Search results for: tree canopy cover
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2152

Search results for: tree canopy cover

1252 Potential of Aerodynamic Feature on Monitoring Multilayer Rough Surfaces

Authors: Ibtissem Hosni, Lilia Bennaceur Farah, Saber Mohamed Naceur

Abstract:

In order to assess the water availability in the soil, it is crucial to have information about soil distributed moisture content; this parameter helps to understand the effect of humidity on the exchange between soil, plant cover and atmosphere in addition to fully understanding the surface processes and the hydrological cycle. On the other hand, aerodynamic roughness length is a surface parameter that scales the vertical profile of the horizontal component of the wind speed and characterizes the surface ability to absorb the momentum of the airflow. In numerous applications of the surface hydrology and meteorology, aerodynamic roughness length is an important parameter for estimating momentum, heat and mass exchange between the soil surface and atmosphere. It is important on this side, to consider the atmosphere factors impact in general, and the natural erosion in particular, in the process of soil evolution and its characterization and prediction of its physical parameters. The study of the induced movements by the wind over soil vegetated surface, either spaced plants or plant cover, is motivated by significant research efforts in agronomy and biology. The known major problem in this side concerns crop damage by wind, which presents a booming field of research. Obviously, most models of soil surface require information about the aerodynamic roughness length and its temporal and spatial variability. We have used a bi-dimensional multi-scale (2D MLS) roughness description where the surface is considered as a superposition of a finite number of one-dimensional Gaussian processes each one having a spatial scale using the wavelet transform and the Mallat algorithm to describe natural surface roughness. We have introduced multi-layer aspect of the humidity of the soil surface, to take into account a volume component in the problem of backscattering radar signal. As humidity increases, the dielectric constant of the soil-water mixture increases and this change is detected by microwave sensors. Nevertheless, many existing models in the field of radar imagery, cannot be applied directly on areas covered with vegetation due to the vegetation backscattering. Thus, the radar response corresponds to the combined signature of the vegetation layer and the layer of soil surface. Therefore, the key issue of the numerical estimation of soil moisture is to separate the two contributions and calculate both scattering behaviors of the two layers by defining the scattering of the vegetation and the soil blow. This paper presents a synergistic methodology, and it is for estimating roughness and soil moisture from C-band radar measurements. The methodology adequately represents a microwave/optical model which has been used to calculate the scattering behavior of the aerodynamic vegetation-covered area by defining the scattering of the vegetation and the soil below.

Keywords: aerodynamic, bi-dimensional, vegetation, synergistic

Procedia PDF Downloads 271
1251 A Study of Permission-Based Malware Detection Using Machine Learning

Authors: Ratun Rahman, Rafid Islam, Akin Ahmed, Kamrul Hasan, Hasan Mahmud

Abstract:

Malware is becoming more prevalent, and several threat categories have risen dramatically in recent years. This paper provides a bird's-eye view of the world of malware analysis. The efficiency of five different machine learning methods (Naive Bayes, K-Nearest Neighbor, Decision Tree, Random Forest, and TensorFlow Decision Forest) combined with features picked from the retrieval of Android permissions to categorize applications as harmful or benign is investigated in this study. The test set consists of 1,168 samples (among these android applications, 602 are malware and 566 are benign applications), each consisting of 948 features (permissions). Using the permission-based dataset, the machine learning algorithms then produce accuracy rates above 80%, except the Naive Bayes Algorithm with 65% accuracy. Of the considered algorithms TensorFlow Decision Forest performed the best with an accuracy of 90%.

Keywords: android malware detection, machine learning, malware, malware analysis

Procedia PDF Downloads 170
1250 Regression Model Evaluation on Depth Camera Data for Gaze Estimation

Authors: James Purnama, Riri Fitri Sari

Abstract:

We investigate the machine learning algorithm selection problem in the term of a depth image based eye gaze estimation, with respect to its essential difficulty in reducing the number of required training samples and duration time of training. Statistics based prediction accuracy are increasingly used to assess and evaluate prediction or estimation in gaze estimation. This article evaluates Root Mean Squared Error (RMSE) and R-Squared statistical analysis to assess machine learning methods on depth camera data for gaze estimation. There are 4 machines learning methods have been evaluated: Random Forest Regression, Regression Tree, Support Vector Machine (SVM), and Linear Regression. The experiment results show that the Random Forest Regression has the lowest RMSE and the highest R-Squared, which means that it is the best among other methods.

