rational function in Laplace variable. The representation of structure in a multi-degree-of-freedom coupled with a transfer function of aerodynamic forces can then be simulated in time domain on a block-diagram platform such as Simulink MATLAB. The dynamic response of flutter at certain velocity can be evaluated with another established flutter calculation in frequency domain k-method. In this method, a parameter of artificial structural damping is inserted in the equation of motion to assure the energy balance of flow and vibrating structure. The simulation in time domain is particularly interested as it enables to apply the structural non-linear factors accurately. Experimental tests on a fluttering airfoil in the wind tunnel are also conducted to validate the method.Keywords: flutter, flow-induced vibration, flow-structure interaction, non-linear structure
Procedia PDF Downloads 3152414 The Role of Motivational Beliefs and Self-Regulated Learning Strategies in The Prediction of Mathematics Teacher Candidates' Technological Pedagogical And Content Knowledge (TPACK) Perceptions
Authors: Ahmet Erdoğan, Şahin Kesici, Mustafa Baloğlu
Abstract:
Information technologies have lead to changes in the areas of communication, learning, and teaching. Besides offering many opportunities to the learners, these technologies have changed the teaching methods and beliefs of teachers. What the Technological Pedagogical Content Knowledge (TPACK) means to the teachers is considerably important to integrate technology successfully into teaching processes. It is necessary to understand how to plan and apply teacher training programs in order to balance students’ pedagogical and technological knowledge. Because of many inefficient teacher training programs, teachers have difficulties in relating technology, pedagogy and content knowledge each other. While providing an efficient training supported with technology, understanding the three main components (technology, pedagogy and content knowledge) and their relationship are very crucial. The purpose of this study is to determine whether motivational beliefs and self-regulated learning strategies are significant predictors of mathematics teacher candidates' TPACK perceptions. A hundred seventy five Turkish mathematics teachers candidates responded to the Motivated Strategies for Learning Questionnaire (MSLQ) and the Technological Pedagogical And Content Knowledge (TPACK) Scale. Of the group, 129 (73.7%) were women and 46 (26.3%) were men. Participants' ages ranged from 20 to 31 years with a mean of 23.04 years (SD = 2.001). In this study, a multiple linear regression analysis was used. In multiple linear regression analysis, the relationship between the predictor variables, mathematics teacher candidates' motivational beliefs, and self-regulated learning strategies, and the dependent variable, TPACK perceptions, were tested. It was determined that self-efficacy for learning and performance and intrinsic goal orientation are significant predictors of mathematics teacher candidates' TPACK perceptions. Additionally, mathematics teacher candidates' critical thinking, metacognitive self-regulation, organisation, time and study environment management, and help-seeking were found to be significant predictors for their TPACK perceptions.Keywords: candidate mathematics teachers, motivational beliefs, self-regulated learning strategies, technological and pedagogical knowledge, content knowledge
Procedia PDF Downloads 4822413 Deriving Generic Transformation Matrices for Multi-Axis Milling Machine
Authors: Alan C. Lin, Tzu-Kuan Lin, Tsong Der Lin
Abstract:
This paper proposes a new method to find the equations of transformation matrix for the rotation angles of the two rotational axes and the coordinates of the three linear axes of an orthogonal multi-axis milling machine. This approach provides intuitive physical meanings for rotation angles of multi-axis machines, which can be used to evaluate the accuracy of the conversion from CL data to NC data.Keywords: CAM, multi-axis milling machining, transformation matrix, rotation angles
Procedia PDF Downloads 4822412 Continuous Adaptive Robust Control for Non-Linear Uncertain Systems
Authors: Dong Sang Yoo
Abstract:
We consider nonlinear uncertain systems such that a priori information of the uncertainties is not available. For such systems, we assume that the upper bound of the uncertainties is represented as a Fredholm integral equation of the first kind and we propose an adaptation law that is capable of estimating the upper bound and design a continuous robust control which renders nonlinear uncertain systems ultimately bounded.Keywords: adaptive control, estimation, Fredholm integral, uncertain system
Procedia PDF Downloads 4832411 Machine Learning Approaches to Water Usage Prediction in Kocaeli: A Comparative Study
Authors: Kasim Görenekli, Ali Gülbağ
Abstract:
This study presents a comprehensive analysis of water consumption patterns in Kocaeli province, Turkey, utilizing various machine learning approaches. We analyzed data from 5,000 water subscribers across residential, commercial, and official categories over an 80-month period from January 2016 to August 2022, resulting in a total of 400,000 records. The dataset encompasses water consumption records, weather information, weekends and holidays, previous months' consumption, and the influence of the COVID-19 pandemic.We implemented and compared several machine learning models, including Linear Regression, Random Forest, Support Vector Regression (SVR), XGBoost, Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). Particle Swarm Optimization (PSO) was applied to optimize hyperparameters for all models.Our results demonstrate varying performance across subscriber types and models. For official subscribers, Random Forest achieved the highest R² of 0.699 with PSO optimization. For commercial subscribers, Linear Regression performed best with an R² of 0.730 with PSO. Residential water usage proved more challenging to predict, with XGBoost achieving the highest R² of 0.572 with PSO.The study identified key factors influencing water consumption, with previous months' consumption, meter diameter, and weather conditions being among the most significant predictors. The impact of the COVID-19 pandemic on consumption patterns was also observed, particularly in residential usage.This research provides valuable insights for effective water resource management in Kocaeli and similar regions, considering Turkey's high water loss rate and below-average per capita water supply. The comparative analysis of different machine learning approaches offers a comprehensive framework for selecting appropriate models for water consumption prediction in urban settings.Keywords: mMachine learning, water consumption prediction, particle swarm optimization, COVID-19, water resource management
Procedia PDF Downloads 152410 Comparative Study Performance of the Induction Motor between SMC and NLC Modes Control
Authors: A. Oukaci, R. Toufouti, D. Dib, l. Atarsia
Abstract:
This article presents a multitude of alternative techniques to control the vector control, namely the nonlinear control and sliding mode control. Moreover, the implementation of their control law applied to the high-performance to the induction motor with the objective to improve the tracking control, ensure stability robustness to parameter variations and disturbance rejection. Tests are performed numerical simulations in the Matlab/Simulink interface, the results demonstrate the efficiency and dynamic performance of the proposed strategy.Keywords: Induction Motor (IM), Non-linear Control (NLC), Sliding Mode Control (SMC), nonlinear sliding surface
Procedia PDF Downloads 5722409 Therapeutic Drug Monitoring by Dried Blood Spot and LC-MS/MS: Novel Application to Carbamazepine and Its Metabolite in Paediatric Population
Authors: Giancarlo La Marca, Engy Shokry, Fabio Villanelli
Abstract:
Epilepsy is one of the most common neurological disorders, with an estimated prevalence of 50 million people worldwide. Twenty five percent of the epilepsy population is represented in children under the age of 15 years. For antiepileptic drugs (AED), there is a poor correlation between plasma concentration and dose especially in children. This was attributed to greater pharmacokinetic variability than adults. Hence, therapeutic drug monitoring (TDM) is recommended in controlling toxicity while drug exposure is maintained. Carbamazepine (CBZ) is a first-line AED and the drug of first choice in trigeminal neuralgia. CBZ is metabolised in the liver into carbamazepine-10,11-epoxide (CBZE), its major metabolite which is equipotent. This develops the need for an assay able to monitor the levels of both CBZ and CBZE. The aim of the present study was to develop and validate a LC-MS/MS method for simultaneous quantification of CBZ and CBZE in dried blood spots (DBS). DBS technique overcomes many logistical problems, ethical issues and technical challenges faced by classical plasma sampling. LC-MS/MS has been regarded as superior technique over immunoassays and HPLC/UV methods owing to its better specificity and sensitivity, lack of interference or matrix effects. Our method combines advantages of DBS technique and LC-MS/MS in clinical practice. The extraction process was done using methanol-water-formic acid (80:20:0.1, v/v/v). The chromatographic elution was achieved by using a linear gradient with a mobile phase consisting of acetonitrile-water-0.1% formic acid at a flow rate of 0.50 mL/min. The method was linear over the range 1-40 mg/L and 0.25-20 mg/L for CBZ and CBZE respectively. The limit of quantification was 1.00 mg/L and 0.25 mg/L for CBZ and CBZE, respectively. Intra-day and inter-day assay precisions were found to be less than 6.5% and 11.8%. An evaluation of DBS technique was performed, including effect of extraction solvent, spot homogeneity and stability in DBS. Results from a comparison with the plasma assay are also presented. The novelty of the present work lies in being the first to quantify CBZ and its metabolite from only one 3.2 mm DBS disc finger-prick sample (3.3-3.4 µl blood) by LC-MS/MS in a 10 min. chromatographic run.Keywords: carbamazepine, carbamazepine-10, 11-epoxide, dried blood spots, LC-MS/MS, therapeutic drug monitoring
Procedia PDF Downloads 4172408 Potential Energy Expectation Value for Lithium Excited State (1s2s3s)
Authors: Khalil H. Al-Bayati, G. Nasma, Hussein Ban H. Adel
Abstract:
The purpose of the present work is to calculate the expectation value of potential energyKeywords: lithium excited state, potential energy, 1s2s3s, mathematical physics
Procedia PDF Downloads 4892407 Multi-Criteria Decision Making Network Optimization for Green Supply Chains
Authors: Bandar A. Alkhayyal
Abstract:
Modern supply chains are typically linear, transforming virgin raw materials into products for end consumers, who then discard them after use to landfills or incinerators. Nowadays, there are major efforts underway to create a circular economy to reduce non-renewable resource use and waste. One important aspect of these efforts is the development of Green Supply Chain (GSC) systems which enables a reverse flow of used products from consumers back to manufacturers, where they can be refurbished or remanufactured, to both economic and environmental benefit. This paper develops novel multi-objective optimization models to inform GSC system design at multiple levels: (1) strategic planning of facility location and transportation logistics; (2) tactical planning of optimal pricing; and (3) policy planning to account for potential valuation of GSC emissions. First, physical linear programming was applied to evaluate GSC facility placement by determining the quantities of end-of-life products for transport from candidate collection centers to remanufacturing facilities while satisfying cost and capacity criteria. Second, disassembly and remanufacturing processes have received little attention in industrial engineering and process cost modeling literature. The increasing scale of remanufacturing operations, worth nearly $50 billion annually in the United States alone, have made GSC pricing an important subject of research. A non-linear physical programming model for optimization of pricing policy for remanufactured products that maximizes total profit and minimizes product recovery costs were examined and solved. Finally, a deterministic equilibrium model was used to determine the effects of internalizing a cost of GSC greenhouse gas (GHG) emissions into optimization models. Changes in optimal facility use, transportation logistics, and pricing/profit margins were all investigated against a variable cost of carbon, using case study system created based on actual data from sites in the Boston area. As carbon costs increase, the optimal GSC system undergoes several distinct shifts in topology as it seeks new cost-minimal configurations. A comprehensive study of quantitative evaluation and performance of the model has been done using orthogonal arrays. Results were compared to top-down estimates from economic input-output life cycle assessment (EIO-LCA) models, to contrast remanufacturing GHG emission quantities with those from original equipment manufacturing operations. Introducing a carbon cost of $40/t CO2e increases modeled remanufacturing costs by 2.7% but also increases original equipment costs by 2.3%. The assembled work advances the theoretical modeling of optimal GSC systems and presents a rare case study of remanufactured appliances.Keywords: circular economy, extended producer responsibility, greenhouse gas emissions, industrial ecology, low carbon logistics, green supply chains
Procedia PDF Downloads 1602406 Management of Femoral Neck Stress Fractures at a Specialist Centre and Predictive Factors to Return to Activity Time: An Audit
Authors: Charlotte K. Lee, Henrique R. N. Aguiar, Ralph Smith, James Baldock, Sam Botchey
Abstract:
Background: Femoral neck stress fractures (FNSF) are uncommon, making up 1 to 7.2% of stress fractures in healthy subjects. FNSFs are prevalent in young women, military recruits, endurance athletes, and individuals with energy deficiency syndrome or female athlete triad. Presentation is often non-specific and is often misdiagnosed following the initial examination. There is limited research addressing the return–to–activity time after FNSF. Previous studies have demonstrated prognostic time predictions based on various imaging techniques. Here, (1) OxSport clinic FNSF practice standards are retrospectively reviewed, (2) FNSF cohort demographics are examined, (3) Regression models were used to predict return–to–activity prognosis and consequently determine bone stress risk factors. Methods: Patients with a diagnosis of FNSF attending Oxsport clinic between 01/06/2020 and 01/01/2020 were selected from the Rheumatology Assessment Database Innovation in Oxford (RhADiOn) and OxSport Stress Fracture Database (n = 14). (1) Clinical practice was audited against five criteria based on local and National Institute for Health Care Excellence guidance, with a 100% standard. (2) Demographics of the FNSF cohort were examined with Student’s T-Test. (3) Lastly, linear regression and Random Forest regression models were used on this patient cohort to predict return–to–activity time. Consequently, an analysis of feature importance was conducted after fitting each model. Results: OxSport clinical practice met standard (100%) in 3/5 criteria. The criteria not met were patient waiting times and documentation of all bone stress risk factors. Importantly, analysis of patient demographics showed that of the population with complete bone stress risk factor assessments, 53% were positive for modifiable bone stress risk