Search results for: road transport systems
Optimized Techniques for Reducing the Reactive Power Generation in Offshore Wind Farms in India
Authors: Pardhasaradhi Gudla, Imanual A.
Abstract:
The generated electrical power in offshore needs to be transmitted to grid which is located in onshore by using subsea cables. Long subsea cables produce reactive power, which should be compensated in order to limit transmission losses, to optimize the transmission capacity, and to keep the grid voltage within the safe operational limits. Installation cost of wind farm includes the structure design cost and electrical system cost. India has targeted to achieve 175GW of renewable energy capacity by 2022 including offshore wind power generation. Due to sea depth is more in India, the installation cost will be further high when compared to European countries where offshore wind energy is already generating successfully. So innovations are required to reduce the offshore wind power project cost. This paper presents the optimized techniques to reduce the installation cost of offshore wind firm with respect to electrical transmission systems. This technical paper provides the techniques for increasing the current carrying capacity of subsea cable by decreasing the reactive power generation (capacitance effect) of the subsea cable. There are many methods for reactive power compensation in wind power plants so far in execution. The main reason for the need of reactive power compensation is capacitance effect of subsea cable. So if we diminish the cable capacitance of cable then the requirement of the reactive power compensation will be reduced or optimized by avoiding the intermediate substation at midpoint of the transmission network.Keywords: offshore wind power, optimized techniques, power system, sub sea cable
Procedia PDF Downloads 202Fixed Point Iteration of a Damped and Unforced Duffing's Equation
Authors: Paschal A. Ochang, Emmanuel C. Oji
Abstract:
The Duffing’s Equation is a second order system that is very important because they are fundamental to the behaviour of higher order systems and they have applications in almost all fields of science and engineering. In the biological area, it is useful in plant stem dependence and natural frequency and model of the Brain Crash Analysis (BCA). In Engineering, it is useful in the study of Damping indoor construction and Traffic lights and to the meteorologist it is used in the prediction of weather conditions. However, most Problems in real life that occur are non-linear in nature and may not have analytical solutions except approximations or simulations, so trying to find an exact explicit solution may in general be complicated and sometimes impossible. Therefore we aim to find out if it is possible to obtain one analytical fixed point to the non-linear ordinary equation using fixed point analytical method. We started by exposing the scope of the Duffing’s equation and other related works on it. With a major focus on the fixed point and fixed point iterative scheme, we tried different iterative schemes on the Duffing’s Equation. We were able to identify that one can only see the fixed points to a Damped Duffing’s Equation and not to the Undamped Duffing’s Equation. This is because the cubic nonlinearity term is the determining factor to the Duffing’s Equation. We finally came to the results where we identified the stability of an equation that is damped, forced and second order in nature. Generally, in this research, we approximate the solution of Duffing’s Equation by converting it to a system of First and Second Order Ordinary Differential Equation and using Fixed Point Iterative approach. This approach shows that for different versions of Duffing’s Equations (damped), we find fixed points, therefore the order of computations and running time of applied software in all fields using the Duffing’s equation will be reduced.Keywords: damping, Duffing's equation, fixed point analysis, second order differential, stability analysis
Procedia PDF Downloads 299Preparation and Removal Properties of Hollow Fiber Membranes for Drinking Water
Authors: Seung Moon Woo, Youn Suk Chung, Sang Yong Nam
Abstract:
In the present time, we need advanced water treatment technology for separation of virus and bacteria in effluent which occur epidemic and waterborne diseases. Water purification system is mainly divided into two categorizations like reverse osmosis (RO) and ultrafiltration (UF). Membrane used in these systems requires higher durability because of operating in harsh condition. Of these, the membrane using in UF system has many advantages like higher efficiency and lower energy consume for water treatment compared with RO system. In many kinds of membrane, hollow fiber type membrane is possible to make easily and to get optimized property by control of various spinning conditions such as temperature of coagulation bath, concentration of polymer, addition of additive, air gap and internal coagulation. In this study, polysulfone hollow fiber membrane was successfully prepared by phase inversion method for separation of virus and bacteria. When we prepare the hollow fiber membrane, we controlled various factors such as the polymer concentration, air gap and internal coagulation to investigate effect to membrane property. Morphology of surface and cross section of membrane were measured by field emission scanning electron microscope (FE-SEM). Water flux of membrane was measured using test modules. Mean pore diameter of membrane was calculated using rejection of polystyrene (PS) latex beads for separation of virus and bacteria. Flux and mean flow pore diameter of prepared membrane show 1.5 LPM, 0.03 μm at 1.0 kgf/cm2. The bacteria and virus removal performance of prepared UF membranes were over 6 logs.Keywords: hollow fiber membrane, drinking water, ultrafiltration, bacteria
Procedia PDF Downloads 250Embedded System of Signal Processing on FPGA: Underwater Application Architecture
Authors: Abdelkader Elhanaoui, Mhamed Hadji, Rachid Skouri, Said Agounad
Abstract:
The purpose of this paper is to study the phenomenon of acoustic scattering by using a new method. The signal processing (Fast Fourier Transform FFT Inverse Fast Fourier Transform iFFT and BESSEL functions) is widely applied to obtain information with high precision accuracy. Signal processing has a wider implementation in general-purpose pro-cessors. Our interest was focused on the use of FPGAs (Field-Programmable Gate Ar-rays) in order to minimize the computational complexity in single processor architecture, then be accelerated on FPGA and meet real-time and energy efficiency requirements. Gen-eral-purpose processors are not efficient for signal processing. We implemented the acous-tic backscattered signal processing model on the Altera DE-SOC board and compared it to Odroid xu4. By comparison, the computing latency of Odroid xu4 and FPGA is 60 sec-onds and 3 seconds, respectively. The detailed SoC FPGA-based system has shown that acoustic spectra are performed up to 20 times faster than the Odroid xu4 implementation. FPGA-based system of processing algorithms is realized with an absolute error of about 10⁻³. This study underlines the increasing importance of embedded systems in underwater acoustics, especially in non-destructive testing. It is possible to obtain information related to the detection and characterization of submerged cells. So we have achieved good exper-imental results in real-time and energy efficiency.Keywords: DE1 FPGA, acoustic scattering, form function, signal processing, non-destructive testing