Keywords: gaze estimation, gaze tracking, eye tracking, kinect, regression model, orange python

Procedia PDF Downloads 539
1249 Populism in the Age of Twitter: How Social Media Contextualized New Insights on an Old Phenomenon

Authors: Djehich Mohamed Yousri

Abstract:

With the advent of social media, political communication scholars have systematically reviewed theories and empirical findings that revolve around media use and democracy. It is interesting that around the same time period, there has been a trend towards revitalization of political populism in different latitudes around the world. This wide-ranging populist movement has expanded regardless of whether these political systems are established democracies, emerging democracies, or societies mired in endangered political contexts. This article serves as an introductory piece to a special issue on populism. First, it highlights the ways in which "populism", as an ancient phenomenon, has transmigrated into the political sphere in the age of social media. Second, the article seeks to better define the populist context and how it has evolved in today's hybrid media society. Finally, this introduction also lays the groundwork for six data-driven theoretical core papers that cover many of the important issues revolving around the phenomenon of populism today.

Keywords: democracy, facebook, populism, social media, twitter

Procedia PDF Downloads 74
1248 A Novel Image Steganography Method Based on Mandelbrot Fractal

Authors: Adnan H. M. Al-Helali, Hamza A. Ali

Abstract:

The growth of censorship and pervasive monitoring on the Internet, Steganography arises as a new means of achieving secret communication. Steganography is the art and science of embedding information within electronic media used by common applications and systems. Generally, hiding information of multimedia within images will change some of their properties that may introduce few degradation or unusual characteristics. This paper presents a new image steganography approach for hiding information of multimedia (images, text, and audio) using generated Mandelbrot Fractal image as a cover. The proposed technique has been extensively tested with different images. The results show that the method is a very secure means of hiding and retrieving steganographic information. Experimental results demonstrate that an effective improvement in the values of the Peak Signal to Noise Ratio (PSNR), Mean Square Error (MSE), Normalized Cross Correlation (NCC), and Image Fidelity (IF) over the pervious techniques.

Keywords: fractal image, information hiding, Mandelbrot set fractal, steganography

Procedia PDF Downloads 620
1247 Forest Fire Burnt Area Assessment in a Part of West Himalayan Region Using Differenced Normalized Burnt Ratio and Neural Network Approach

Authors: Sunil Chandra, Himanshu Rawat, Vikas Gusain, Triparna Barman

Abstract:

Forest fires are a recurrent phenomenon in the Himalayan region owing to the presence of vulnerable forest types, topographical gradients, climatic weather conditions, and anthropogenic pressure. The present study focuses on the identification of forest fire-affected areas in a small part of the West Himalayan region using a differential normalized burnt ratio method and spectral unmixing methods. The study area has a rugged terrain with the presence of sub-tropical pine forest, montane temperate forest, and sub-alpine forest and scrub. The major reason for fires in this region is anthropogenic in nature, with the practice of human-induced fires for getting fresh leaves, scaring wild animals to protect agricultural crops, grazing practices within reserved forests, and igniting fires for cooking and other reasons. The fires caused by the above reasons affect a large area on the ground, necessitating its precise estimation for further management and policy making. In the present study, two approaches have been used for carrying out a burnt area analysis. The first approach followed for burnt area analysis uses a differenced normalized burnt ratio (dNBR) index approach that uses the burnt ratio values generated using the Short-Wave Infrared (SWIR) band and Near Infrared (NIR) bands of the Sentinel-2 image. The results of the dNBR have been compared with the outputs of the spectral mixing methods. It has been found that the dNBR is able to create good results in fire-affected areas having homogenous forest stratum and with slope degree <5 degrees. However, in a rugged terrain where the landscape is largely influenced by the topographical variations, vegetation types, tree density, the results may be largely influenced by the effects of topography, complexity in tree composition, fuel load composition, and soil moisture. Hence, such variations in the factors influencing burnt area assessment may not be effectively carried out using a dNBR approach which is commonly followed for burnt area assessment over a large area. Hence, another approach that has been attempted in the present study utilizes a spectral mixing method where the individual pixel is tested before assigning an information class to it. The method uses a neural network approach utilizing Sentinel-2 bands. The training and testing data are generated from the Sentinel-2 data and the national field inventory, which is further used for generating outputs using ML tools. The analysis of the results indicates that the fire-affected regions and their severity can be better estimated using spectral unmixing methods, which have the capability to resolve the noise in the data and can classify the individual pixel to the precise burnt/unburnt class.

