Search results for: manufacturing efficiency
7412 Smart Surveillance with 5G: A Performance Study in Adama City
Authors: Shenko Chura Aredo, Hailu Belay, Kevin T. Kornegay
Abstract:
In light of Adama City’s smart city development vision, this study thoroughly investigates the performance of smart security systems with Fifth Generation (5G) network capabilities. It can be logistically difficult to install a lot of cabling, particularly in big or dynamic settings. Moreover, latency issues might affect linked systems, making it difficult for them to monitor in real time. Through a focused analysis that employs Adama City as a case study, the performance has been evaluated in terms of spectrum and energy efficiency using empirical data and basic signal processing formulations at different frequency resources. The findings also demonstrate that cameras working at higher 5G frequencies have more capacity than those operating at sub-6 GHz, notwithstanding frequency-related issues. It has also been noted that when the beams of such cameras are adaptively focussed based on the distance of the last cell edge user rather than the maximum cell radius, less energy is required than with conventional fixed power ramping.Keywords: 5G, energy efficiency, safety, smart security, spectral efficiency
Procedia PDF Downloads 197411 The Volume–Volatility Relationship Conditional to Market Efficiency
Authors: Massimiliano Frezza, Sergio Bianchi, Augusto Pianese
Abstract:
The relation between stock price volatility and trading volume represents a controversial issue which has received a remarkable attention over the past decades. In fact, an extensive literature shows a positive relation between price volatility and trading volume in the financial markets, but the causal relationship which originates such association is an open question, from both a theoretical and empirical point of view. In this regard, various models, which can be considered as complementary rather than competitive, have been introduced to explain this relationship. They include the long debated Mixture of Distributions Hypothesis (MDH); the Sequential Arrival of Information Hypothesis (SAIH); the Dispersion of Beliefs Hypothesis (DBH); the Noise Trader Hypothesis (NTH). In this work, we analyze whether stock market efficiency can explain the diversity of results achieved during the years. For this purpose, we propose an alternative measure of market efficiency, based on the pointwise regularity of a stochastic process, which is the Hurst–H¨older dynamic exponent. In particular, we model the stock market by means of the multifractional Brownian motion (mBm) that displays the property of a time-changing regularity. Mostly, such models have in common the fact that they locally behave as a fractional Brownian motion, in the sense that their local regularity at time t0 (measured by the local Hurst–H¨older exponent in a neighborhood of t0 equals the exponent of a fractional Brownian motion of parameter H(t0)). Assuming that the stock price follows an mBm, we introduce and theoretically justify the Hurst–H¨older dynamical exponent as a measure of market efficiency. This allows to measure, at any time t, markets’ departures from the martingale property, i.e. from efficiency as stated by the Efficient Market Hypothesis. This approach is applied to financial markets; using data for the SP500 index from 1978 to 2017, on the one hand we find that when efficiency is not accounted for, a positive contemporaneous relationship emerges and is stable over time. Conversely, it disappears as soon as efficiency is taken into account. In particular, this association is more pronounced during time frames of high volatility and tends to disappear when market becomes fully efficient.Keywords: volume–volatility relationship, efficient market hypothesis, martingale model, Hurst–Hölder exponent
Procedia PDF Downloads 787410 Efficiency Analysis of Trader in Thailand and Laos Border Trade: Case Study of Textile and Garment Products
Authors: Varutorn Tulnawat, Padcharee Phasuk
Abstract:
This paper investigates the issue of China’s dumping on border trade between Thailand and Laos. From the pass mostly, the border trade goods are traditional textile and garment mainly served locals and tourists which majority of traders is of small and medium size. In the present day the competition is fierce, the volume of trade has expanded far beyond its original intent. The major competitors in Thai-Laos border trade are China, Vietnam and also South Korea. This research measures and compares the efficiency and ability to survive the onslaught of Thai and Laos firm along Thailand (Nong Kai province) and Laos (Vientiane) border. Two attack strategies are observed, price cutting and incense such as full facilitation for big volume order. Data Envelopment Analysis (DEA) is applied to data surveyed from 90 Thai and Laos entrepreneurs. The expected results are the proportion of efficiency and inefficiency firms. Points of inefficiency and suggested improvement are also discussed.Keywords: border trade, dea, textile, garment
Procedia PDF Downloads 2457409 Study and Improvement of the Quality of a Production Line
Authors: S. Bouchami, M.N. Lakhoua
Abstract:
The automotive market is a dynamic market that continues to grow. That’s why several companies belonging to this sector adopt a quality improvement approach. Wanting to be competitive and successful in the environment in which they operate, these companies are dedicated to establishing a system of quality management to ensure the achievement of the objective quality, improving the products and process as well as the satisfaction of the customers. In this paper, the management of the quality and the improvement of a production line in an industrial company is presented. In fact, the project is divided into two essential parts: the creation of the technical line documentation and the quality assurance documentation and the resolution of defects at the line, as well as those claimed by the customer. The creation of the documents has required a deep understanding of the manufacturing process. The analysis and problem solving were done through the implementation of PDCA (Plan Do Check Act) and FTA (Fault Tree Analysis). As perspective, in order to better optimize production and improve the efficiency of the production line, a study on the problems associated with the supply of raw materials should be made to solve the problems of stock-outs which cause delays penalizing for the industrial company.Keywords: quality management, documentary system, Plan Do Check Act (PDCA), fault tree analysis (FTA) method
