Search results for: learning strategies
2610 African Folklore for Critical Self-Reflection, Reflective Dialogue, and Resultant Attitudinal and Behaviour Change: University Students’ Experiences
Authors: T. M. Buthelezi, E. O. Olagundoye, R. G. L. Cele
Abstract:
This article argues that whilst African folklore has mainly been used for entertainment, it also has an educational value that has power to change young people’s attitudes and behavior. The paper is informed by the findings from the data that was generated from 154 university students who were coming from diverse backgrounds. The qualitative data was thematically analysed. Referring to the six steps of the behaviour change model, we found that African Folklore provides relevant cultural knowledge and instills values that enable young people to engage on self-reflection that eventually leads them towards attitudinal changes and behaviour modification. Using the transformative learning theory, we argue that African Folklore in itself is a pedagogical strategy that integrates cultural knowledge, values with entertainment elements concisely enough to take the young people through a transformative phase which encompasses psychological, convictional and life-style adaptation. During data production stage all ethical considerations were observed including obtaining gatekeeper’s permission letter and ethical clearance certificate from the Ethics Committee of the University. The paper recommends that African Folklore approach should be incorporated into the school curriculum particularly in life skills education with aims to change behaviour.Keywords: African folklore, young people, attitudinal, behavior change, university students
Procedia PDF Downloads 2622609 Optimal Tamping for Railway Tracks, Reducing Railway Maintenance Expenditures by the Use of Integer Programming
Authors: Rui Li, Min Wen, Kim Bang Salling
Abstract:
For the modern railways, maintenance is critical for ensuring safety, train punctuality and overall capacity utilization. The cost of railway maintenance in Europe is high, on average between 30,000 – 100,000 Euros per kilometer per year. In order to reduce such maintenance expenditures, this paper presents a mixed 0-1 linear mathematical model designed to optimize the predictive railway tamping activities for ballast track in the planning horizon of three to four years. The objective function is to minimize the tamping machine actual costs. The approach of the research is using the simple dynamic model for modelling condition-based tamping process and the solution method for finding optimal condition-based tamping schedule. Seven technical and practical aspects are taken into account to schedule tamping: (1) track degradation of the standard deviation of the longitudinal level over time; (2) track geometrical alignment; (3) track quality thresholds based on the train speed limits; (4) the dependency of the track quality recovery on the track quality after tamping operation; (5) Tamping machine operation practices (6) tamping budgets and (7) differentiating the open track from the station sections. A Danish railway track between Odense and Fredericia with 42.6 km of length is applied for a time period of three and four years in the proposed maintenance model. The generated tamping schedule is reasonable and robust. Based on the result from the Danish railway corridor, the total costs can be reduced significantly (50%) than the previous model which is based on optimizing the number of tamping. The different maintenance strategies have been discussed in the paper. The analysis from the results obtained from the model also shows a longer period of predictive tamping planning has more optimal scheduling of maintenance actions than continuous short term preventive maintenance, namely yearly condition-based planning.Keywords: integer programming, railway tamping, predictive maintenance model, preventive condition-based maintenance
Procedia PDF Downloads 4412608 An Investigation on Smartphone-Based Machine Vision System for Inspection
Authors: They Shao Peng
Abstract:
Machine vision system for inspection is an automated technology that is normally utilized to analyze items on the production line for quality control purposes, it also can be known as an automated visual inspection (AVI) system. By applying automated visual inspection, the existence of items, defects, contaminants, flaws, and other irregularities in manufactured products can be easily detected in a short time and accurately. However, AVI systems are still inflexible and expensive due to their uniqueness for a specific task and consuming a lot of set-up time and space. With the rapid development of mobile devices, smartphones can be an alternative device for the visual system to solve the existing problems of AVI. Since the smartphone-based AVI system is still at a nascent stage, this led to the motivation to investigate the smartphone-based AVI system. This study is aimed to provide a low-cost AVI system with high efficiency and flexibility. In this project, the object detection models, which are You Only Look Once (YOLO) model and Single Shot MultiBox Detector (SSD) model, are trained, evaluated, and integrated with the smartphone and webcam devices. The performance of the smartphone-based AVI is compared with the webcam-based AVI according to the precision and inference time in this study. Additionally, a mobile application is developed which allows users to implement real-time object detection and object detection from image storage.Keywords: automated visual inspection, deep learning, machine vision, mobile application