Keywords: categorical data, log linear modeling, neural network, shifting cultivation

Procedia PDF Downloads 56
1246 Tree Species Classification Using Effective Features of Polarimetric SAR and Hyperspectral Images

Authors: Milad Vahidi, Mahmod R. Sahebi, Mehrnoosh Omati, Reza Mohammadi

Abstract:

Forest management organizations need information to perform their work effectively. Remote sensing is an effective method to acquire information from the Earth. Two datasets of remote sensing images were used to classify forested regions. Firstly, all of extractable features from hyperspectral and PolSAR images were extracted. The optical features were spectral indexes related to the chemical, water contents, structural indexes, effective bands and absorption features. Also, PolSAR features were the original data, target decomposition components, and SAR discriminators features. Secondly, the particle swarm optimization (PSO) and the genetic algorithms (GA) were applied to select optimization features. Furthermore, the support vector machine (SVM) classifier was used to classify the image. The results showed that the combination of PSO and SVM had higher overall accuracy than the other cases. This combination provided overall accuracy about 90.56%. The effective features were the spectral index, the bands in shortwave infrared (SWIR) and the visible ranges and certain PolSAR features.

Keywords: hyperspectral, PolSAR, feature selection, SVM

Procedia PDF Downloads 419
1245 A Study on the Wind Energy Produced in the Building Skin Using Piezoelectricity

Authors: Sara Mota Carmo

Abstract:

Nowadays, there is an increasing demand for buildings to be energetically autonomous through energy generation systems from renewable sources, according to the concept of a net zero energy building (NZEB). In this sense, the present study aims to study the integration of wind energy through piezoelectricity applied to the building skin. As a methodology, a reduced-scale prototype of a building was developed and tested in a wind tunnel, with the four façades monitored by recording the energy produced by each. The applied wind intensities varied between 2m/s and 8m/s and the four façades were compared with each other regarding the energy produced according to the intensity of wind and position in the wind. The results obtained concluded that it was not a sufficient system to generate sources to cover family residential buildings' energy needs. However, piezoelectricity is expanding and can be a promising path for a wind energy system in architecture as a complement to other renewable energy sources.

Keywords: adaptative building skin, kinetic façade, wind energy in architecture, NZEB

Procedia PDF Downloads 77
1244 Secured Embedding of Patient’s Confidential Data in Electrocardiogram Using Chaotic Maps

Authors: Butta Singh

Abstract:

This paper presents a chaotic map based approach for secured embedding of patient’s confidential data in electrocardiogram (ECG) signal. The chaotic map generates predefined locations through the use of selective control parameters. The sample value difference method effectually hides the confidential data in ECG sample pairs at these predefined locations. Evaluation of proposed method on all 48 records of MIT-BIH arrhythmia ECG database demonstrates that the embedding does not alter the diagnostic features of cover ECG. The secret data imperceptibility in stego-ECG is evident through various statistical and clinical performance measures. Statistical metrics comprise of Percentage Root Mean Square Difference (PRD) and Peak Signal to Noise Ratio (PSNR). Further, a comparative analysis between proposed method and existing approaches was also performed. The results clearly demonstrated the superiority of proposed method.

Keywords: chaotic maps, ECG steganography, data embedding, electrocardiogram

Procedia PDF Downloads 198
1243 How Tattoos and Brands Impact the Recovery of Sex Trafficking Victim: An Exploratory Study of Sex Trafficking Survivors.

Authors: Jeremy Berry, Shannon Rodrigue, Caroline Norris

Abstract:

This study explores the impact of tattoos and/or brands on the recovery of sex trafficking survivors. Many victims of sex trafficking are forced or coerced to take markings of ownership while in the sex trafficking trade in the form of painful tattoos or brands. As a result, victims who are rescued and in recovery often must live with permanent reminders of their traumatic experiences or are left to resort to expensive cosmetic or cover-up jobs, which for many are out of reach. As is often true of domestic violence victims who are left with scars from their abusers, the impact of these permanent markers can delay the healing process and contribute to post-traumatic stress. This study tells the story from the perspectives of the survivors of sex trafficking, how these specific permanent reminders impacted their healing. The study employs a thematic analysis of interviews with sex trafficking victims via focus group interviews.

Keywords: sex trafficking, tattoos, trauma, healing

Procedia PDF Downloads 191
1242 Predicting Data Center Resource Usage Using Quantile Regression to Conserve Energy While Fulfilling the Service Level Agreement

Authors: Ahmed I. Alutabi, Naghmeh Dezhabad, Sudhakar Ganti

Abstract:

Data centers have been growing in size and dema nd continuously in the last two decades. Planning for the deployment of resources has been shallow and always resorted to over-provisioning. Data center operators try to maximize the availability of their services by allocating multiple of the needed resources. One resource that has been wasted, with little thought, has been energy. In recent years, programmable resource allocation has paved the way to allow for more efficient and robust data centers. In this work, we examine the predictability of resource usage in a data center environment. We use a number of models that cover a wide spectrum of machine learning categories. Then we establish a framework to guarantee the client service level agreement (SLA). Our results show that using prediction can cut energy loss by up to 55%.