factors. Lastly, linear regression analysis was utilized to identify demographic factors that predicted return–to–activity time [R2 = 79.172%; average error 0.226]. This analysis identified four key variables that predicted return-to-activity time: vitamin D level, total hip DEXA T value, femoral neck DEXA T value, and history of an eating disorder/disordered eating. Furthermore, random forest regression models were employed for this task [R2 = 97.805%; average error 0.024]. Analysis of the importance of each feature again identified a set of 4 variables, 3 of which matched with the linear regression analysis (vitamin D level, total hip DEXA T value, and femoral neck DEXA T value) and the fourth: age. Conclusion: OxSport clinical practice could be improved by more comprehensively evaluating bone stress risk factors. The importance of this evaluation is demonstrated by the population found positive for these risk factors. Using this cohort, potential bone stress risk factors that significantly impacted return-to-activity prognosis were predicted using regression models.Keywords: eating disorder, bone stress risk factor, femoral neck stress fracture, vitamin D
Procedia PDF Downloads 1832405 Correlation of Unsuited and Suited 5ᵗʰ Female Hybrid III Anthropometric Test Device Model under Multi-Axial Simulated Orion Abort and Landing Conditions
Authors: Christian J. Kennett, Mark A. Baldwin
Abstract:
As several companies are working towards returning American astronauts back to space on US-made spacecraft, NASA developed a human flight certification-by-test and analysis approach due to the cost-prohibitive nature of extensive testing. This process relies heavily on the quality of analytical models to accurately predict crew injury potential specific to each spacecraft and under dynamic environments not tested. As the prime contractor on the Orion spacecraft, Lockheed Martin was tasked with quantifying the correlation of analytical anthropometric test devices (ATDs), also known as crash test dummies, against test measurements under representative impact conditions. Multiple dynamic impact sled tests were conducted to characterize Hybrid III 5th ATD lumbar, head, and neck responses with and without a modified shuttle-era advanced crew escape suit (ACES) under simulated Orion landing and abort conditions. Each ATD was restrained via a 5-point harness in a mockup Orion seat fixed to a dynamic impact sled at the Wright Patterson Air Force Base (WPAFB) Biodynamics Laboratory in the horizontal impact accelerator (HIA). ATDs were subject to multiple impact magnitudes, half-sine pulse rise times, and XZ - ‘eyeballs out/down’ or Z-axis ‘eyeballs down’ orientations for landing or an X-axis ‘eyeballs in’ orientation for abort. Several helmet constraint devices were evaluated during suited testing. Unique finite element models (FEMs) were developed of the unsuited and suited sled test configurations using an analytical 5th ATD model developed by LSTC (Livermore, CA) and deformable representations of the seat, suit, helmet constraint countermeasures, and body restraints. Explicit FE analyses were conducted using the non-linear solver LS-DYNA. Head linear and rotational acceleration, head rotational velocity, upper neck force and moment, and lumbar force time histories were compared between test and analysis using the enhanced error assessment of response time histories (EEARTH) composite score index. The EEARTH rating paired with the correlation and analysis (CORA) corridor rating provided a composite ISO score that was used to asses model correlation accuracy. NASA occupant protection subject matter experts established an ISO score of 0.5 or greater as the minimum expectation for correlating analytical and experimental ATD responses. Unsuited 5th ATD head X, Z, and resultant linear accelerations, head Y rotational accelerations and velocities, neck X and Z forces, and lumbar Z forces all showed consistent ISO scores above 0.5 in the XZ impact orientation, regardless of peak g-level or rise time. Upper neck Y moments were near or above the 0.5 score for most of the XZ cases. Similar trends were found in the XZ and Z-axis suited tests despite the addition of several different countermeasures for restraining the helmet. For the X-axis ‘eyeballs in’ loading direction, only resultant head linear acceleration and lumbar Z-axis force produced ISO scores above 0.5 whether unsuited or suited. The analytical LSTC 5th ATD model showed good correlation across multiple head, neck, and lumbar responses in both the unsuited and suited configurations when loaded in the XZ ‘eyeballs out/down’ direction. Upper neck moments were consistently the most difficult to predict, regardless of impact direction or test configuration.Keywords: impact biomechanics, manned spaceflight, model correlation, multi-axial loading
Procedia PDF Downloads 1142404 Comparative Evaluation of Root Uptake Models for Developing Moisture Uptake Based Irrigation Schedules for Crops
Authors: Vijay Shankar
Abstract:
In the era of water scarcity, effective use of water via irrigation requires good methods for determining crop water needs. Implementation of irrigation scheduling programs requires an accurate estimate of water use by the crop. Moisture depletion from the root zone represents the consequent crop evapotranspiration (ET). A numerical model for simulating soil water depletion in the root zone has been developed by taking into consideration soil physical properties, crop and climatic parameters. The governing differential equation for unsaturated flow of water in the soil is solved numerically using the fully implicit finite difference technique. The water uptake by plants is simulated by using three different sink functions. The non-linear model predictions are in good agreement with field data and thus it is possible to schedule irrigations more effectively. The present paper describes irrigation scheduling based on moisture depletion from the different layers of the root zone, obtained using different sink functions for three cash, oil and forage crops: cotton, safflower and barley, respectively. The soil is considered at a moisture level equal to field capacity prior to planting. Two soil moisture regimes are then imposed for irrigated treatment, one wherein irrigation is applied whenever soil moisture content is reduced to 50% of available soil water; and other wherein irrigation is applied whenever soil moisture content is reduced to 75% of available soil water. For both the soil moisture regimes it has been found that the model incorporating a non-linear sink function which provides best agreement of computed root zone moisture depletion with field data, is most effective in scheduling irrigations. Simulation runs with this moisture uptake function result in saving 27.3 to 45.5% & 18.7 to 37.5%, 12.5 to 25% % &16.7 to 33.3% and 16.7 to 33.3% & 20 to 40% irrigation water for cotton, safflower and barley respectively, under 50 & 75% moisture depletion regimes over other moisture uptake functions considered in the study. Simulation developed can be used for an optimized irrigation planning for different crops, choosing a suitable soil moisture regime depending upon the irrigation water availability and crop requirements.Keywords: irrigation water, evapotranspiration, root uptake models, water scarcity
Procedia PDF Downloads 3312403 Eco-Design of Construction Industrial Park in China with Selection of Candidate Tenants
Authors: Yang Zhou, Kaijian Li, Guiwen Liu
Abstract:
Offsite construction is an innovative alternative to conventional site-based construction, with wide-ranging benefits. It requires building components, elements or modules were prefabricated and pre-assembly before installed into their final locations. To improve efficiency and achieve synergies, in recent years, construction companies were clustered into construction industrial parks (CIPs) in China. A CIP is a community of construction manufacturing and service businesses located together on a common property. Companies involved in industrial clusters can obtain environment and economic benefits by sharing resources and information in a given region. Therefore, the concept of industrial symbiosis (IS) can be applied to the traditional CIP to achieve sustainable industrial development or redevelopment through the implementation of eco-industrial parks (EIP). However, before designing a symbiosis network between companies in a CIP, candidate support tenants need to be selected to complement the existing construction companies. In this study, an access indicator system and a linear programming model are established to select candidate tenants in a CIP while satisfying the degree of connectivity among the enterprises in the CIP, minimizing the environmental impact, and maximizing the annualized profit of the CIP. The access indicator system comprises three primary indicators and fifteen secondary indicators, is proposed from the perspective of park-based level. The fifteen indicators are classified as three primary indicators including industrial symbiosis, environment performance and economic benefit, according to the three dimensions of sustainability (environment, economic and social dimensions) and the three R's of the environment (reduce, reuse and recycle). The linear programming model is a method to assess the satisfactoriness of all the indicators and to make an optimal multi-objective selection among candidate tenants. This method provides a practical tool for planners of a CIP in evaluating which among the candidate tenants would best complement existing anchor construction tenants. The reasonability and validity of the indicator system and the method is worth further study in the future.Keywords: construction industrial park, China, industrial symbiosis, offsite construction, selection of support tenants
Procedia PDF Downloads 2742402 Synthesis and Thermoluminescence Investigations of Doped LiF Nanophosphor
Authors: Pooja Seth, Shruti Aggarwal
Abstract:
Thermoluminescence dosimetry (TLD) is one of the most effective methods for the assessment of dose during diagnostic radiology and radiotherapy applications. In these applications monitoring of absorbed dose is essential to prevent patient from undue exposure and to evaluate the risks that may arise due to exposure. LiF based thermoluminescence (TL) dosimeters are promising materials for the estimation, calibration and monitoring of dose due to their favourable dosimetric characteristics like tissue-equivalence, high sensitivity, energy independence and dose linearity. As the TL efficiency of a phosphor strongly depends on the preparation route, it is interesting to investigate the TL properties of LiF based phosphor in nanocrystalline form. LiF doped with magnesium (Mg), copper (Cu), sodium (Na) and silicon (Si) in nanocrystalline form has been prepared using chemical co-precipitation method. Cubical shape LiF nanostructures are formed. TL dosimetry properties have been investigated by exposing it to gamma rays. TL glow curve structure of nanocrystalline form consists of a single peak at 419 K as compared to the multiple peaks observed in microcrystalline form. A consistent glow curve structure with maximum TL intensity at annealing temperature of 573 K and linear dose response from 0.1 to 1000 Gy is observed which is advantageous for radiotherapy application. Good reusability, low fading (5 % over a month) and negligible residual signal (0.0019%) are observed. As per photoluminescence measurements, wide emission band at 360 nm - 550 nm is observed in an undoped LiF. However, an intense peak at 488 nm is observed in doped LiF nanophosphor. The phosphor also exhibits the intense optically stimulated luminescence. Nanocrystalline LiF: Mg, Cu, Na, Si phosphor prepared by co-precipitation method showed simple glow curve structure, linear dose response, reproducibility, negligible residual signal, good thermal stability and low fading. The LiF: Mg, Cu, Na, Si phosphor in nanocrystalline form has tremendous potential in diagnostic radiology, radiotherapy and high energy radiation application.Keywords: thermoluminescence, nanophosphor, optically stimulated luminescence, co-precipitation method
Procedia PDF Downloads 4042401 A Convolution Neural Network PM-10 Prediction System Based on a Dense Measurement Sensor Network in Poland
Authors: Piotr A. Kowalski, Kasper Sapala, Wiktor Warchalowski
Abstract:
PM10 is a suspended dust that primarily has a negative effect on the respiratory system. PM10 is responsible for attacks of coughing and wheezing, asthma or acute, violent bronchitis. Indirectly, PM10 also negatively affects the rest of the body, including increasing the risk of heart attack and stroke. Unfortunately, Poland is a country that cannot boast of good air quality, in particular, due to large PM concentration levels. Therefore, based on the dense network of Airly sensors, it was decided to deal with the problem of prediction of suspended particulate matter concentration. Due to the very complicated nature of this issue, the Machine Learning approach was used. For this purpose, Convolution Neural Network (CNN) neural networks have been adopted, these currently being the leading information processing methods in the field of computational intelligence. The aim of this research is to show the influence of particular CNN network parameters on the quality of the obtained forecast. The forecast itself is made on the basis of parameters measured by Airly sensors and is carried out for the subsequent day, hour after hour. The evaluation of learning process for the investigated models was mostly based upon the mean square error criterion; however, during the model validation, a number of other methods of quantitative evaluation were taken into account. The presented model of pollution prediction has been verified by way of real weather and air pollution data taken from the Airly sensor network. The dense and distributed network of Airly measurement devices enables access to current and archival data on air pollution, temperature, suspended particulate matter PM1.0, PM2.5, and PM10, CAQI levels, as well as atmospheric pressure and air humidity. In this investigation, PM2.5, and PM10, temperature and wind information, as well as external forecasts of temperature and wind for next 24h served as inputted data. Due to the specificity of the CNN type network, this data is transformed into tensors and then processed. This network consists of an input layer, an output layer, and many hidden layers. In the hidden layers, convolutional and pooling operations are performed. The output of this system is a vector containing 24 elements that contain prediction of PM10 concentration for the upcoming 24 hour period. Over 1000 models based on CNN methodology were tested during the study. During the research, several were selected out that give the best results, and then a comparison was made with the other models based on linear regression. The numerical tests carried out fully confirmed the positive properties of the presented method. These were carried out using real ‘big’ data. Models based on the CNN technique allow prediction of PM10 dust concentration with a much smaller mean square error than currently used methods based on linear regression. What's more, the use of neural networks increased Pearson's correlation coefficient (R²) by about 5 percent compared to the linear model. During the simulation, the R² coefficient was 0.92, 0.76, 0.75, 0.73, and 0.73 for 1st, 6th, 12th, 18th, and 24th hour of prediction respectively.Keywords: air pollution prediction (forecasting), machine learning, regression task, convolution neural networks
Procedia PDF Downloads 1492400 Similar Correlation of Meat and Sugar to Global Obesity Prevalence