Procedia PDF Downloads 82An Optimal Path for Virtual Reality Education using Association Rules
Authors: Adam Patterson
Abstract:
This study analyzes the self-reported experiences of virtual reality users to develop insight into an optimal learning path for education within virtual reality. This research uses a sample of 1000 observations to statistically define factors influencing (i) immersion level and (ii) motion sickness rating for virtual reality experience respondents of college age. This paper recommends an efficient duration for each virtual reality session, to minimize sickness and maximize engagement, utilizing modern machine learning methods such as association rules. The goal of this research, in augmentation with previous literature, is to inform logistical decisions relating to implementation of pilot instruction for virtual reality at the collegiate level. Future research will include a Randomized Control Trial (RCT) to quantify the effect of virtual reality education on student learning outcomes and engagement measures. Current research aims to maximize the treatment effect within the RCT by optimizing the learning benefits of virtual reality. Results suggest significant gender heterogeneity amongst likelihood of reporting motion sickness. Females are 1.7 times more likely, than males, to report high levels of motion sickness resulting from a virtual reality experience. Regarding duration, respondents were 1.29 times more likely to select the lowest level of motion sickness after an engagement lasting between 24.3 and 42 minutes. Conversely, respondents between 42 to 60 minutes were 1.2 times more likely to select the higher levels of motion sickness.Keywords: applications and integration of e-education, practices and cases in e-education, systems and technologies in e-education, technology adoption and diffusion of e-learning
Procedia PDF Downloads 72Design of an Acoustic Imaging Sensor Array for Mobile Robots
Authors: Dibyendu Roy, V. Ramu Reddy, Parijat Deshpande, Ranjan Dasgupta
Abstract:
Imaging of underwater objects is primarily conducted by acoustic imagery due to the severe attenuation of electro-magnetic waves in water. Acoustic imagery underwater has varied range of significant applications such as side-scan sonar, mine hunting sonar. It also finds utility in other domains such as imaging of body tissues via ultrasonography and non-destructive testing of objects. In this paper, we explore the feasibility of using active acoustic imagery in air and simulate phased array beamforming techniques available in literature for various array designs to achieve a suitable acoustic sensor array design for a portable mobile robot which can be applied to detect the presence/absence of anomalous objects in a room. The multi-path reflection effects especially in enclosed rooms and environmental noise factors are currently not simulated and will be dealt with during the experimental phase. The related hardware is designed with the same feasibility criterion that the developed system needs to be deployed on a portable mobile robot. There is a trade of between image resolution and range with the array size, number of elements and the imaging frequency and has to be iteratively simulated to achieve the desired acoustic sensor array design. The designed acoustic imaging array system is to be mounted on a portable mobile robot and targeted for use in surveillance missions for intruder alerts and imaging objects during dark and smoky scenarios where conventional optic based systems do not function well.Keywords: acoustic sensor array, acoustic imagery, anomaly detection, phased array beamforming
Procedia PDF Downloads 414Statistical Modeling of Local Area Fading Channels Based on Triply Stochastic Filtered Marked Poisson Point Processes
Authors: Jihad Daba, Jean-Pierre Dubois
Abstract:
Multi path fading noise degrades the performance of cellular communication, most notably in femto- and pico-cells in 3G and 4G systems. When the wireless channel consists of a small number of scattering paths, the statistics of fading noise is not analytically tractable and poses a serious challenge to developing closed canonical forms that can be analysed and used in the design of efficient and optimal receivers. In this context, noise is multiplicative and is referred to as stochastically local fading. In many analytical investigation of multiplicative noise, the exponential or Gamma statistics are invoked. More recent advances by the author of this paper have utilized a Poisson modulated and weighted generalized Laguerre polynomials with controlling parameters and uncorrelated noise assumptions. In this paper, we investigate the statistics of multi-diversity stochastically local area fading channel when the channel consists of randomly distributed Rayleigh and Rician scattering centers with a coherent specular Nakagami-distributed line of sight component and an underlying doubly stochastic Poisson process driven by a lognormal intensity. These combined statistics form a unifying triply stochastic filtered marked Poisson point process model.Keywords: cellular communication, femto and pico-cells, stochastically local area fading channel, triply stochastic filtered marked Poisson point process
Procedia PDF Downloads 452Simulation and Controller Tunning in a Photo-Bioreactor Applying by Taguchi Method
Authors: Hosein Ghahremani, MohammadReza Khoshchehre, Pejman Hakemi
Abstract:
This study involves numerical simulations of a vertical plate-type photo-bioreactor to investigate the performance of Microalgae Spirulina and Control and optimization of parameters for the digital controller by Taguchi method that MATLAB software and Qualitek-4 has been made. Since the addition of parameters such as temperature, dissolved carbon dioxide, biomass, and ... Some new physical parameters such as light intensity and physiological conditions like photosynthetic efficiency and light inhibitors are involved in biological processes, control is facing many challenges. Not only facilitate the commercial production photo-bioreactor Microalgae as feed for aquaculture and food supplements are efficient systems but also as a possible platform for the production of active molecules such as antibiotics or innovative anti-tumor agents, carbon dioxide removal and removal of heavy metals from wastewater is used. Digital controller is designed for controlling the light bioreactor until Microalgae growth rate and carbon dioxide concentration inside the bioreactor is investigated. The optimal values of the controller parameters of the S/N and ANOVA analysis software Qualitek-4 obtained With Reaction curve, Cohen-Con and Ziegler-Nichols method were compared. The sum of the squared error obtained for each of the control methods mentioned, the Taguchi method as the best method for controlling the light intensity was selected photo-bioreactor. This method compared to control methods listed the higher stability and a shorter interval to be answered.Keywords: photo-bioreactor, control and optimization, Light intensity, Taguchi method