Keywords: machine learning, artificial intelligence, prediction, data center, resource allocation, green computing

Procedia PDF Downloads 109
1241 US Airlines Performance and Its Connection with Service Quality

Authors: Nicole Kalemba, Fernando Campa-Planas, Ana-Beatriz Hernández-Lara, Maria Victória Sánchez-Rebull

Abstract:

The purpose of this paper is to determine the effects of service quality on US airlines’ economic performance. In order to cover this goal, it has been considered four different indexes of service quality in the air transportation industry, and also two indicators of economic performance, revenues and return on investment (ROI). Data from American airline companies over a period that covers from 2006 to 2013 have been used in order to determine if airlines’ profitability increases when service quality improves. Considering the effects on airlines’ profitability, the results confirm the positive and significant influence of service quality on the ROI of the companies in our study. Meanwhile, a non-significant effect was found for airline revenues related to quality. No previous research in this area has been done and these findings could encourage airline companies to invest in quality as far as this policy can have a return on their profitability.

Keywords: airlines, economic performance, key performance indicators, quality

Procedia PDF Downloads 474
1240 Theoretical Modeling of Mechanical Properties of Eco-Friendly Composites Derived from Sugar Palm

Authors: J. Sahari, S. M. Sapuan

Abstract:

Eco-friendly composites have been successfully prepared by using sugar palm tree as a sources. The effect of fibre content on mechanical properties of (SPF/SPS) biocomposites have been done and the experimentally tensile properties (tensile strength and modulus) of biocomposites have been compared with the existing theories of reinforcement. The biocomposites were prepared with different amounts of fibres (i.e. 10%, 20% and 30% by weight percent). The mechanical properties of plasticized SPS improved with the incorporation of fibres. Both approaches (experimental and theoretical) show that the young’s modulus of the biocomposites is consistently increased when the sugar palm fibre (SPF) are placed into the sugar palm starch matrix (SPS). Surface morphological study through scanning electron microscopy showed homogeneous distribution of fibres and matrix with good adhesion which play an important role in improving the mechanical properties of biocomposites. The observed deviations between the experimental and theoretical values are explained by the simplifying model assumptions applied for the configuration of the composites, in particular the sugar palm starch composites.

Keywords: eco-friendly, biocomposite, mechanical, experimental, theoretical

Procedia PDF Downloads 444
1239 Non-Fungible Token (NFT) - Used in the Music Industry for Independent Artists without a Music Recording Label

Authors: Bartholomew Badar

Abstract:

An NFT is a digital certificate with rights to own an asset, including various valuable digital goods such as art pieces, music items, collectibles, etc. The market for NFTs started developing in 2017 and has lately seen increased growth as crypto-currencies and the blockchain market continue to gain popularity. This study aims to understand potential uses for NFTs concerning the music industry and record labels. Independent artists struggle to distribute and sell their music without the help of a record label. The NFT marketplace could be a great tool to eliminate this problem. The research objective is to identify possibilities for independent artists to own their music rights and share value with an audience. We see a trend of new-school music artists trying to enter the music NFT market by creating visualizers, beats, cover art, etc. To analyze various existing music NFT assets and determine whether or not independent artists could monetize their music without a record label is the main focus of this scholarly paper.

Keywords: blockchain, crypto-currency, music, artist, NFT

Procedia PDF Downloads 180
1238 Transdisciplinary Methodological Innovation: Connecting Natural and Social Sciences Research through a Training Toolbox

Authors: Jessica M. Black

Abstract:

Although much of natural and social science research aims to enhance human flourishing and address social problems, the training within the two fields is significantly different across theory, methodology, and implementation of results. Social scientists are trained in social, psychological, and to the extent that it is relevant to their discipline, spiritual development, theory, and accompanying methodologies. They tend not to receive training or learn about accompanying methodology related to interrogating human development and social problems from a biological perspective. On the other hand, those in the natural sciences, and for the purpose of this work, human biological sciences specifically – biology, neuroscience, genetics, epigenetics, and physiology – are often trained first to consider cellular development and related methodologies, and may not have opportunity to receive formal training in many of the foundational principles that guide human development, such as systems theory or person-in-environment framework, methodology related to tapping both proximal and distal psycho-social-spiritual influences on human development, and foundational principles of equity, justice and inclusion in research design. There is a need for disciplines heretofore siloed to know one another, to receive streamlined, easy to access training in theory and methods from one another and to learn how to build interdisciplinary teams that can speak and act upon a shared research language. Team science is more essential than ever, as are transdisciplinary approaches to training and research design. This study explores the use of a methodological toolbox that natural and social scientists can use by employing a decision-making tree regarding project aims, costs, and participants, among other important study variables. The decision tree begins with a decision about whether the researcher wants to learn more about social sciences approaches or biological approaches to study design. The toolbox and platform are flexible, such that users could also choose among modules, for instance, reviewing epigenetics or community-based participatory research even if those are aspects already a part of their home field. To start, both natural and social scientists would receive training on systems science, team science, transdisciplinary approaches, and translational science. Next, social scientists would receive training on grounding biological theory and the following methodological approaches and tools: physiology, (epi)genetics, non-invasive neuroimaging, invasive neuroimaging, endocrinology, and the gut-brain connection. Natural scientists would receive training on grounding social science theory, and measurement including variables, assessment and surveys on human development as related to the developing person (e.g., temperament and identity), microsystems (e.g., systems that directly interact with the person such as family and peers), mesosystems (e.g., systems that interact with one another but do not directly interact with the individual person, such as parent and teacher relationships with one another), exosystems (e.g., spaces and settings that may come back to affect the individual person, such as a parent’s work environment, but within which the individual does not directly interact, macrosystems (e.g., wider culture and policy), and the chronosystem (e.g., historical time, such as the generational impact of trauma). Participants will be able to engage with the toolbox and one another to foster increased transdisciplinary work

Keywords: methodology, natural science, social science, transdisciplinary

Procedia PDF Downloads 117
1237 On an Approach for Rule Generation in Association Rule Mining

Authors: B. Chandra

Abstract:

In Association Rule Mining, much attention has been paid for developing algorithms for large (frequent/closed/maximal) itemsets but very little attention has been paid to improve the performance of rule generation algorithms. Rule generation is an important part of Association Rule Mining. In this paper, a novel approach named NARG (Association Rule using Antecedent Support) has been proposed for rule generation that uses memory resident data structure named FCET (Frequent Closed Enumeration Tree) to find frequent/closed itemsets. In addition, the computational speed of NARG is enhanced by giving importance to the rules that have lower antecedent support. Comparative performance evaluation of NARG with fast association rule mining algorithm for rule generation has been done on synthetic datasets and real life datasets (taken from UCI Machine Learning Repository). Performance analysis shows that NARG is computationally faster in comparison to the existing algorithms for rule generation.

Keywords: knowledge discovery, association rule mining, antecedent support, rule generation

Procedia PDF Downloads 326
1236 Groundwater Recharge Suitability Mapping Using Analytical Hierarchy Process Based-Approach

Authors: Aziza Barrek, Mohamed Haythem Msaddek, Ismail Chenini

Abstract:

Excessive groundwater pumping due to the increasing water demand, especially in the agricultural sector, causes groundwater scarcity. Groundwater recharge is the most important process that contributes to the water's durability. This paper is based on the Analytic Hierarchy Process multicriteria analysis to establish a groundwater recharge susceptibility map. To delineate aquifer suitability for groundwater recharge, eight parameters were used: soil type, land cover, drainage density, lithology, NDVI, slope, transmissivity, and rainfall. The impact of each factor was weighted. This method was applied to the El Fahs plain shallow aquifer. Results suggest that 37% of the aquifer area has very good and good recharge suitability. The results have been validated by the Receiver Operating Characteristics curve. The accuracy of the prediction obtained was 89.3%.

Keywords: AHP, El Fahs aquifer, empirical formula, groundwater recharge zone, remote sensing, semi-arid region

Procedia PDF Downloads 123
1235 Channel That Can Be Used on Slope, Slide Prone and Seismic Areas, Swelling and Collapsing Soils

Authors: Sabir Tehrankhan Hasanov, Mir Movsum Anar Dadashev

Abstract:

The article provides a brief overview of irrigation systems and canals applied to slopes, landslide-prone, seismic areas, and swelling and collapsing soils. The contemporary construction of the canal used for irrigation, energy, and water supply purposes is described. In order to ensure the durability, longevity, and reliability of the channel, a damping mat made of cast material is created under its cover, and the top is covered with a waterproof screen. Dowels are placed on the bottom and sides of the channel, and the bottom dowel is riveted to the solid bedrock and connected with piles placed at certain distances. Drainage was placed next to the bottom dowel, an operation road was created on one side of the channel, and a berm road was created on the other side. A bathtub was built on the side of the road, and a forest-bush strip was built on its bank.