Procedia PDF Downloads 1222607 A Case Study on Performance of Isolated Bridges under Near-Fault Ground Motion
Authors: Daniele Losanno, H. A. Hadad, Giorgio Serino
Abstract:
This paper presents a numerical investigation on the seismic performance of a benchmark bridge with different optimal isolation systems under near fault ground motion. Usually, very large displacements make seismic isolation an unfeasible solution due to boundary conditions, especially in case of existing bridges or high risk seismic regions. Hence, near-fault ground motions are most likely to affect either structures with long natural period range like isolated structures or structures sensitive to velocity content such as viscously damped structures. The work is aimed at analyzing the seismic performance of a three-span continuous bridge designed with different isolation systems having different levels of damping. The case study was analyzed in different configurations including: (a) simply supported, (b) isolated with lead rubber bearings (LRBs), (c) isolated with rubber isolators and 10% classical damping (HDLRBs), and (d) isolated with rubber isolators and 70% supplemental damping ratio. Case (d) represents an alternative control strategy that combines the effect of seismic isolation with additional supplemental damping trying to take advantages from both solutions. The bridge is modeled in SAP2000 and solved by time history direct-integration analyses under a set of six recorded near-fault ground motions. In addition to this, a set of analysis under Italian code provided seismic action is also conducted, in order to evaluate the effectiveness of the suggested optimal control strategies under far field seismic action. Results of the analysis demonstrated that an isolated bridge equipped with HDLRBs and a total equivalent damping ratio of 70% represents a very effective design solution for both mitigation of displacement demand at the isolation level and base shear reduction in the piers also in case of near fault ground motion.Keywords: isolated bridges, near-fault motion, seismic response, supplemental damping, optimal design
Procedia PDF Downloads 2842606 Migrants’ English Language Proficiency and Health care Access; A Qualitative Study in South Wales United Kingdom
Authors: Qirat Naz
Abstract:
The aim of this research study is to explore the perspectives of migrants and interpreters from diverse backgrounds on language barriers, their English language proficiency and access to health care facilities. A qualitative research methodology was used including in-depth interviews and focus group discussions. Data was collected from 20 migrants who have difficulty conversing in the English language and 12 interpreters including family members and friends who provide translation services as part of accessing health care. The findings seek to address three key research questions: how language is a barrier for non-national language speakers to access the health care facilities, what is the impact of various socio-cultural and linguistic backgrounds on health compliance, and what is the role of interpreters in providing access to, usage of, and satisfaction with health-care facilities. The most crucial component of providing care was found to be effective communication between patient and health care professionals. Language barrier was the major concern for healthcare professionals in providing and for migrants in accessing sufficient, suitable, and productive health care facilities. Language and sociocultural background play a significant role in health compliance as this research reported; respondents believe that patients who interact with the doctors who have same sociocultural and linguistic background benefit from receiving better medical care than those who do not. Language limitations and the socio-cultural gap make it difficult for patients and medical staff to communicate clearly with one another, which has a negative effect on quality of care and patient satisfaction. The use of qualified interpreters was found to be beneficial but there were also drawbacks such as accessibility and availability of them in a timely manner for patient needs. The findings of this research can help health care workers and policy makers working to improve health care delivery system and to create appropriate strategies to overcome this challenge.Keywords: migration, migrants, language barrier, healthcare access
Procedia PDF Downloads 772605 Involvement of Community Pharmacists in Public Health Services in Asir Region, Saudi Arabia: A Cross-Sectional Study
Authors: Mona Almanasef, Dalia Almaghaslah, Geetha Kandasamy, Rajalakshimi Vasudevan, Sadia Batool
Abstract:
Background: Community pharmacists are one of the most accessible healthcare practitioners worldwide and their services are used by a large proportion of the population. Expanding the roles of community pharmacists could contribute to reducing pressure on general health practice and other areas of health services. This research aimed to evaluate the contribution of community pharmacists in the provision of public health services and to investigate the perceived barriers to the provision of these services in Saudi Arabia. Materials and Methods: This study followed a cross-sectional design using an online anonymous self-administered questionnaire. The study took place in the Asir region, Saudi Arabia, between September 2019 and February 2020. A convenience sampling strategy was used to select and recruit the study participants. The questionnaire was adapted from previous research and involved three sections: demographics, involvement in public health services and barriers to practicing public health roles. Results: The total number of respondents was 193. The proportion of respondents who reported that they were “very involved” or “involved” in each service was 61.7% for weight management, 60.6% for sexual health, 57.5% for healthy eating, 53.4% for physical activity promotion, 51.3% for dental health, 46.1% for smoking cessation, 39.4% for screening for diabetes, 35.7% for screening for hypertension, 31.1% for alcohol dependence and drug misuse counseling, 30.6% for screening for dyslipidaemia, and 21.8% for vaccination and immunization. Most of the barriers in the current research were rated as having low relevance to the provision of public health services. Conclusion: Findings in the current research suggest that community pharmacists in the Asir region have varying levels of involvement in public health roles. Further research needs to be undertaken to understand the barriers to the provision of public health services and what strategies would be beneficial for enhancing the public health role of community pharmacists in Saudi Arabia.Keywords: community pharmacist, public health, Asir region, Saudi Arabia
Procedia PDF Downloads 1002604 Whole Coding Genome Inter-Clade Comparison to Predict Global Cancer-Protecting Variants
Authors: Lamis Naddaf, Yuval Tabach
Abstract:
In this research, we identified the missense genetic variants that have the potential to enhance resistance against cancer. Such field has not been widely explored, as researchers tend to investigate mutations that cause diseases, in response to the suffering of patients, rather than those mutations that protect from them. In conjunction with the genomic revolution, and the advances in genetic engineering and synthetic biology, identifying the protective variants will increase the power of genotype-phenotype predictions and can have significant implications on improved risk estimation, diagnostics, prognosis and even for personalized therapy and drug discovery. To approach our goal, we systematically investigated the sites of the coding genomes and picked up the alleles that showed a correlation with the species’ cancer resistance. We predicted 250 protecting variants (PVs) with a 0.01 false discovery rate and more than 20 thousand PVs with a 0.25 false discovery rate. Cancer resistance in Mammals and reptiles was significantly predicted by the number of PVs a species has. Moreover, Genes enriched with the protecting variants are enriched in pathways relevant to tumor suppression like pathways of Hedgehog signaling and silencing, which its improper activation is associated with the most common form of cancer malignancy. We also showed that the PVs are more abundant in healthy people compared to cancer patients within different human races.Keywords: comparative genomics, machine learning, cancer resistance, cancer-protecting alleles
Procedia PDF Downloads 952603 Application of Computational Fluid Dynamics in the Analysis of Water Flow in Rice Leaves
Authors: Marcio Mesquita, Diogo Henrique Morato de Moraes, Henrique Fonseca Elias de Oliveira, Rilner Alves Flores, Mateus Rodrigues Ferreira, Dalva Graciano Ribeiro
Abstract:
This study aimed to analyze the movement of water in irrigated and non-irrigated rice (Oryza sativa L.) leaves, from the xylem to the stomata, through numerical simulations. Through three-dimensional modeling, it was possible to determine how the spacing of parenchyma cells and the permeability of these cells influence the apoplastic flow and the opening of the stomata. The thickness of the cuticle and the number of vascular bundles are greater in plants subjected to water stress, indicating an adaptive response of plants to environments with water deficit. In addition, numerical simulations revealed that the opening of the stomata, the permeability of the parenchyma cells and the cell spacing have significant impacts on the energy loss and the speed of water movement. It was observed that a more open stoma facilitates water flow, decreasing the resistance and energy required for transport, while higher levels of permeability reduce energy loss, indicating that a more permeable tissue allows for more efficient water transport. Furthermore, it was possible to note that stomatal aperture, parenchyma permeability and cell spacing are crucial factors in the efficient water management of plants, especially under water stress conditions. These insights are essential for the development of more effective agricultural management strategies and for the breeding of plant varieties that are more resistant to adverse growing conditions. Computed fluid dynamics has allowed us to overcome the limitations of conventional techniques by providing a means to visualize and understand the complex hydrodynamic processes within the vascular system of plants.Keywords: numerical modeling, vascular anatomy, vascular hydrodynamics, xylem, Oryza sativa L.