Authors: Wenpeng You, Maciej Henneberg
Abstract:
Background: Sugar consumption has been overwhelmingly advocated as a major dietary offender to obesity prevalence. Meat intake has been hypothesized as an obesity contributor in previous publications, but a moderate amount of meat to be included in our daily diet still has been suggested in many dietary guidelines. Comparable sugar and meat exposure data were obtained to assess the difference in relationships between the two major food groups and obesity prevalence at population level. Methods: Population level estimates of obesity and overweight rates, per capita per day exposure of major food groups (meat, sugar, starch crops, fibers, fats and fruits) and total calories, per capita per year GDP, urbanization and physical inactivity prevalence rate were extracted and matched for statistical analysis. Correlation coefficient (Pearson and partial) comparisons with Fisher’s r-to-z transformation and β range (β ± 2 SE) and overlapping in multiple linear regression (Enter and Stepwise) were used to examine potential differences in the relationships between obesity prevalence and sugar exposure and meat exposure respectively. Results: Pearson and partial correlations (controlled for total calories, physical inactivity prevalence, GDP and urbanization) analyses revealed that sugar and meat exposures correlated to obesity and overweight prevalence significantly. Fisher's r-to-z transformation did not show statistically significant difference in Pearson correlation coefficients (z=-0.53, p=0.5961) or partial correlation coefficients (z=-0.04, p=0.9681) between obesity prevalence and both sugar exposure and meat exposure. Both Enter and Stepwise models in multiple linear regression analysis showed that sugar and meat exposure were most significant predictors of obesity prevalence. Great β range overlapping in the Enter (0.289-0.573) and Stepwise (0.294-0.582) models indicated statistically sugar and meat exposure correlated to obesity without significant difference. Conclusion: Worldwide sugar and meat exposure correlated to obesity prevalence at the same extent. Like sugar, minimal meat exposure should also be suggested in the dietary guidelines.Keywords: meat, sugar, obesity, energy surplus, meat protein, fats, insulin resistance
Procedia PDF Downloads 3062399 A Quantitative Study Investigating Whether the Internalisation of Adolescent Femininity Ideologies Predicts Depression and Anxiety in Female Adolescents
Authors: Tondani Mudau, Sherine B. Van Wyk, Zuhayr Kafaar, Janan Dietrich
Abstract:
Female adolescents residing in a patriarchal society such as South Africa are more inclined to embrace feminine ideologies. Internalizing these ideologies may expose female adolescents to mental health challenges such as depression and anxiety. This study explored whether the internalisation of adolescent femininity ideologies namely, objectified relationship with own body (ORB) and inauthentic self in relationships (ISR) predicted anxiety and depression in late female adolescents at Stellenbosch University. The sample of the study consisted of 1451 (18-24) female undergraduate and postgraduate students enrolled at Stellenbosch University. The mean age of the participants was 20 (SD=1.46), and most participants (39.7%) were first-year students. The study employed a cross-sectional quantitative research design. Data was collected through an online self-completion survey, the survey consisted of three sections, the first section asked biographical questions regarding age, gender, race and family background. The second section measured the internalisation of feminine ideologies by using the adolescent femininity ideology scale which has two subscales namely inauthentic self in relationship with others (ISR) and objectified relationship with one’s own body (ORB). The ISR scale had the Cronbach Alpha of 0.76, and the ORB scale had the Cronbach Alpha of 0.83. The third section measured mental health (depression and anxiety) by using the Hopkins Symptoms 25-checklist which had the Cronbach Alpha of 0.93. Data were analysed through multiple linear regression from IBM SPSS (Statistical Package for the Social Sciences Version 24). The overall results of the multiple linear regression showed that The AFIS combination accounted for 14% for anxiety as measured by the Hopkins Symptoms Checklist R² = .142, F (2, 682) = 56.431, p < .001. The combination also accounted for 24% for depression as measured by the Hopkins Symptoms Checklist R² = .239, F (2, 682) = 106.971, p < .0. The findings in this study affirm the objectification and feminist theory contentions that internalising femininity ideologies (ISR and ORB) predict negative mental health in female adolescents.Keywords: adolescents, anxiety, depression, feminine ideologies, inauthentic self, mental health, self-objectification, South Africa
Procedia PDF Downloads 1512398 Fuglede-Putnam Theorem for ∗-Class A Operators
Authors: Mohammed Husein Mohammad Rashid
Abstract:
For a bounded linear operator T acting on a complex infinite dimensional Hilbert space ℋ, we say that T is ∗-class A operator (abbreviation T∈A*) if |T²|≥ |T*|². In this article, we prove the following assertions:(i) we establish some conditions which imply the normality of ∗-class A; (ii) we consider ∗-class A operator T ∈ ℬ(ℋ) with reducing kernel such that TX = XS for some X ∈ ℬ(K, ℋ) and prove the Fuglede-Putnam type theorem when adjoint of S ∈ ℬ(K) is dominant operators; (iii) furthermore, we extend the asymmetric Putnam-Fuglede theorem the class of ∗-class A operators.Keywords: fuglede-putnam theorem, normal operators, ∗-class a operators, dominant operators
Procedia PDF Downloads 882397 Optimization of Tundish Geometry for Minimizing Dead Volume Using OpenFOAM
Authors: Prateek Singh, Dilshad Ahmad
Abstract:
Growing demand for high-quality steel products has inspired researchers to investigate the unit operations involved in the manufacturing of these products (slabs, rods, sheets, etc.). One such operation is tundish operation, in which a vessel (tundish) acts as a buffer of molten steel for the solidification operation in mold. It is observed that tundish also plays a crucial role in the quality and cleanliness of the steel produced, besides merely acting as a reservoir for the mold. It facilitates removal of dissolved oxygen (inclusions) from the molten steel thus improving its cleanliness. Inclusion removal can be enhanced by increasing the residence time of molten steel in the tundish by incorporation of flow modifiers like dams, weirs, turbo-pad, etc. These flow modifiers also help in reducing the dead or short circuit zones within the tundish which is significant for maintaining thermal and chemical homogeneity of molten steel. Thus, it becomes important to analyze the flow of molten steel in the tundish for different configuration of flow modifiers. In the present work, effect of varying positions and heights/depths of dam and weir on the dead volume in tundish is studied. Steady state thermal and flow profiles of molten steel within the tundish are obtained using OpenFOAM. Subsequently, Residence Time Distribution analysis is performed to obtain the percentage of dead volume in the tundish. Design of Experiment method is then used to configure different tundish geometries for varying positions and heights/depths of dam and weir, and dead volume for each tundish design is obtained. A second-degree polynomial with two-term interactions of independent variables to predict the dead volume in the tundish with positions and heights/depths of dam and weir as variables are computed using Multiple Linear Regression model. This polynomial is then used in an optimization framework to obtain the optimal tundish geometry for minimizing dead volume using Sequential Quadratic Programming optimization.Keywords: design of experiments, multiple linear regression, OpenFOAM, residence time distribution, sequential quadratic programming optimization, steel, tundish
Procedia PDF Downloads 2082396 The Relationship between Amplitude and Stability of Circadian Rhythm with Sleep Quality and Sleepiness: A Population Study, Kerman 2018
Authors: Akram Sadat Jafari Roodbandi, Farzaneh Akbari, Vafa Feyzi, Zahra Zare, Zohreh Foroozanfar
Abstract:
Introduction: Circadian rhythm or sleep-awake cycle in 24 hours is one of the important factors affecting the physiological and psychological characteristics in humans that contribute to biochemical, physiological and behavioral processes and helps people to set up brain and body for sleep or active awakening during certain hours. The purpose of this study was to investigate the relationship between the characteristics of circadian rhythms on the sleep quality and sleepiness according to their demographic characteristics such as age. Methods: This cross-sectional descriptive-analytic study was carried out among the general population of Kerman, aged 15-84 years. After dividing the age groups into 10-year demographic characteristics questionnaire, the type of circadian questionnaire, Pittsburgh sleep quality questionnaire and Euporth sleepiness questionnaire were completed in equal numbers between men and women of that age group. Using cluster sampling with effect design equal 2, 1300 questionnaires were distributed during the various hours of 24 hours in public places in Kerman city. Data analysis was done using SPSS software and univariate tests and linear regressions at a significance level of 0.05. Results: In this study, 1147 subjects were included in the study, 584 (50.9%) were male and the rest were women. The mean age was 39.50 ± 15.38. 133 (11.60%) subjects from the study participants had sleepiness and 308 (26.90%) subjects had undesirable sleep quality. Using linear regression test, sleep quality was the significant correlation with sex, hours needed for sleep at 24 hours, chronic illness, sleepiness, and circadian rhythm amplitude. Sleepiness was the meaningful relationship with marital status, sleep-wake schedule of other family members and the stability of circadian rhythm. Both women and men, with age, decrease the quality of sleep and increase the rate of sleepiness. Conclusion: Age, sex, and type of circadian people, the need for sleep at 24 hours, marital status, sleep-wake schedule of other family members are significant factors related to the sleep quality and sleepiness and their adaptation to night shift work.Keywords: circadian type, sleep quality, sleepiness, age, shift work
Procedia PDF Downloads 153