Keywords: slope, channel, landslide, collapse, swell, soil, structure

Procedia PDF Downloads 90
1234 Plane of Equal Settlement above HDD’s Borehole before Operational Condition

Authors: Shokoufeh Sadeghifard

Abstract:

This study is a review of the nature of soil arching that develops in the upper layer of soil during drilling processes before pulling product pipe inside the hole. This study is based on the results of some parametric studies which are investigating the behavior of drained sandy soil above HDD borehole using Plaxis finite element solution. The influence of drilling mud injection in these series of analyses has been ignored. However, a suitable drilling mud pressure helps to achieve stable arch when the height of soil cover over the drilling borehole is not enough. In this study, the soil response to the formation of a HDD borehole is compared to arching theory developed by Terzaghi (1943). It is found that Terzaghi’s approach is capable of describing all of the behaviour seen when a stable arch forms. According to the numerical results, a suitable safe depth of 4D, D is borehole diameter, is suggested for typical range of HDD borehole in sandy soil.

Keywords: HDD, Plaxis, finite element, arching, settlement, drilling

Procedia PDF Downloads 359
1233 Using Machine Learning Techniques for Autism Spectrum Disorder Analysis and Detection in Children

Authors: Norah Mohammed Alshahrani, Abdulaziz Almaleh

Abstract:

Autism Spectrum Disorder (ASD) is a condition related to issues with brain development that affects how a person recognises and communicates with others which results in difficulties with interaction and communication socially and it is constantly growing. Early recognition of ASD allows children to lead safe and healthy lives and helps doctors with accurate diagnoses and management of conditions. Therefore, it is crucial to develop a method that will achieve good results and with high accuracy for the measurement of ASD in children. In this paper, ASD datasets of toddlers and children have been analyzed. We employed the following machine learning techniques to attempt to explore ASD and they are Random Forest (RF), Decision Tree (DT), Na¨ıve Bayes (NB) and Support Vector Machine (SVM). Then Feature selection was used to provide fewer attributes from ASD datasets while preserving model performance. As a result, we found that the best result has been provided by the Support Vector Machine (SVM), achieving 0.98% in the toddler dataset and 0.99% in the children dataset.

Keywords: autism spectrum disorder, machine learning, feature selection, support vector machine

Procedia PDF Downloads 153
1232 Reinforcement Learning for Classification of Low-Resolution Satellite Images

Authors: Khadija Bouzaachane, El Mahdi El Guarmah

Abstract:

The classification of low-resolution satellite images has been a worthwhile and fertile field that attracts plenty of researchers due to its importance in monitoring geographical areas. It could be used for several purposes such as disaster management, military surveillance, agricultural monitoring. The main objective of this work is to classify efficiently and accurately low-resolution satellite images by using novel technics of deep learning and reinforcement learning. The images include roads, residential areas, industrial areas, rivers, sea lakes, and vegetation. To achieve that goal, we carried out experiments on the sentinel-2 images considering both high accuracy and efficiency classification. Our proposed model achieved a 91% accuracy on the testing dataset besides a good classification for land cover. Focus on the parameter precision; we have obtained 93% for the river, 92% for residential, 97% for residential, 96% for the forest, 87% for annual crop, 84% for herbaceous vegetation, 85% for pasture, 78% highway and 100% for Sea Lake.

Keywords: classification, deep learning, reinforcement learning, satellite imagery

Procedia PDF Downloads 214
1231 Efficient Recommendation System for Frequent and High Utility Itemsets over Incremental Datasets

Authors: J. K. Kavitha, D. Manjula, U. Kanimozhi

Abstract:

Mining frequent and high utility item sets have gained much significance in the recent years. When the data arrives sporadically, incremental and interactive rule mining and utility mining approaches can be adopted to handle user’s dynamic environmental needs and avoid redundancies, using previous data structures, and mining results. The dependence on recommendation systems has exponentially risen since the advent of search engines. This paper proposes a model for building a recommendation system that suggests frequent and high utility item sets over dynamic datasets for a cluster based location prediction strategy to predict user’s trajectories using the Efficient Incremental Rule Mining (EIRM) algorithm and the Fast Update Utility Pattern Tree (FUUP) algorithm. Through comprehensive evaluations by experiments, this scheme has shown to deliver excellent performance.

Keywords: data sets, recommendation system, utility item sets, frequent item sets mining

Procedia PDF Downloads 295
1230 Using Machine Learning to Predict Answers to Big-Five Personality Questions

Authors: Aadityaa Singla

Abstract:

The big five personality traits are as follows: openness, conscientiousness, extraversion, agreeableness, and neuroticism. In order to get an insight into their personality, many flocks to these categories, which each have different meanings/characteristics. This information is important not only to individuals but also to career professionals and psychologists who can use this information for candidate assessment or job recruitment. The links between AI and psychology have been well studied in cognitive science, but it is still a rather novel development. It is possible for various AI classification models to accurately predict a personality question via ten input questions. This would contrast with the hundred questions that normal humans have to answer to gain a complete picture of their five personality traits. In order to approach this problem, various AI classification models were used on a dataset to predict what a user may answer. From there, the model's prediction was compared to its actual response. Normally, there are five answer choices (a 20% chance of correct guess), and the models exceed that value to different degrees, proving their significance. By utilizing an MLP classifier, decision tree, linear model, and K-nearest neighbors, they were able to obtain a test accuracy of 86.643, 54.625, 47.875, and 52.125, respectively. These approaches display that there is potential in the future for more nuanced predictions to be made regarding personality.