Procedia PDF Downloads 1427408 Payment Subsidies for Environmentally-Friendly Agriculture on Rice Production in Japan
Authors: Danielle Katrina Santos, Koji Shimada
Abstract:
Environmentally-friendly agriculture has been promoted for over two decades as a response to the environmental challenges brought by climate change and biological loss. Located above the equator, it is possible that Japan may benefit from future climate change, yet Japan is also a rarely developed country located in the Asian Monsoon climate region, making it vulnerable to the impacts of climate change. In this regard, the Japanese government has initiated policies to adapt to the adverse effects of climate change through the promotion and popularization of environmentally-friendly farming practices. This study aims to determine profit efficiency among environmentally-friendly rice farmers in Shiga Prefecture using the Stochastic Frontier Approach. A cross-sectional survey was conducted among 66 farmers from top rice-producing cities through a structured questionnaire. Results showed that the gross farm income of environmentally-friendly rice farmers was higher by JPY 316,223.00/ha. Production costs were also found to be higher among environmentally-friendly rice farmers, especially on labor costs, which accounted for 32% of the total rice production cost. The resulting net farm income of environmentally-friendly rice farmers was only higher by JPY 18,044/ha. Results from the stochastic frontier analysis further showed that the profit efficiency of conventional farmers was only 69% as compared to environmentally-friendly rice farmers who had a profit efficiency of 76%. Furthermore, environmentally-friendly agriculture participation, other types of subsidy, educational level, and farm size were significant factors positively influencing profit efficiency. The study concluded that substitution of environmentally-friendly agriculture for conventional rice farming would result in an increased profit efficiency due to the direct payment subsidy and price premium received. The direct government policies that would strengthen the popularization of environmentally-friendly agriculture to increase the production of environmentally-friendly products and reduce pollution load to the Lake Biwa ecosystem.Keywords: profit efficiency, environmentally-friendly agriculture, rice farmers, direct payment subsidies
Procedia PDF Downloads 1457407 Analysis of the Cutting Force with Ultrasonic Assisted Manufacturing of Steel (S235JR)
Authors: Philipp Zopf, Franz Haas
Abstract:
Manufacturing of very hard and refractory materials like ceramics, glass or carbide poses particular challenges on tools and machines. The company Sauer GmbH developed especially for this application area ultrasonic tool holders working in a frequency range from 15 to 60 kHz and superimpose the common tool movement in the vertical axis. This technique causes a structural weakening in the contact area and facilitates the machining. The possibility of the force reduction for these special materials especially in drilling of carbide with diamond tools up to 30 percent made the authors try to expand the application range of this method. To make the results evaluable, the authors decide to start with existing processes in which the positive influence of the ultrasonic assistance is proven to understand the mechanism. The comparison of a grinding process the Institute use to machine materials mentioned in the beginning and steel could not be more different. In the first case, the authors use tools with geometrically undefined edges. In the second case, the edges are geometrically defined. To get valid results of the tests, the authors decide to investigate two manufacturing methods, drilling and milling. The main target of the investigation is to reduce the cutting force measured with a force measurement platform underneath the workpiece. Concerning to the direction of the ultrasonic assistance, the authors expect lower cutting forces and longer endurance of the tool in the drilling process. To verify the frequencies and the amplitudes an FFT-analysis is performed. It shows the increasing damping depending on the infeed rate of the tool. The reducing of amplitude of the cutting force comes along.Keywords: drilling, machining, milling, ultrasonic
Procedia PDF Downloads 2747406 The Manufacturing of Metallurgical Grade Silicon from Diatomaceous Silica by an Induction Furnace
Authors: Shahrazed Medeghri, Saad Hamzaoui, Mokhtar Zerdali
Abstract:
The metallurgical grade silicon (MG-Si) is obtained from the reduction of silica (SiO2) in an induction furnace or an electric arc furnace. Impurities inherent in reduction process also depend on the quality of the raw material used. Among the applications of the silicon, it is used as a substrate for the photovoltaic conversion of solar energy and this conversion is wider as the purity of the substrate is important. Research is being done where the purpose is looking for new methods of manufacturing and purification of silicon, as well as new materials that can be used as substrates for the photovoltaic conversion of light energy. In this research, the technique of production of silicon in an induction furnace, using a high vacuum for fusion. Diatomaceous Silica (SiO2) used is 99 mass% initial purities, the carbon used is 6N of purity and the particle size of 63μm as starting materials. The final achieved purity of the material was above 50% by mass. These results demonstrate that this method is a technically reliable, and allows obtaining a better return on the amount 50% of silicon.Keywords: induction furnaces, amorphous silica, carbon microstructure, silicon
Procedia PDF Downloads 4047405 Beta Titanium Alloys: The Lowest Elastic Modulus for Biomedical Applications: A Review
Authors: Mohsin Talib Mohammed, Zahid A. Khan, Arshad N. Siddiquee
Abstract:
Biometallic materials are the most important materials for use in biomedical applications especially in manufacturing a variety of biological artificial replacements in a modern worlds, e.g. hip, knee or shoulder joints, due to their advanced characteristics. Titanium (Ti) and its alloys are used extensively in biomedical applications based on their high specific strength and excellent corrosion resistance. Beta-Ti alloys containing completely biocompatible elements are exceptionally prospective materials for manufacturing of bioimplants. They have superior mechanical, chemical and electrochemical properties for use as biomaterials. These biomaterials have the ability to introduce the most important property of biochemical compatibility which is low elastic modulus. This review examines current information on the recent developments in alloying elements leading to improvements of beta Ti alloys for use as biomaterials. Moreover, this paper focuses mainly on the evolution, evaluation and development of the modulus of elasticity as an effective factor on the performance of beta alloys.Keywords: beta alloys, biomedical applications, titanium alloys, Young's modulus