Procedia PDF Downloads 399Conservation of Rare, Endangered and Threaten Medicinal Plants: Participatory Approach
Authors: G. Raviraja Shetty, K. G. Poojitha, Pranay Kumar
Abstract:
Biodiversity refers to the numbers, variety and variability of living organisms and ecosystem. The climatic and altitudinal variations, coupled with varied ecological habitats of this country, have contributed to the development of immensely rich vegetation with a unique diversity in medicinal plants which provides an important source of medicinal raw materials for traditional medicine systems as well as for pharmaceutical industries in the country and abroad. World Health Organization has listed over 21000 plant species used around the world for medicinal purpose. In India, about 2500 plant species are being used in indigenous system of medicine. The red data book lists 427 Indian Medicinal plant entries on endangered species, of which 28 are considered extinct, 124 endangered, 81 rare, and 34 insufficiently known. It is abundantly clear from the experience of all govt agencies that on their own they cannot efficiently conserve the biodiversity. Participatory Approach with the involvement of local people in conservation is found to be more effective these days. Involvement of local people reduces the cost involved in conservation. Local communities have long tradition of resource use in particular area, hold in depth knowledge and experience of plant which can be invaluable for conservation efforts.Medicinal plants occupy a vital sector of health care system in India and represent a major national resource.There is an immense need for conservation of diversity of medicinal plant wealth for the present and fore coming generations, by adapting the suitable strategy with most appropriate method of conservation.Keywords: conservation, biodiversity, participatory, medicinal plants
Procedia PDF Downloads 485Degradation of Heating, Ventilation, and Air Conditioning Components across Locations
Authors: Timothy E. Frank, Josh R. Aldred, Sophie B. Boulware, Michelle K. Cabonce, Justin H. White
Abstract:
Materials degrade at different rates in different environments depending on factors such as temperature, aridity, salinity, and solar radiation. Therefore, predicting asset longevity depends, in part, on the environmental conditions to which the asset is exposed. Heating, ventilation, and air conditioning (HVAC) systems are critical to building operations yet are responsible for a significant proportion of their energy consumption. HVAC energy use increases substantially with slight operational inefficiencies. Understanding the environmental influences on HVAC degradation in detail will inform maintenance schedules and capital investment, reduce energy use, and increase lifecycle management efficiency. HVAC inspection records spanning 14 years from 21 locations across the United States were compiled and associated with the climate conditions to which they were exposed. Three environmental features were explored in this study: average high temperature, average low temperature, and annual precipitation, as well as four non-environmental features. Initial insights showed no correlations between individual features and the rate of HVAC component degradation. Using neighborhood component analysis, however, the most critical features related to degradation were identified. Two models were considered, and results varied between them. However, longitude and latitude emerged as potentially the best predictors of average HVAC component degradation. Further research is needed to evaluate additional environmental features, increase the resolution of the environmental data, and develop more robust models to achieve more conclusive results.Keywords: climate, degradation, HVAC, neighborhood component analysis
Procedia PDF Downloads 435Social Identification among Employees: A System Dynamic Approach
Authors: Muhammad Abdullah, Salman Iqbal, Mamoona Rasheed
Abstract:
Social identity among people is an important source of pride and self-esteem, consequently, people struggle to preserve a positive perception of their groups and collectives. The purpose of this paper is to explain the process of social identification and to highlight the underlying causal factors of social identity among employees. There is a little research about how the social identity of employees is shaped in Pakistan’s organizational culture. This study is based on social identity theory. This study uses Systems’ approach as a research methodology. The feedback loop approach is applied to explain the underlying key elements of employee behavior that collectively form social identity among social groups in corporate arena. The findings of this study reveal that effective, evaluative and cognitive components of an individual’s personality are associated with the social identification. The system dynamic feedback loop approach has revealed the underlying structure that is associated with social identity, social group formation, and effective component proved to be the most associated factor. This may also enable to understand how social groups become stable and individuals act according to the group requirements. The value of this paper lies in the understanding gained about the underlying key factors that play a crucial role in social group formation in organizations. It may help to understand the rationale behind how employees socially categorize themselves within organizations. It may also help to design effective and more cohesive teams for better operations and long-term results. This may help to share knowledge among employees as well. The underlying structure behind the social identification is highlighted with the help of system modeling.Keywords: affective commitment, cognitive commitment, evaluated commitment, system thinking
Procedia PDF Downloads 140Kinetic Study on Extracting Lignin from Black Liquor Using Deep Eutectic Solvents
Authors: Fatemeh Saadat Ghareh Bagh, Srimanta Ray, Jerald Lalman
Abstract:
Lignin, the largest inventory of organic carbon with a high caloric energy value is a major component in woody and non-woody biomass. In pulping mills, a large amount of the lignin is burned for energy. At the same time, the phenolic structure of lignin enables it to be converted to value-added compounds.This study has focused on extracting lignin from black liquor using deep eutectic solvents (DESs). Therefore, three choline chloride (ChCl)-DESs paired with lactic acid (LA) (1:11), oxalic acid.2H₂O (OX) (1:4), and malic acid (MA) (1:3) were synthesized at 90oC and atmospheric pressure. The kinetics of lignin recovery from black liquor using DES was investigated at three moderate temperatures (338, 353, and 368 K) at time intervals from 30 to 210 min. The extracted lignin (acid soluble lignin plus Klason lignin) was characterized by Fourier transform infrared spectroscopy (FTIR). The FTIR studies included comparing the extracted lignin with a model Kraft lignin. The extracted lignin was characterized spectrophotometrically to determine the acid soluble lignin (ASL) [TAPPI UM 250] fraction and Klason lignin was determined gravimetrically using TAPPI T 222 om02. The lignin extraction reaction using DESs was modeled by first-order reaction kinetics and the activation energy of the process was determined. The ChCl:LA-DES recovered lignin was 79.7±2.1% at 368K and a DES:BL ratio of 4:1 (v/v). The quantity of lignin extracted for the control solvent, [emim][OAc], was 77.5+2.2%. The activation energy measured for the LA-DES system was 22.7 KJ mol⁻¹, while the activation energy for the OX-DES and MA-DES systems were 7.16 KJ·mol⁻¹ and 8.66 KJ·mol⁻¹ when the total lignin recovery was 75.4 ±0.9% and 62.4 ±1.4, % respectively.Keywords: black liquor, deep eutectic solvents, kinetics, lignin
Procedia PDF Downloads 151The Role of Bridging Stakeholder in Water Management: Examining Social Networks in Working Groups and Co-Management
Authors: Fariba Ebrahimi, Mehdi Ghorbani
Abstract:
Comprehensive water management considers economic, environmental, technical and social sustainability of water resources for future generations. Integrated water management implies cooperative approach and involves all stakeholders and also introduces issues to managers and decision makers. Solving these issues needs integrated and system approach according to the recognition of actors or key persons in necessary to apply cooperative management of water resources. Therefore, social network analysis can be used to demonstrate the most effective actors for environmental base decisions. The linkage of diverse sets of actors and knowledge systems across management levels and institutional boundaries often poses one of the greatest challenges in adaptive water management. Bridging stakeholder can facilitate interactions among actors in management settings by lowering the transaction costs of collaboration. This research examines how network connections between group members affect in co- management. Cohesive network structures allow groups to more effectively achieve their goals and objectives Strong; centralized leadership is a better predictor of working group success in achieving goals and objectives. Finally, geometric position of each actor was illustrated in the network. The results of the research based on between centrality index have a key and bridging actor in recognition of cooperative management of water resources in Darbandsar village and also will help managers and planners of water in the case of recognition to organization and implementation of sustainable management of water resources and water security.Keywords: co-management, water management, social network, bridging stakeholder, darbandsar village
Procedia PDF Downloads 314Sustainable Management of Water and Soil Resources for Agriculture in Dry Areas
Authors: Alireza Nejadmohammad Namaghi
Abstract:
Investigators have reported that mulches increase production potential in arid and semi arid lands. Mulches are covering materials that are used on soil surface for efficiency irrigation, erosion control, weed control, evaporation decrease and improvement of water perpetration. Our aim and local situation determine the kind of material that we can use. In this research we used different mulches including chemical mulch (M1), Aquasorb polymer, manure mulch (M2), Residue mulch (M3) and polyethylene mulch (M4), with control treatment (M0), without usage of mulch, on germination, biomass dry matter and cottonseed yield (Varamin variety) in Kashan area. Randomized complete block (RCB) design have measured the cotton yield with 3 replications for measuring the biomass dry matter and 4 replication in tow irrigation periods as 7 and 14 days. Germination percentage for M0, M1, M2, M3 and M4 treatment were receptivity 64, 65, 76, 57 and 72% Biomass dry matter average for M0, M1, M2, M3 and M4 treatment were receptivity 276, 306, 426, 403 and 476 gram per plot. M4 treatment (polyethylene Mulch) had the most effect, M2 and M3 had no significant as well as M0 and M1. Total yield average with respect to 7 days irrigation for M0, M1, M2, M3 and M4 treatment were receptivity 700, 725, 857, 1057 and 1273 gram per plot. Dunken ne multiple showed no significant different among M0, M1, M2, and M3, but M4 ahs the most effect on yield. Total yield average with respect to 14 days irrigation for M0, M1, M2, M3 and M4 treatment were receptivity 535, 507, 690, 957 and 1047 gram per plot. These were significant difference between all treatments and control treatment. Results showed that used different mulches with water decrease in dry situation can increase the yield significantly.Keywords: mulch, cotton, arid land management, irrigation systems
Procedia PDF Downloads 90Computational Fluid Dynamics Modeling of Flow Properties Fluctuations in Slug-Churn Flow through Pipe Elbow
Authors: Nkemjika Chinenye-Kanu, Mamdud Hossain, Ghazi Droubi
Abstract:
Prediction of multiphase flow induced forces, void fraction and pressure is crucial at both design and operating stages of practical energy and process pipe systems. In this study, transient numerical simulations of upward slug-churn flow through a vertical 90-degree elbow have been conducted. The volume of fluid (VOF) method was used to model the two-phase flows while the K-epsilon Reynolds-Averaged Navier-Stokes (RANS) equations were used to model turbulence in the flows. The simulation results were validated using experimental results. Void fraction signal, peak frequency and maximum magnitude of void fraction fluctuation of the slug-churn flow validation case studies compared well with experimental results. The x and y direction force fluctuation signals at the elbow control volume were obtained by carrying out force balance calculations using the directly extracted time domain signals of flow properties through the control volume in the numerical simulation. The computed force signal compared well with experiment for the slug and churn flow validation case studies. Hence, the present numerical simulation technique was able to predict the behaviours of the one-way flow induced forces and void fraction fluctuations.Keywords: computational fluid dynamics, flow induced vibration, slug-churn flow, void fraction and force fluctuation
Procedia PDF Downloads 160Resilience with Spontaneous Volunteers in Disasters-Coordination Using an It System
Authors: Leo Latasch, Mario Di Gennaro
Abstract:
Introduction: The goal of this project was to increase the resilience of the population as well as rescue organizations to make both quality and time-related improvements in handling crises. A helper network was created for this purpose. Methods: Social questions regarding the structure and purpose of helper networks were considered - specifically with regard to helper motivation, the level of commitment and collaboration between populations and agencies. The exchange of information, the coordinated use of volunteers, and the distribution of available resources will be ensured through defined communication and cooperation routines. Helper smartphones will also be used provide a picture of the situation on the ground. Results: The helper network was established and deployed based on the RESIBES information technology system. It consists of a service platform, a web portal and a smartphone app. The service platform is the central element for collaboration between the various rescue organizations, as well as for persons, associations, and companies from the population offering voluntary aid. The platform was used for: Registering helpers and resources and then requesting and assigning it in case of a disaster. These services allow the population's resources to be organized. The service platform also allows for a secure data exchange between services and external systems. Conclusions: The social and technical work priorities have allowed us to cover a full cycle of advance structural work, gaining an overview, damage management, evaluation, and feedback on experiences. This cycle allows experiences gained while handling the crisis to feed back into the cycle and improve preparations and management strategies.Keywords: coordination, disaster, resilience, volunteers
Procedia PDF Downloads 148Subway Stray Current Effects on Gas Pipelines in the City of Tehran
Authors: Mohammad Derakhshani, Saeed Reza Allahkarama, Michael Isakhani-Zakaria, Masoud Samadian, Hojjat Sharifi Rasaey
Abstract:
In order to investigate the effects of stray current from DC traction systems (subway) on cathodically protected gas pipelines, the subway and the gas network maps in the city of Tehran were superimposed and a comprehensive map was prepared. 213 intersections and about 100150 meters of parallel sections of gas pipelines were found with respect to the railway right of way which was specified for field measurements. The potential measurements data were logged for one hour in each test point. 24-hour potential monitoring was carried out in selected test points as well. Results showed that dynamic stray current from subway on pipeline potential appears as fluctuations in its static potential that is visible in the diagrams during night periods. These fluctuations can cause the pipeline potential to exit the safe zone and lead to corrosion or overprotection. In this study, a maximum potential shift of 100 mv in the pipe-to-soil potential was considered as a criterion for dynamic stray current effective presence. Results showed that a potential fluctuation range between 100 mV to 3 V exists in measured points on pipelines which exceeds the proposed criterion and needs to be investigated. Corrosion rates influenced by stray currents were calculated using coupons. Results showed that coupon linked to the pipeline in one of the locations at region 1 of the city of Tehran has a corrosion rate of 4.2 mpy (with cathodic protection and under influence of stray currents) which is about 1.5 times more than free corrosion rate of 2.6 mpy.Keywords: stray current, DC traction, subway, buried Pipelines, cathodic protection list
Procedia PDF Downloads 827Structural and Modal Analyses of an s1223 High-Lift Airfoil Wing for Drone Design
Authors: Johnson Okoduwa Imumbhon, Mohammad Didarul Alam, Yiding Cao
Abstract:
Structural analyses are commonly employed to test the integrity of aircraft component systems in the design stage to demonstrate the capability of the structural components to withstand what it was designed for, as well as to predict potential failure of the components. The analyses are also essential for weight minimization and selecting the most resilient materials that will provide optimal outcomes. This research focuses on testing the structural nature of a high-lift low Reynolds number airfoil profile design, the Selig S1223, under certain loading conditions for a drone model application. The wing (ribs, spars, and skin) of the drone model was made of carbon fiber-reinforced polymer and designed in SolidWorks, while the finite element analysis was carried out in ANSYS mechanical in conjunction with the lift and drag forces that were derived from the aerodynamic airfoil analysis. Additionally, modal analysis was performed to calculate the natural frequencies and the mode shapes of the wing structure. The structural strain and stress determined the minimal deformations under the wing loading conditions, and the modal analysis showed the prominent modes that were excited by the given forces. The research findings from the structural analysis of the S1223 high-lift airfoil indicated that it is applicable for use in an unmanned aerial vehicle as well as a novel reciprocating-airfoil-driven vertical take-off and landing (VTOL) drone model.Keywords: CFRP, finite element analysis, high-lift, S1223, strain, stress, VTOL
Procedia PDF Downloads 236A Proposal of Advanced Key Performance Indicators for Assessing Six Performances of Construction Projects
Authors: Wi Sung Yoo, Seung Woo Lee, Youn Kyoung Hur, Sung Hwan Kim
Abstract:
Large-scale construction projects are continuously increasing, and the need for tools to monitor and evaluate the project success is emphasized. At the construction industry level, there are limitations in deriving performance evaluation factors that reflect the diversity of construction sites and systems that can objectively evaluate and manage performance. Additionally, there are difficulties in integrating structured and unstructured data generated at construction sites and deriving improvements. In this study, we propose the Key Performance Indicators (KPIs) to enable performance evaluation that reflects the increased diversity of construction sites and the unstructured data generated, and present a model for measuring performance by the derived indicators. The comprehensive performance of a unit construction site is assessed based on 6 areas (Time, Cost, Quality, Safety, Environment, Productivity) and 26 indicators. We collect performance indicator information from 30 construction sites that meet legal standards and have been successfully performed. And We apply data augmentation and optimization techniques into establishing measurement standards for each indicator. In other words, the KPI for construction site performance evaluation presented in this study provides standards for evaluating performance in six areas using institutional requirement data and document data. This can be expanded to establish a performance evaluation system considering the scale and type of construction project. Also, they are expected to be used as a comprehensive indicator of the construction industry and used as basic data for tracking competitiveness at the national level and establishing policies.Keywords: key performance indicator, performance measurement, structured and unstructured data, data augmentation