Keywords: machine learning, personally, big five personality traits, cognitive science

Procedia PDF Downloads 147
1229 Seawater Changes' Estimation at Tidal Flat in Korean Peninsula Using Drone Stereo Images

Authors: Hyoseong Lee, Duk-jin Kim, Jaehong Oh, Jungil Shin

Abstract:

Tidal flat in Korean peninsula is one of the largest biodiversity tidal flats in the world. Therefore, digital elevation models (DEM) is continuously demanded to monitor of the tidal flat. In this study, DEM of tidal flat, according to different times, was produced by means of the Drone and commercial software in order to measure seawater change during high tide at water-channel in tidal flat. To correct the produced DEMs of the tidal flat where is inaccessible to collect control points, the DEM matching method was applied by using the reference DEM instead of the survey. After the ortho-image was made from the corrected DEM, the land cover classified image was produced. The changes of seawater amount according to the times were analyzed by using the classified images and DEMs. As a result, it was confirmed that the amount of water rapidly increased as the time passed during high tide.

Keywords: tidal flat, drone, DEM, seawater change

Procedia PDF Downloads 204
1228 Contribution of Urban Wetlands to Livelihood in Tanzania

Authors: Halima Kilungu, Munishi P. K. T., Happiness Jackson Nko

Abstract:

Wetlands contribute significantly to the national economy. Nevertheless, urban wetlands in Tanzania have been taken for granted; many have been converted into waste disposal areas and settlements despite their substantial role in climate-change flood attenuation and livelihood. This is due to the lacking informing assessments from a socio-economic perspective. This study assesses the contribution of urban wetlands to the livelihood of marginalised communities in Dar es Salaam City, Tanzania. Specifically, the study assesses the an extent and nature of change in wetlands in Dar es Salaam City for the past 30 years using the land-use land-cover change approach and the contribution of wetlands to livelihood using questionnaires. The results show that the loss of wetlands in Dar es Salaam is high to extent that will likely jeopardise their future contributions to livelihood. The results inform decision-makers on the importance of wise use of Urban Wetlands and conservation to improving livelihood for urban dwellers.

Keywords: wetlands, tanzania, dar es salaam, climate-change, and wetlands, livelihood

Procedia PDF Downloads 171
1227 Modified Tendon Model Considered Structural Nonlinearity in PSC Structures

Authors: Yangsu Kwon, Hyo-Gyoung Kwak

Abstract:

Nonlinear tendon constitutive model for nonlinear analysis of pre-stressed concrete structures are presented. Since the post-cracking behavior of concrete structures, in which bonded reinforcements such as tendons and/or reinforcing steels are embedded, depends on many influencing factors(the tensile strength of concrete, anchorage length of reinforcements, concrete cover, and steel spacing) that are deeply related to the bond characteristics between concrete and reinforcements, consideration of the tension stiffening effect on the basis of the bond-slip mechanism is necessary to evaluate ultimate resisting capacity of structures. In this paper, an improved tendon model, which considering the slip effect between concrete and tendon, and effect of tension stiffening, is suggested. The validity of the proposed models is established by comparing between the analytical results and experimental results in pre-stressed concrete beams.

Keywords: bond-slip, prestressed concrete, tendon, ultimate strength

Procedia PDF Downloads 493
1226 Formation Control for Linear Multi-Robot System with Switched Directed Topology and Time-Varying Delays

Authors: Yaxiao Zhang, Yangzhou Chen

Abstract:

This study investigate the formation problem for high-order continuous-time multi-robot with bounded symmetric time-varying delay protocol under switched directed communication topology. By using a linear transformation, the formation problem is transformed to stability analysis of a switched delay system. Under the assumption that each communication topology has a directed spanning tree, sufficient conditions are presented in terms of linear matrix inequalities (LMIs) that the multi-robot system can achieve a desired formation by the trade-off among the pre-exist topologies with the help of the scheme of average dwell time. A numeral example is presented to illustrate the effectiveness of the obtained results.