Procedia PDF Downloads 3257404 Significance of Bike-Frame Geometric Factors for Cycling Efficiency and Muscle Activation
Authors: Luen Chow Chan
Abstract:
With the advocacy of green transportation and green traveling, cycling has become increasingly popular nowadays. Physiology and bike design are key factors for the influence of cycling efficiency. Therefore, this study aimed to investigate the significance of bike-frame geometric factors on cycling efficiency and muscle activation for different body sizes of non-professional Asian male cyclists. Participants who represented various body sizes, as measured by leg and back lengths, carried out cycling tests using a tailor-assembled road bike with different ergonomic design configurations including seat-height adjustments (i.e., 96%, 100%, and 104% of trochanteric height) and bike frame sizes (i.e., small and medium frames) for an assessable distance of 1 km. A specific power meter and self-developed adaptable surface electromyography (sEMG) were used to measure average pedaling power and cadence generated and muscle activation, respectively. The results showed that changing the seat height was far more significant than the body and bike frame sizes. The sEMG data evidently provided a better understanding of muscle activation as a function of different seat heights. Therefore, the interpretation of this study is that the major bike ergonomic design factor dominating the cycling efficiency of Asian participants with different body sizes was the seat height.Keywords: bike frame sizes, cadence rate, pedaling power, seat height
Procedia PDF Downloads 1207403 A Greener Approach towards the Synthesis of an Antimalarial Drug Lumefantrine
Authors: Luphumlo Ncanywa, Paul Watts
Abstract:
Malaria is a disease that kills approximately one million people annually. Children and pregnant women in sub-Saharan Africa lost their lives due to malaria. Malaria continues to be one of the major causes of death, especially in poor countries in Africa. Decrease the burden of malaria and save lives is very essential. There is a major concern about malaria parasites being able to develop resistance towards antimalarial drugs. People are still dying due to lack of medicine affordability in less well-off countries in the world. If more people could receive treatment by reducing the cost of drugs, the number of deaths in Africa could be massively reduced. There is a shortage of pharmaceutical manufacturing capability within many of the countries in Africa. However one has to question how Africa would actually manufacture drugs, active pharmaceutical ingredients or medicines developed within these research programs. It is quite likely that such manufacturing would be outsourced overseas, hence increasing the cost of production and potentially limiting the full benefit of the original research. As a result the last few years has seen major interest in developing more effective and cheaper technology for manufacturing generic pharmaceutical products. Micro-reactor technology (MRT) is an emerging technique that enables those working in research and development to rapidly screen reactions utilizing continuous flow, leading to the identification of reaction conditions that are suitable for usage at a production level. This emerging technique will be used to develop antimalarial drugs. It is this system flexibility that has the potential to reduce both the time was taken and risk associated with transferring reaction methodology from research to production. Using an approach referred to as scale-out or numbering up, a reaction is first optimized within the laboratory using a single micro-reactor, and in order to increase production volume, the number of reactors employed is simply increased. The overall aim of this research project is to develop and optimize synthetic process of antimalarial drugs in the continuous processing. This will provide a step change in pharmaceutical manufacturing technology that will increase the availability and affordability of antimalarial drugs on a worldwide scale, with a particular emphasis on Africa in the first instance. The research will determine the best chemistry and technology to define the lowest cost manufacturing route to pharmaceutical products. We are currently developing a method to synthesize Lumefantrine in continuous flow using batch process as bench mark. Lumefantrine is a dichlorobenzylidine derivative effective for the treatment of various types of malaria. Lumefantrine is an antimalarial drug used with artemether for the treatment of uncomplicated malaria. The results obtained when synthesizing Lumefantrine in a batch process are transferred into a continuous flow process in order to develop an even better and reproducible process. Therefore, development of an appropriate synthetic route for Lumefantrine is significant in pharmaceutical industry. Consequently, if better (and cheaper) manufacturing routes to antimalarial drugs could be developed and implemented where needed, it is far more likely to enable antimalarial drugs to be available to those in need.Keywords: antimalarial, flow, lumefantrine, synthesis
Procedia PDF Downloads 2037402 Lean Impact Analysis Assessment Models: Development of a Lean Measurement Structural Model
Authors: Catherine Maware, Olufemi Adetunji
Abstract:
The paper is aimed at developing a model to measure the impact of Lean manufacturing deployment on organizational performance. The model will help industry practitioners to assess the impact of implementing Lean constructs on organizational performance. It will also harmonize the measurement models of Lean performance with the house of Lean that seems to have become the industry standard. The sheer number of measurement models for impact assessment of Lean implementation makes it difficult for new adopters to select an appropriate assessment model or deployment methodology. A literature review is conducted to classify the Lean performance model. Pareto analysis is used to select the Lean constructs for the development of the model. The model is further formalized through the use of Structural Equation Modeling (SEM) in defining the underlying latent structure of a Lean system. An impact assessment measurement model developed can be used to measure Lean performance and can be adopted by different industries.Keywords: impact measurement model, lean bundles, lean manufacturing, organizational performance