Procedia PDF Downloads 49Solar Disinfection Potentials of Aqua Lens, Photovoltaic and Glass Bottle Subsequent to Plant‑Based Coagulant: For Low‑Cost Household Water Treatment Systems
Authors: Yonas Lamore, Abebe Beyene, Samuel Fekadu, Moa Megersa
Abstract:
Unaffordable construction cost of conventional water treatment plant and distribution system in most developing countries makes difficult to provide safe and adequate water for all households, especially for the rural setup. Water treatment at the source can be the best alternative. Solar disinfection is one alternative among point of use treatments. In this study, aqua lens, photovoltaic box and glass bottle were used subsequent to plant coagulants to evaluate microbial reduction potentials. Laboratory- and field-based experiments were conducted from May to August 2016. The Escherichia coli, total coliforms and heterotrophic plate counts were used as indicator organisms. The result indicated that aqua lens (AL), photovoltaic box (PV) and glass bottle (GB) have high inactivation rate subsequently almost for all indicator organisms in short solar exposure time. Total coliforms were inactivated in AL (SD = 15.8 °C, R2 = 0.92) followed by PV inactivation temperature associa- tion (SD = 11.6 C, R2 = 0.90), and the GB concentrator was inactivated (SD = 10.9 °C, R2 = 0.70) at turbidity level of 3.41 NTU. As the study indicated, aqua lens coupled with Moringa oleifera coagulant can be an effective with minimum cost for household water treatment system. The study also concludes heterotrophic bacteria were more resistant than other types of bacteria in SODIS with similar exposure time.Keywords: acrylic glass, aqua lens, moringa olifera, photovoltaic box, solar disinfection, water treatment
Procedia PDF Downloads 28Sorption Properties of Biological Waste for Lead Ions from Aqueous Solutions
Authors: Lucia Rozumová, Ivo Šafařík, Jana Seidlerová, Pavel Kůs
Abstract:
Biosorption by biological waste materials from agriculture industry could be a cost-effective technique for removing metal ions from wastewater. The performance of new biosorbent systems, consisting of the waste matrixes which were magnetically modified by iron oxide nanoparticles, for the removal of lead ions from an aqueous solution was tested. The use of low-cost and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods. This article deals with the removal of metal ions from aqueous solutions by modified waste products - orange peels, sawdust, peanuts husks, used tea leaves and ground coffee sediment. Magnetically modified waste materials were suspended in methanol and then was added ferrofluid (magnetic iron oxide nanoparticles). This modification process gives the predictions for the formation of the smart materials with new properties. Prepared material was characterized by using scanning electron microscopy, specific surface area and pore size analyzer. Studies were focused on the sorption and desorption properties. The changes of iron content in magnetically modified materials after treatment were observed as well. Adsorption process has been modelled by adsorption isotherms. The results show that magnetically modified materials during the dynamic sorption and desorption are stable at the high adsorbed amount of lead ions. The results of this study indicate that the biological waste materials as sorbent with new properties are highly effective for the treatment of wastewater.Keywords: biological waste, sorption, metal ions, ferrofluid
Procedia PDF Downloads 147Role of Biomaterial Surface Nanotopography on Protein Unfolding and Immune Response
Authors: Rahul Madathiparambil Visalakshan, Alex Cavallaro, John Hayball, Krasimir Vasilev
Abstract:
The role of biomaterial surface nanotopograhy on fibrinogen adsorption and unfolding, and the subsequent immune response were studied. Inconsistent topography and varying chemical functionalities along with a lack of reproducibility pose a challenge in determining the specific effects of nanotopography or chemistry on proteins and cells. It is important to have a well-defined nanotopography with a homogeneous chemistry to study the real effect of nanotopography on biological systems. Therefore, we developed a technique that can produce well-defined and highly reproducible topography to identify the role of specific roughness, size, height and density with the presence of homogeneous chemical functionality. Using plasma polymerisation of oxazoline monomers and immobilized gold nanoparticles we created surfaces with an equal number density of nanoparticles of different sizes. This surface was used to study the role of surface nanotopography and the interplay of surface chemistry on proteins and immune cells. The effect of nanotopography on fibrinogen adsorption was investigated using Quartz Cristal Microbalance with Dissipation and micro BCA. The mass of fibrinogen adsorbed on the surface increased with increasing size of nano-topography. Protein structural changes up on adsorption to the nano rough surface was studied using circular dichroism spectroscopy. Fibrinogen unfolding varied depending on the specific nanotopography of the surfaces. It was revealed that the in vitro immune response to the nanotopography surfaces changed due to this protein unfolding.Keywords: biomaterial inflammation, protein and cell responses, protein unfolding, surface nanotopography
Procedia PDF Downloads 182The Management of Climate Change by Indigenous People: A Focus on Himachal Pradesh, India
Authors: Anju Batta Sehgal
Abstract:
Climate change is a major challenge in terms of agriculture, food security and rural livelihood for thousands of people especially the poor in Himachal, which falls in North-Western Himalayas. Agriculture contributes over 45 per cent to net state domestic product. It is the main source of income and employment. Over 93 per cent of population is dependent on agriculture which provides direct employment to 71 percent of its people. Area of operation holding is about 9,79 lakh hectares owned by 9.14 lakh farmers. About 80 per cent area is rain-fed and farmers depend on weather gods for rains. Region is a home of diverse ethnic communities having enormous socio-economic and cultural diversities, gifted with range of farming systems and rich resource wealth, including biodiversity, hot spots and ecosystems sustaining millions of people living in the region. But growing demands of ecosystem goods and services are posing threats to natural resources. Climate change is already making adverse impact on the indigenous people. The rural populace is directly dependent for all its food, shelter and other needs on the climate. Our aim should be to shift the focus to indigenous people as primary actors in terms of global climate change monitoring, adaptations and innovations. Objective of this paper is to identify the climate change related threats and vulnerabilities associated with agriculture as a sector and agriculture as people’s livelihood. Broadly it analyses the connections between the nature and rural consumers the ethnic groups.Keywords: climate change, agriculture, indigenous people, Himachal Pradesh