Keywords: multi-robot systems, formation, switched directed topology, symmetric time-varying delay, average dwell time, linear matrix inequalities (lmis)

Procedia PDF Downloads 536
1225 Development of Innovative Islamic Web Applications

Authors: Farrukh Shahzad

Abstract:

The rich Islamic resources related to religious text, Islamic sciences, and history are widely available in print and in electronic format online. However, most of these works are only available in Arabic language. In this research, an attempt is made to utilize these resources to create interactive web applications in Arabic, English and other languages. The system utilizes the Pattern Recognition, Knowledge Management, Data Mining, Information Retrieval and Management, Indexing, storage and data-analysis techniques to parse, store, convert and manage the information from authentic Arabic resources. These interactive web Apps provide smart multi-lingual search, tree based search, on-demand information matching and linking. In this paper, we provide details of application architecture, design, implementation and technologies employed. We also presented the summary of web applications already developed. We have also included some screen shots from the corresponding web sites. These web applications provide an Innovative On-line Learning Systems (eLearning and computer based education).

Keywords: Islamic resources, Muslim scholars, hadith, narrators, history, fiqh

Procedia PDF Downloads 285
1224 Voyage Analysis of a Marine Gas Turbine Engine Installed to Power and Propel an Ocean-Going Cruise Ship

Authors: Mathias U. Bonet, Pericles Pilidis, Georgios Doulgeris

Abstract:

A gas turbine-powered cruise Liner is scheduled to transport pilgrim passengers from Lagos-Nigeria to the Islamic port city of Jeddah in Saudi Arabia. Since the gas turbine is an air breathing machine, changes in the density and/or mass flow at the compressor inlet due to an encounter with variations in weather conditions induce negative effects on the performance of the power plant during the voyage. In practice, all deviations from the reference atmospheric conditions of 15 oC and 1.103 bar tend to affect the power output and other thermodynamic parameters of the gas turbine cycle. Therefore, this paper seeks to evaluate how a simple cycle marine gas turbine power plant would react under a variety of scenarios that may be encountered during a voyage as the ship sails across the Atlantic Ocean and the Mediterranean Sea before arriving at its designated port of discharge. It is also an assessment that focuses on the effect of varying aerodynamic and hydrodynamic conditions which deteriorate the efficient operation of the propulsion system due to an increase in resistance that results from some projected levels of the ship hull fouling. The investigated passenger ship is designed to run at a service speed of 22 knots and cover a distance of 5787 nautical miles. The performance evaluation consists of three separate voyages that cover a variety of weather conditions in winter, spring and summer seasons. Real-time daily temperatures and the sea states for the selected transit route were obtained and used to simulate the voyage under the aforementioned operating conditions. Changes in engine firing temperature, power output as well as the total fuel consumed per voyage including other performance variables were separately predicted under both calm and adverse weather conditions. The collated data were obtained online from the UK Meteorological Office as well as the UK Hydrographic Office websites, while adopting the Beaufort scale for determining the magnitude of sea waves resulting from rough weather situations. The simulation of the gas turbine performance and voyage analysis was effected through the use of an integrated Cranfield-University-developed computer code known as ‘Turbomatch’ and ‘Poseidon’. It is a project that is aimed at developing a method for predicting the off design behavior of the marine gas turbine when installed and operated as the main prime mover for both propulsion and powering of all other auxiliary services onboard a passenger cruise liner. Furthermore, it is a techno-economic and environmental assessment that seeks to enable the forecast of the marine gas turbine part and full load performance as it relates to the fuel requirement for a complete voyage.

Keywords: cruise ship, gas turbine, hull fouling, performance, propulsion, weather

Procedia PDF Downloads 165
1223 Implementation and Performance Analysis of Data Encryption Standard and RSA Algorithm with Image Steganography and Audio Steganography

Authors: S. C. Sharma, Ankit Gambhir, Rajeev Arya

Abstract:

In today’s era data security is an important concern and most demanding issues because it is essential for people using online banking, e-shopping, reservations etc. The two major techniques that are used for secure communication are Cryptography and Steganography. Cryptographic algorithms scramble the data so that intruder will not able to retrieve it; however steganography covers that data in some cover file so that presence of communication is hidden. This paper presents the implementation of Ron Rivest, Adi Shamir, and Leonard Adleman (RSA) Algorithm with Image and Audio Steganography and Data Encryption Standard (DES) Algorithm with Image and Audio Steganography. The coding for both the algorithms have been done using MATLAB and its observed that these techniques performed better than individual techniques. The risk of unauthorized access is alleviated up to a certain extent by using these techniques. These techniques could be used in Banks, RAW agencies etc, where highly confidential data is transferred. Finally, the comparisons of such two techniques are also given in tabular forms.

Keywords: audio steganography, data security, DES, image steganography, intruder, RSA, steganography

Procedia PDF Downloads 291