Procedia PDF Downloads 4857401 An Exploration on Competency-Based Curricula in Integrated Circuit Design
Authors: Chih Chin Yang, Chung Shan Sun
Abstract:
In this paper, the relationships between professional competences and school curricula in IC design industry are explored. The semi-structured questionnaire survey and focus group interview is the research method. Study participants are graduates of microelectronics engineering professional departments who are currently employed in the IC industry. The IC industries are defined as the electronic component manufacturing industry and optical-electronic component manufacturing industry in the semiconductor industry and optical-electronic material devices, respectively. Study participants selected from IC design industry include IC engineering and electronic & semiconductor engineering. The human training with IC design professional competence in microelectronics engineering professional departments is explored in this research. IC professional competences of human resources in the IC design industry include general intelligence and professional intelligence.Keywords: IC design, curricula, competence, task, duty
Procedia PDF Downloads 3827400 Preparation and Performance of Polyphenylene Oxide-Based Anion Exchange Membrane for Vanadium Redox Flow Battery
Authors: Mi-Jung Park, Min-Hwa Lim, Ho-Young Jung
Abstract:
A polyphenylene oxide (PPO)-based anion exchange membrane based on the functionalization of bromomethylated PPO using 1-methylimdazole was fabricated for vanadium redox flow application. The imidazolium-bromomethylated PPO (Im-bPPO) showed lower permeability VO2+ ions (2.9×10⁻¹⁴ m²/sec), compared to Nafion 212 (2.3×10⁻¹² m²/sec) and FAP-450 (7.9×10⁻¹⁴ m²/sec). Even though the Im-bPPO membrane has higher permeability, the energy efficiency of the VRFB with the Im-bPPO membrane was slightly lower than that of Nafion and FAP-450. The Im-bPPO membrane exhibits good voltage efficiency compared to FAP-450 and Nafion 212 because of its better ion conductivity. The Im-bPPo membrane showed up good performance, but a decline in performance at later cycles was observed.Keywords: anion exchange membranes, vanadium redox flow battery, polyphenylene oxide, energy efficiency (EE)
Procedia PDF Downloads 3177399 Carbon Accounting for Sustainable Design and Manufacturing in the Signage Industry
Authors: Prudvi Paresi, Fatemeh Javidan
Abstract:
In recent years, greenhouse gas, or in particular, carbon emissions, have received special attention from environmentalists and designers due to the fact that they significantly contribute to the temperature rise. The building industry is one of the top seven major industries contributing to embodied carbon emission. Signage systems are an integral part of the building industry and bring completeness to the space-building by providing the required information and guidance. A significant amount of building materials, such as steel, aluminium, acrylic, LED, etc., are utilized in these systems, but very limited information is available on their sustainability and carbon footprint. Therefore, there is an urgent need to assess the emissions associated with the signage industry and for controlling these by adopting different mitigation techniques without sacrificing the efficiency of the project. The present paper investigates the embodied carbon of two case studies in the Australian signage industry within the cradle – gate (A1-A3) and gate–site (A4-A5) stages. A material source-based database is considered to achieve more accuracy. The study identified that aluminium is the major contributor to embodied carbon in the signage industry compared to other constituents. Finally, an attempt is made to suggest strategies for mitigating embodied carbon in this industry.Keywords: carbon accounting, small-scale construction, signage industry, construction materials
Procedia PDF Downloads 1177398 Layout Optimization of a Start-up COVID-19 Testing Kit Manufacturing Facility
Authors: Poojan Vora, Hardik Pancholi, Sanket Tajane, Harsh Shah, Elias Keedy
Abstract:
The global COVID-19 pandemic has affected the industry drastically in many ways. Even though the vaccine is being distributed quickly and despite the decreasing number of positive cases, testing is projected to remain a key aspect of the ‘new normal’. Improving existing plant layout and improving safety within the facility are of great importance in today’s industries because of the need to ensure productivity optimization and reduce safety risks. In practice, it is essential for any manufacturing plant to reduce nonvalue adding steps such as the movement of materials and rearrange similar processes. In the current pandemic situation, optimized layouts will not only increase safety measures but also decrease the fixed cost per unit manufactured. In our case study, we carefully studied the existing layout and the manufacturing steps of a new Texas start-up company that manufactures COVID testing kits. The effects of production rate are incorporated with the computerized relative allocation of facilities technique (CRAFT) algorithm to improve the plant layout and estimate the optimization parameters. Our work reduces the company’s material handling time and increases their daily production. Real data from the company are used in the case study to highlight the importance of colleges in fostering small business needs and improving the collaboration between college researchers and industries by using existing models to advance best practices.Keywords: computerized relative allocation of facilities technique, facilities planning, optimization, start-up business
Procedia PDF Downloads 1387397 A Study on the Effectiveness of Alternative Commercial Ventilation Inlets That Improve Energy Efficiency of Building Ventilation Systems
Authors: Brian Considine, Aonghus McNabola, John Gallagher, Prashant Kumar
Abstract:
Passive air pollution control devices known as aspiration efficiency reducers (AER) have been developed using aspiration efficiency (AE) concepts. Their purpose is to reduce the concentration of particulate matter (PM) drawn into a building air handling unit (AHU) through alterations in the inlet design improving energy consumption. In this paper an examination is conducted into the effect of installing a deflector system around an AER-AHU inlet for both a forward and rear-facing orientations relative to the wind. The results of the study found that these deflectors are an effective passive control method for reducing AE at various ambient wind speeds over a range of microparticles of varying diameter. The deflector system was found to induce a large wake zone at low ambient wind speeds for a rear-facing AER-AHU, resulting in significantly lower AE in comparison to without. As the wind speed increased, both contained a wake zone but have much lower concentration gradients with the deflectors. For the forward-facing models, the deflector system at low ambient wind speed was preferred at higher Stokes numbers but there was negligible difference as the Stokes number decreased. Similarly, there was no significant difference at higher wind speeds across the Stokes number range tested. The results demonstrate that a deflector system is a viable passive control method for the reduction of ventilation energy consumption.Keywords: air handling unit, air pollution, aspiration efficiency, energy efficiency, particulate matter, ventilation
Procedia PDF Downloads 1187396 Towards a Complete Automation Feature Recognition System for Sheet Metal Manufacturing
Authors: Bahaa Eltahawy, Mikko Ylihärsilä, Reino Virrankoski, Esko Petäjä
Abstract:
Sheet metal processing is automated, but the step from product models to the production machine control still requires human intervention. This may cause time consuming bottlenecks in the production process and increase the risk of human errors. In this paper we present a system, which automatically recognizes features from the CAD-model of the sheet metal product. By using these features, the system produces a complete model of the particular sheet metal product. Then the model is used as an input for the sheet metal processing machine. Currently the system is implemented, capable to recognize more than 11 of the most common sheet metal structural features, and the procedure is fully automated. This provides remarkable savings in the production time, and protects against the human errors. This paper presents the developed system architecture, applied algorithms and system software implementation and testing.Keywords: feature recognition, automation, sheet metal manufacturing, CAD, CAM
Procedia PDF Downloads 3557395 The Photocatalytic Degradation of Acid Blue 25 Dye by Polypyrrole/Titanium Dioxide and Polypyrrole/Zinc Oxide Composites
Authors: Ljerka Kratofil Krehula, Martina Perlog, Jasmina Stjepanović, Vanja Gilja, Marijana Kraljić Roković, Zlata Hrnjak-Murgić
Abstract:
The composite preparation of titanium dioxide and zinc oxide photocatalysts with the conductive polymers gives the opportunity to carry out the catalysis reactions not only under UV light but also under visible light. Such processes may efficiently use sunlight in degradation of different organic pollutants and present new design for wastewater treatment. The paper presents the preparation procedure, material characteristics and photocatalytic efficiency of polypyrrole/titanium dioxide and polypyrrole/zinc oxide composites (PPy/TiO2 and PPy/ZnO). The obtained composite samples were characterized by Fourier transform infrared spectroscopy (FTIR), UV-Vis spectroscopy and thermogravimetric analysis (TGA). The photocatalytic efficiency of the samples was determined following the decomposition of Acid Blue 25 dye (AB 25) under UV and visible light by UV/Vis spectroscopy. The efficiency of degradation is determined by total organic carbon content (TOC) after photocatalysis processes. The results show enhanced photocatalytic efficiency of the samples under visible light, so the prepared composite samples are recognized as efficient catalysts in degradation process of AB 25 dye. It can be concluded that the preparation of TiO2 or ZnO composites with PPy can serve as a very efficient method for the improvement of TiO2 and ZnO photocatalytic performance under visible light.Keywords: composite, photocatalysis, polypyrrole, titanium dioxide, zinc oxide
Procedia PDF Downloads 4867394 Analysis of Energy Efficiency Behavior with the Use of Train Dynamics Simulator and Statistical Tools: Case Study of Vitoria Minas Railway, Brazil
Authors: Eric Wilson Santos Cabral, Marta Monteiro Da Costa Cruz, Fabio Luis Maciel Machado, Henrique Andrade, Rodrigo Pirola Pestana, Vivian Andrea Parreira
Abstract:
The large variation in the price of diesel in Brazil directly affects the variable cost of companies operating in the transportation sector. In rail transport, the great challenge is to overcome the annual budget, cargo and ore transported with cost reduction in relation to previous years, becoming more efficient every year. Some effective measures are necessary to achieve the reduction of the liter ratio consumed by KTKB (Gross Ton per Kilometer multiplied by thousand). This acronym represents the indicator of energy efficiency of some railroads in the world. This study is divided into two parts: the first, to identify using statistical tools, part of the controlled variables in the railways, which have a correlation with the energy efficiency indicator, seeking to aid decision-making. The second, with the use of the train dynamics simulator, within scenarios defined in the operational reality of a railroad, seeks to optimize the train formations and the train stop model for the change of train drivers. With the completion of the study, companies in the rail sector are expected to be able to reduce some of their transportation costs.Keywords: railway transport, railway simulation, energy efficiency, fuel consumption
Procedia PDF Downloads 3357393 Synthesis of Pyrimidine-Based Polymers Consist of 2-{4-[4,6-Bis-(4-Hexyl-Thiophen-2-yl)-Pyrimidin-2-yl]-Phenyl}-Thiazolo[5,4-B]Pyridine with Deep HOMO Level for Photovoltaics
Authors: Hyehyeon Lee, Jiwon Yu, Juwon Kim, Raquel Kristina Leoni Tumiar, Taewon Kim, Juae Kim, Hongsuk Suh
Abstract:
Photovoltaics, which have many advantages in cost, easy processing, and light-weight, have attracted attention. We synthesized pyrimidine-based conjugated polymers with 2-{4-[4,6-bis-(4-hexyl-thiophen-2-yl)-pyrimidin-2-yl]-phenyl}-thiazolo[5,4-b]pyridine (pPTP) which have an ability of powerful electron withdrawing and introduced into the PSCs. By Stille polymerization, we designed the conjugated polymers, pPTPBDT-12, pPTPBDT-EH, pPTPBDTT-EH and pPTPTTI. The HOMO energy levels of four polymers (pPTPBDT-12, pPTPBDT-EH, pPTPBDTT-EH and pPTPTTI) were at -5.61 ~ -5.89 eV, their LUMO (Lowest Unoccupied Molecular Orbital) energy levels were at -3.95 ~ -4.09 eV. The device including pPTPBDT-12 and PC71BM (1:2) indicated a V_oc of 0.67 V, a J_sc of 1.33 mA/cm², and a fill factor (FF) of 0.25, giving a power conversion efficiency (PCE) of 0.23%. The device including pPTPBDT-EH and PC71BM (1:2) indicated a V_oc of 0.72 V, a J_sc of 2.56 mA/cm², and a fill factor (FF) of 0.30, giving a power conversion efficiency of 0.56%. The device including pPTPBDTT-EH and PC71BM (1:2) indicated a V_oc of 0.72 V, a J_sc of 3.61 mA/cm², and a fill factor (FF) of 0.29, giving a power conversion efficiency of 0.74%. The device including pPTPTTI and PC71BM (1:2) indicated a V_oc of 0.83 V, a J_sc of 4.41 mA/cm², and a fill factor (FF) of 0.31, giving a power conversion efficiency of 1.13%. Therefore, pPTPBDT-12, pPTPBDT-EH, pPTPBDTT-EH, and pPTPTTI were synthesized by Stille polymerization. And We find one of the best efficiency for these polymers, called pPTPTTI. Their optical properties were measured and the results show that pyrimidine-based polymers especially like pPTPTTI have a great promise to act as the donor of the active layer.Keywords: polymer solar cells, pyrimidine-based polymers, photovoltaics, conjugated polymer
Procedia PDF Downloads 1987392 Unravelling Glyphosates Disruptive Effects on the Photochemical Efficiency of Amaranthus cruentus
Authors: Jacques M. Berner, Lehlogonolo Maloma
Abstract:
Context: Glyphosate, a widely used herbicide, has raised concerns about its impact on various crops. Amaranthus cruentus, an important grain crop species, is particularly susceptible to glyphosate. Understanding the specific disruptions caused by glyphosate on the photosynthetic process in Amaranthus cruentus is crucial for assessing its effects on crop productivity and ecological sustainability. Research Aim: This study aimed to investigate the dose-dependent impact of glyphosate on the photochemical efficiency of Amaranthus cruentus using the OJIP transient analysis. The goal was to assess the specific disruptions caused by glyphosate on key parameters of photosystem II. Methodology: The experiment was conducted in a controlled greenhouse environment. Amaranthus cruentus plants were exposed to different concentrations of glyphosate, including half, recommended, and double the recommended application rates. The photochemical efficiency of the plants was evaluated using non-invasive chlorophyll a fluorescence measurements and subsequent analysis of OJIP transients. Measurements were taken on 1-hour dark-adapted leaves using a Hansatech Handy PEA+ chlorophyll fluorimeter. Findings: The study's results demonstrated a significant reduction in the photochemical efficiency of Amaranthus cruentus following glyphosate treatment. The OJIP transients showed distinct alterations in the glyphosate-treated plants compared to the control group. These changes included a decrease in maximal fluorescence (FP) and a delay in the rise of the fluorescence signal, indicating impairment in the energy conversion process within the photosystem II. Glyphosate exposure also led to a substantial decrease in the maximum quantum yield efficiency of photosystem II (FV/FM) and the total performance index (PItotal), which reflects the overall photochemical efficiency of photosystem II. These reductions in photochemical efficiency were observed even at half the recommended dose of glyphosate. Theoretical Importance: The study provides valuable insights into the specific disruptions caused by glyphosate on the photochemical efficiency of Amaranthus cruentus. Data Collection and Analysis Procedures: Data collection involved non-invasive chlorophyll a fluorescence measurements using a chlorophyll fluorimeter on dark-adapted leaves. The OJIP transients were then analyzed to assess specific disruptions in key parameters of photosystem II. Statistical analysis was conducted to determine the significance of the differences observed between glyphosate-treated plants and the control group. Question Addressed: The study aimed to address the question of how glyphosate exposure affects the photochemical efficiency of Amaranthus cruentus, specifically examining disruptions in the photosynthetic electron transport chain and overall photochemical efficiency. Conclusion: The study demonstrates that glyphosate severely impairs the photochemical efficiency of Amaranthus cruentus, as indicated by the alterations in OJIP transients. Even at half the recommended dose, glyphosate caused significant reductions in photochemical efficiency. These findings highlight the detrimental effects of glyphosate on crop productivity and emphasize the need for further research to evaluate its long-term consequences and ecological implications in agriculture. The authors gratefully acknowledge the support from North-West University for making this research possible.Keywords: glyphosate, amaranthus cruentus, ojip transient analysis, pitotal, photochemical efficiency, chlorophyll fluorescence, weeds
Procedia PDF Downloads 917391 Baseline Study for Performance Evaluation of New Generation Solar Insulation Films for Windows: A Test Bed in Singapore
Authors: Priya Pawar, Rithika Susan Thomas, Emmanuel Blonkowski
Abstract:
Due to the solar geometry of Singapore, which lay within the geographical classification of equatorial tropics, there is a great deal of thermal energy transfer to the inside of the buildings. With changing face of economic development of cities like Singapore, more and more buildings are designed to be lightweight using transparent construction materials such as glass. Increased demand for energy efficiency and reduced cooling load demands make it important for building designer and operators to adopt new and non-invasive technologies to achieve building energy efficiency targets. A real time performance evaluation study was undertaken at School of Art Design and Media (SADM), Singapore, to determine the efficiency potential of a new generation solar insulation film. The building has a window to wall ratio (WWR) of 100% and is fitted with high performance (low emissivity) double glazed units. The empirical data collected was then used to calibrate a computerized simulation model to understand the annual energy consumption based on existing conditions (baseline performance). It was found that the correlations of various parameters such as solar irradiance, solar heat flux, and outdoor air-temperatures quantification are significantly important to determine the cooling load during a particular period of testing.Keywords: solar insulation film, building energy efficiency, tropics, cooling load
Procedia PDF Downloads 1937390 Miniaturization of I-Slot Antenna with Improved Efficiency and Gain
Authors: Mondher Labidi, Fethi Choubani
Abstract:
In this paper, novel miniaturization technique of antenna is proposed using I-slot. Using this technique, gain of antenna can increased for 4dB (antenna only) to 6.6dB for the proposed I-slot antenna and a frequency shift of about 0.45 GHz to 1 GHz is obtained. Also a reduction of the shape size of the antenna is achieved (about 38 %) to operate in the Wi-Fi (2.45 GHz) band.RF Moreover the frequency shift can be controlled by changing the place or the length of the I-slot. Finally the proposed miniature antenna with an improved radiation efficiency and gain was built and tested.Keywords: slot antenna, miniaturization, RF, electrical equivalent circuit (EEC)
Procedia PDF Downloads 2867389 Mathematical Modeling of Eggplant Slices Drying Using Microwave-Oven
Authors: M.H. Keshek, M.N. Omar, A.H. Amer
Abstract:
Eggplant (Solanum melongena L.) is considered one of the most important crops in summer season, and it is grown in most cultivated area in Egypt. Eggplant has a very limited shelf life for freshness and physiological changes occur after harvest. Nowadays, microwave drying offers an alternative way to drying agricultural products. microwave drying is not only faster but also requiring less energy consumption than conventional drying. The main objective of this research was to evaluate using the microwave oven in Eggplant drying, to determine the optimum drying time of higher drying efficiency and lower energy consumption. The eggplants slices, having a thickness of about 5, 10, 15, and 20 mm, with diameter 50±2 mm was dried using microwave oven (KOR-9G2B) using three different levels were 450, 630, and 810 Watt (50%, 70%, and 90% of 900 Watt). The results show that, the initial moisture content of the eggplant slices was around 93 % wet basis (13.28 g water/g dry matter). The results indicated that, the moisture transfer within the sample was more rapidly during higher microwave power heating (810 watt) and lower thickness (5 mm) of the eggplant slices. In addition, the results show that, the drying efficiency increases by increasing slices thickness at power levels 450, 630 and 810 Watt. The higher drying efficiency was 83.13% occurred when drying the eggplant slices 20 mm thickness in microwave oven at power 630 Watt. the higher total energy consumption per dry kilogram was 1.275 (kWh/ dry kg) occurred at used microwave 810 Watt for drying eggplant slices 5 mm thickness, and the lower total energy consumption per dry kilogram was 0.55 (kWh/ dry kg) occurred at used microwave 810 Watt for drying eggplant slices 20 mm thickness.Keywords: microwave drying, eggplant, drying rate, drying efficiency, energy consumption
Procedia PDF Downloads 1587388 Evaluation of a Remanufacturing for Lithium Ion Batteries from Electric Cars
Authors: Achim Kampker, Heiner H. Heimes, Mathias Ordung, Christoph Lienemann, Ansgar Hollah, Nemanja Sarovic
Abstract:
Electric cars with their fast innovation cycles and their disruptive character offer a high degree of freedom regarding innovative design for remanufacturing. Remanufacturing increases not only the resource but also the economic efficiency by a prolonged product life time. The reduced power train wear of electric cars combined with high manufacturing costs for batteries allow new business models and even second life applications. Modular and intermountable designed battery packs enable the replacement of defective or outdated battery cells, allow additional cost savings and a prolongation of life time. This paper discusses opportunities for future remanufacturing value chains of electric cars and their battery components and how to address their potentials with elaborate designs. Based on a brief overview of implemented remanufacturing structures in different industries, opportunities of transferability are evaluated. In addition to an analysis of current and upcoming challenges, promising perspectives for a sustainable electric car circular economy enabled by design for remanufacturing are deduced. Two mathematical models describe the feasibility of pursuing a circular economy of lithium ion batteries and evaluate remanufacturing in terms of sustainability and economic efficiency. Taking into consideration not only labor and material cost but also capital costs for equipment and factory facilities to support the remanufacturing process, cost benefit analysis prognosticate that a remanufacturing battery can be produced more cost-efficiently. The ecological benefits were calculated on a broad database from different research projects which focus on the recycling, the second use and the assembly of lithium ion batteries. The results of this calculations show a significant improvement by remanufacturing in all relevant factors especially in the consumption of resources and greenhouse warming potential. Exemplarily suitable design guidelines for future remanufacturing lithium ion batteries, which consider modularity, interfaces and disassembly, are used to illustrate the findings. For one guideline, potential cost improvements were calculated and upcoming challenges are pointed out.Keywords: circular economy, electric mobility, lithium ion batteries, remanufacturing
Procedia PDF Downloads 3587387 Response Delay Model: Bridging the Gap in Urban Fire Disaster Response System
Authors: Sulaiman Yunus
Abstract:
The need for modeling response to urban fire disaster cannot be over emphasized, as recurrent fire outbreaks have gutted most cities of the world. This necessitated the need for a prompt and efficient response system in order to mitigate the impact of the disaster. Promptness, as a function of time, is seen to be the fundamental determinant for efficiency of a response system and magnitude of a fire disaster. Delay, as a result of several factors, is one of the major determinants of promptgness of a response system and also the magnitude of a fire disaster. Response Delay Model (RDM) intends to bridge the gap in urban fire disaster response system through incorporating and synchronizing the delay moments in measuring the overall efficiency of a response system and determining the magnitude of a fire disaster. The model identified two delay moments (pre-notification and Intra-reflex sequence delay) that can be elastic and collectively plays a significant role in influencing the efficiency of a response system. Due to variation in the elasticity of the delay moments, the model provides for measuring the length of delays in order to arrive at a standard average delay moment for different parts of the world, putting into consideration geographic location, level of preparedness and awareness, technological advancement, socio-economic and environmental factors. It is recommended that participatory researches should be embarked on locally and globally to determine standard average delay moments within each phase of the system so as to enable determining the efficiency of response systems and predicting fire disaster magnitudes.Keywords: delay moment, fire disaster, reflex sequence, response, response delay moment