Procedia PDF Downloads 276Development of a Roadmap for Assessment the Sustainability of Buildings in Saudi Arabia Using Building Information Modeling
Authors: Ibrahim A. Al-Sulaihi, Khalid S. Al-Gahtani, Abdullah M. Al-Sugair, Aref A. Abadel
Abstract:
Achieving environmental sustainability is one of the important issues considered in many countries’ vision. Green/Sustainable building is widely used terminology for describing a friendly environmental construction. Applying sustainable practices has a significant importance in various fields, including construction field that consumes an enormous amount of resource and causes a considerable amount of waste. The need for sustainability is increased in the regions that suffering from the limitation of natural resource and extreme weather conditions such as Saudi Arabia. Since buildings designs are getting sophisticated, the need for tools, which support decision-making for sustainability issues, is increasing, especially in the design and preconstruction stages. In this context, Building Information Modeling (BIM) can aid in performing complex building performance analyses to ensure an optimized sustainable building design. Accordingly, this paper introduces a roadmap towards developing a systematic approach for presenting the sustainability of buildings using BIM. The approach includes set of main processes including; identifying the sustainability parameters that can be used for sustainability assessment in Saudi Arabia, developing sustainability assessment method that fits the special circumstances in the Kingdom, identifying the sustainability requirements and BIM functions that can be used for satisfying these requirements, and integrating these requirements with identified functions. As a result, the sustainability-BIM approach can be developed which helps designers in assessing the sustainability and exploring different design alternatives at the early stage of the construction project.Keywords: green buildings, sustainability, BIM, rating systems, environment, Saudi Arabia
Procedia PDF Downloads 381Agile Smartphone Porting and App Integration of Signal Processing Algorithms Obtained through Rapid Development
Authors: Marvin Chibuzo Offiah, Susanne Rosenthal, Markus Borschbach
Abstract:
Certain research projects in Computer Science often involve research on existing signal processing algorithms and developing improvements on them. Research budgets are usually limited, hence there is limited time for implementing the algorithms from scratch. It is therefore common practice, to use implementations provided by other researchers as a template. These are most commonly provided in a rapid development, i.e. 4th generation, programming language, usually Matlab. Rapid development is a common method in Computer Science research for quickly implementing and testing new developed algorithms, which is also a common task within agile project organization. The growing relevance of mobile devices in the computer market also gives rise to the need to demonstrate the successful executability and performance measurement of these algorithms on a mobile device operating system and processor, particularly on a smartphone. Open mobile systems such as Android, are most suitable for this task, which is to be performed most efficiently. Furthermore, efficiently implementing an interaction between the algorithm and a graphical user interface (GUI) that runs exclusively on the mobile device is necessary in cases where the project’s goal statement also includes such a task. This paper examines different proposed solutions for porting computer algorithms obtained through rapid development into a GUI-based smartphone Android app and evaluates their feasibilities. Accordingly, the feasible methods are tested and a short success report is given for each tested method.Keywords: SMARTNAVI, Smartphone, App, Programming languages, Rapid Development, MATLAB, Octave, C/C++, Java, Android, NDK, SDK, Linux, Ubuntu, Emulation, GUI
Procedia PDF Downloads 481Evaluation of the Safety Status of Beef Meat During Processing at Slaughterhouse in Bouira, Algeria
Authors: A. Ameur Ameur, H. Boukherrouba
Abstract:
In red meat slaughterhouses a significant number of organs and carcasses were seized because of the presence of lesions of various origins. The objective of this study is to characterize and evaluate the frequency of these lesions in the slaughterhouse of the Wilaya of BOUIRA. On cattle slaughtered in 2646 and inspected 72% of these carcasses have been no seizures against 28% who have undergone at least one entry. 325 lung (44%), 164 livers (22%), 149 hearts (21%) are the main saisis.38 kidneys members (5%), 33 breasts (4%) and 16 whole carcasses (2%) are less seizures parties. The main reasons are the input hydatid cyst for most seized organs such as the lungs (64.5%), livers (51.8%), hearts (23.2%), hydronephrosis for the kidneys (39.4%), and chronic mastitis (54%) for the breasts. Then we recorded second-degree pneumonia (16%) to the lungs, chronic fascioliasis (25%) for livers. A significant difference was observed (p < 0.0001) by sex, race, origin and age of all cattle having been saisie.une a specific input patterns and So pathology was recorded based on race. The local breed presented (75.2%) of hydatid cyst, (95%) and chronic fascioliasis (60%) pyelonephritis, for against the improved breed presented the entire respiratory lesions include pneumonia (64%) the chronic tuberculosis (64%) and mastitis (76%). These results are an important step in the implementation of the concept of risk assessment as the scientific basis of food legislation, by the identification and characterization of macroscopic damage leading withdrawals in meat and to establish the level of inclusion of these injuries within the recommended risk assessment systems (HACCP).Keywords: slaughterhouses, meat safety, seizure patterns, HACCP
Procedia PDF Downloads 471Process Assessment Model for Process Capability Determination Based on ISO/IEC 20000-1:2011
Authors: Harvard Najoan, Sarwono Sutikno, Yusep Rosmansyah
Abstract:
Most enterprises are now using information technology services as their assets to support business objectives. These kinds of services are provided by the internal service provider (inside the enterprise) or external service provider (outside enterprise). To deliver quality information technology services, the service provider (which from now on will be called ‘organization’) either internal or external, must have a standard for service management system. At present, the standard that is recognized as best practice for service management system for the organization is international standard ISO/IEC 20000:2011. The most important part of this international standard is the first part or ISO/IEC 20000-1:2011-Service Management System Requirement, because it contains 22 for organization processes as a requirement to be implemented in an organizational environment in order to build, manage and deliver quality service to the customer. Assessing organization management processes is the first step to implementing ISO/IEC 20000:2011 into the organization management processes. This assessment needs Process Assessment Model (PAM) as an assessment instrument. PAM comprises two parts: Process Reference Model (PRM) and Measurement Framework (MF). PRM is built by transforming the 22 process of ISO/IEC 20000-1:2011 and MF is based on ISO/IEC 33020. This assessment instrument was designed to assess the capability of service management process in Divisi Teknologi dan Sistem Informasi (Information Systems and Technology Division) as an internal organization of PT Pos Indonesia. The result of this assessment model can be proposed to improve the capability of service management system.Keywords: ISO/IEC 20000-1:2011, ISO/IEC 33020:2015, process assessment, process capability, service management system
Procedia PDF Downloads 470Testing of Protective Coatings on Automotive Steel, a Correlation Between Salt Spray, Electrochemical Impedance Spectroscopy, and Linear Polarization Resistance Test
Authors: Dhanashree Aole, V. Hariharan, Swati Surushe
Abstract:
Corrosion can cause serious and expensive damage to the automobile components. Various proven techniques for controlling and preventing corrosion depend on the specific material to be protected. Electrochemical Impedance Spectroscopy (EIS) and salt spray tests are commonly used to assess the corrosion degradation mechanism of coatings on metallic surfaces. While, the only test which monitors the corrosion rate in real time is known as Linear Polarisation Resistance (LPR). In this study, electrochemical tests (EIS & LPR) and spray test are reviewed to assess the corrosion resistance and durability of different coatings. The main objective of this study is to correlate the test results obtained using linear polarization resistance (LPR) and Electrochemical Impedance Spectroscopy (EIS) with the results obtained using standard salt spray test. Another objective of this work is to evaluate the performance of various coating systems- CED, Epoxy, Powder coating, Autophoretic, and Zn-trivalent coating for vehicle underbody application. The corrosion resistance coating are assessed. From this study, a promising correlation between different corrosion testing techniques is noted. The most profound observation is that electrochemical tests gives quick estimation of corrosion resistance and can detect the degradation of coatings well before visible signs of damage appear. Furthermore, the corrosion resistances and salt spray life of the coatings investigated were found to be according to the order as follows- CED> powder coating > Autophoretic > epoxy coating > Zn- Trivalent plating.Keywords: Linear Polarization Resistance (LPR), Electrochemical Impedance Spectroscopy (EIS), salt spray test, sacrificial and barrier coatings
Procedia PDF Downloads 529An Adaptive Back-Propagation Network and Kalman Filter Based Multi-Sensor Fusion Method for Train Location System
Authors: Yu-ding Du, Qi-lian Bao, Nassim Bessaad, Lin Liu
Abstract:
The Global Navigation Satellite System (GNSS) is regarded as an effective approach for the purpose of replacing the large amount used track-side balises in modern train localization systems. This paper describes a method based on the data fusion of a GNSS receiver sensor and an odometer sensor that can significantly improve the positioning accuracy. A digital track map is needed as another sensor to project two-dimensional GNSS position to one-dimensional along-track distance due to the fact that the train’s position can only be constrained on the track. A model trained by BP neural network is used to estimate the trend positioning error which is related to the specific location and proximate processing of the digital track map. Considering that in some conditions the satellite signal failure will lead to the increase of GNSS positioning error, a detection step for GNSS signal is applied. An adaptive weighted fusion algorithm is presented to reduce the standard deviation of train speed measurement. Finally an Extended Kalman Filter (EKF) is used for the fusion of the projected 1-D GNSS positioning data and the 1-D train speed data to get the estimate position. Experimental results suggest that the proposed method performs well, which can reduce positioning error notably.Keywords: multi-sensor data fusion, train positioning, GNSS, odometer, digital track map, map matching, BP neural network, adaptive weighted fusion, Kalman filter
Procedia PDF Downloads 256Prediction of Pounding between Two SDOF Systems by Using Link Element Based On Mathematic Relations and Suggestion of New Equation for Impact Damping Ratio
Authors: Seyed M. Khatami, H. Naderpour, R. Vahdani, R. C. Barros
Abstract:
Many previous studies have been carried out to calculate the impact force and the dissipated energy between two neighboring buildings during seismic excitation, when they collide with each other. Numerical studies are an important part of impact, which several researchers have tried to simulate the impact by using different formulas. Estimation of the impact force and the dissipated energy depends significantly on some parameters of impact. Mass of bodies, stiffness of spring, coefficient of restitution, damping ratio of dashpot and impact velocity are some known and unknown parameters to simulate the impact and measure dissipated energy during collision. Collision is usually shown by force-displacement hysteresis curve. The enclosed area of the hysteresis loop explains the dissipated energy during impact. In this paper, the effect of using different types of impact models is investigated in order to calculate the impact force. To increase the accuracy of impact model and to optimize the results of simulations, a new damping equation is assumed and is validated to get the best results of impact force and dissipated energy, which can show the accuracy of suggested equation of motion in comparison with other formulas. This relation is called "n-m". Based on mathematical relation, an initial value is selected for the mentioned coefficients and kinetic energy loss is calculated. After each simulation, kinetic energy loss and energy dissipation are compared with each other. If they are equal, selected parameters are true and, if not, the constant of parameters are modified and a new analysis is performed. Finally, two unknown parameters are suggested to estimate the impact force and calculate the dissipated energy.Keywords: impact force, dissipated energy, kinetic energy loss, damping relation
Procedia PDF Downloads 555