Procedia PDF Downloads 2077386 A Method of Effective Planning and Control of Industrial Facility Energy Consumption
Authors: Aleksandra Aleksandrovna Filimonova, Lev Sergeevich Kazarinov, Tatyana Aleksandrovna Barbasova
Abstract:
A method of effective planning and control of industrial facility energy consumption is offered. The method allows to optimally arrange the management and full control of complex production facilities in accordance with the criteria of minimal technical and economic losses at the forecasting control. The method is based on the optimal construction of the power efficiency characteristics with the prescribed accuracy. The problem of optimal designing of the forecasting model is solved on the basis of three criteria: maximizing the weighted sum of the points of forecasting with the prescribed accuracy; the solving of the problem by the standard principles at the incomplete statistic data on the basis of minimization of the regularized function; minimizing the technical and economic losses due to the forecasting errors.Keywords: energy consumption, energy efficiency, energy management system, forecasting model, power efficiency characteristics
Procedia PDF Downloads 3937385 Efficiency of Membrane Distillation to Produce Fresh Water
Authors: Sabri Mrayed, David Maccioni, Greg Leslie
Abstract:
Seawater desalination has been accepted as one of the most effective solutions to the growing problem of a diminishing clean drinking water supply. Currently, two desalination technologies dominate the market – the thermally driven multi-stage flash distillation (MSF) and the membrane based reverse osmosis (RO). However, in recent years membrane distillation (MD) has emerged as a potential alternative to the established means of desalination. This research project intended to determine the viability of MD as an alternative process to MSF and RO for seawater desalination. Specifically the project involves conducting a thermodynamic analysis of the process based on the second law of thermodynamics to determine the efficiency of the MD. Data was obtained from experiments carried out on a laboratory rig. In order to determine exergy values required for the exergy analysis, two separate models were built in Engineering Equation Solver – the ’Minimum Separation Work Model’ and the ‘Stream Exergy Model’. The efficiency of MD process was found to be 17.3 %, and the energy consumption was determined to be 4.5 kWh to produce one cubic meter of fresh water. The results indicate MD has potential as a technique for seawater desalination compared to RO and MSF. However, it was shown that this was only the case if an alternate energy source such as green or waste energy was available to provide the thermal energy input to the process. If the process was required to power itself, it was shown to be highly inefficient and in no way thermodynamically viable as a commercial desalination process.Keywords: desalination, exergy, membrane distillation, second law efficiency
Procedia PDF Downloads 3647384 Structural Characterization of the 3D Printed Silicon Carbon/Carbon Fibers Nanocomposites
Authors: Saja M. Nabat Al-Ajrash, Charles Browning, Rose Eckerle, Li Cao
Abstract:
A process that utilizes a combination of additive manufacturing (AM), a preceramic polymer, and a chopped carbon fiber precursorto fabricate Silicon Carbon/ Carbon fibers (SiC/C) composites have been developed. The study has shown a promising, cost-effective, and efficient route to fabricate complex SiC/C composites using additive manufacturing. A key part of this effort was the mapping of the material’s microstructure through the thickness of the composite. Microstructural features in the pyrolyzed composites through the successive AM layers, such as defects, crystal size and their distribution, interatomic spacing, chemical bonds, were investigated using high-resolution scanning and transmission electron microscopy. As a result, the microstructure developed in SiC/C composites after printing, cure, and pyrolysis has been successfully mapped through the thickness of the derived composites. Dense and nearly defect-free parts after polymer to ceramic conversion were observed. The ceramic matrix composite displayed three coexisting phases, including silicon carbide, silicon oxycarbide, and turbostratic carbon. Lattice fringes imaging and X-Ray Diffraction analysis showed well-defined SiC and turbostratic carbon features. The cross-sectional mapping of the printed-then-pyrolyzed structures has confirmed consistent structural and chemical features within the internal layers of the AM parts. Noteworthy, however, is that a crust-like area with high crystallinity has been observed in the first and last external layers. Not only do these crust-like regions have structural characteristics distinct from the internal layers, but they also have elemental distributions different than the internal layers.Keywords: SiC, preceramic polymer, additive manufacturing, ceramic
Procedia PDF Downloads 787383 Photocatalytic Activity of Polypyrrole/ZnO Composites for Degradation of Dye Reactive Red 45 in Wastewater
Authors: Ljerka Kratofil Krehula, Vanja Gilja, Andrea Husak, Sniježana Šuka, Zlata Hrnjak-Murgić
Abstract:
Zinc oxide (ZnO) can be used as photocatalysts for water purification. However, one particular interest is given on the integration of inorganic ZnO nanoclusters with conducting polymers because the resulting nanocomposites may possess unique properties and enhanced photocatalytic activity in comparison to pure ZnO, using UV and also visible light. It is needed to explore the appropriate structure of polypyrrole that can induce activation of ZnO photocatalyst since the synthesis of organic/inorganic hybrid materials can result in a synergistic and complementary feature, increasing ZnO photocatalytic efficiency. In this paper several different composites of polypyrrole/zinc oxide (ZnO) were studied. Composite samples were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and scanning electron microscopy (SEM). The photocatalytic efficiency of prepared samples was studied as a decomposition of Reactive Red 45 (RR 45) dye, which was monitored by UV-Vis spectroscopy as a change in absorbance of characteristic wavelength at 542 nm. Results show good photocatalytic efficiency of all nanocomposite samples.Keywords: photocatalysis, polypyrrole, wastewater, zinc oxide
Procedia PDF Downloads 266