Procedia PDF Downloads 152602 Ministers of Parliament and Their Official Web Sites; New Media Tool of Political Communication
Authors: Wijayanada Rupasinghe, A. H. Dinithi Jayasekara
Abstract:
In a modern democracy, new media can be used by governments to involve citizens in decision-making, and by civil society to engage people in specific issues. However new media can also be used to broaden political participation by helping citizens to communicate with their representatives and with each other. Arguably this political communication is most important during election campaigns when political parties and candidates seek to mobilize citizens and persuade them to vote for a given party or candidate. The new media must be used by Parliaments, Parliamentarians, governments and political parties as they are highly effective tools to involve and inform citizens in public policymaking and in the formation of governments. But all these groups must develop strategies to deal with a wide array of both positive and negative effects of these rapidly growing media.New media has begun to take precedent over other communication outlets in part because of its heightened accessibility and usability. Using personal website can empower the public in a way that is far faster, cheaper and more pervasive than other forms of communication. They encourage pluralism, reach young people more than other media and encourage greater participation, accountability and transparency. This research discusses the impact politicians’ personal websites has over their overall electability and likability and explores the integration of website is an essential campaign tactic on both the local and national level. This research examined the impact of having personal website have over the way constituents view politicians. This research examined how politicians can use their website in the most effective fashion and incorporate these new media outlets as essential campaign tools and tactics. A mixed-method approach using content analysis. Content analysis selected thirty websites in sri Lankan politicians. Research revealed that politician’s new media usage significantly influenced and enriched the experience an individual has with the public figure.Keywords: election campaign ministers, new media, parliament, politicians websites
Procedia PDF Downloads 3672601 Palatability of a Flavoured Oral Paste, Containing Prebiotics, Probiotics, and Postbiotics in Dogs and Cats: A Monadic Test in Seventy-Four Animals
Authors: Navarro C., Jahier B., Gard C.
Abstract:
Diarrhoea is a common disorder in both cats and dogs. Recent guidelines highlight the importance of gut microbiota and the use of strategies such as prebiotics, probiotics, postbiotics, and fecal transplants for modulating the microbiota. The objective of this study was to evaluate the palatability of a flavoured oral paste containing prebiotics (brewer’s yeast products, fructo-oligosaccharide), probiotics (Enterococcus faecium), and postbiotics (lactic ferment products), in dogs and cats. Material and methods: Healthy adult animals (cats and dogs) from various breeds received the tested product (Ultradiar® Biotic, MP Labo, France) at the recommended dosage over a small quantity of kibbles: animals less than 2 kg bodyweight received 2 ml per day, animals between2 and 6 kg received 4 ml per day, animals between 6 and 12 kg received 5 ml per day, animals between 12 and 30 kg received 8 ml per day, and animals weighing more than 30 kg received 10 ml per day. For each animal, the investigator noted the intake (immediate in less than 2 seconds, delayed after 2 seconds, no intake), the consumption of the product (no consumption, partial consumption ≤ 5%, < 50%, 50% ≤ x < 95%, ≥ 95%, total consumption). Acceptability was defined as the percentage of dogs having consumed more than 95% of the product. Results: Thirty-seven dogs were included: 19 small size, 11 medium size, and 7 large size dogs. Thirty-six dogs (97%) took the product, with 65% showing immediate intake. Only one small-sized dog did not take the product. Among the 36 dogs who took the product, 19 (53%) had a complete consumption, 13 (36%) consumed more than 95% of the product, 3 dogs consumed more than 50% (and less than 95%), and one dog consumed less than 50%. The acceptability rate was 86%. Thirty-seven cats were included. Twenty-eight cats (76%) took the product, with 8% showing immediate intake. Among those 28 cats, 7 (25%) consumed more than 95% of the product, 13 (47%) consumed more than 50% (and less than 95%), 6 consumed less than 50% and 2 cats consumed less than 5%. Conclusion: The flavoured oral paste, Ultradiar® Biotic, was well-accepted by both dogs and cats, with higher acceptability observed in dogs compared to cats. These results suggest that the product is palatable and can be usefully administered to support gastrointestinal health in companion animals. Further studies should explore the clinical benefits of this formulation in managing gastrointestinal disorders.Keywords: cat, dog, palatability, prebiotic, probiotic
Procedia PDF Downloads 362600 The Optimum Mel-Frequency Cepstral Coefficients (MFCCs) Contribution to Iranian Traditional Music Genre Classification by Instrumental Features
Authors: M. Abbasi Layegh, S. Haghipour, K. Athari, R. Khosravi, M. Tafkikialamdari
Abstract:
An approach to find the optimum mel-frequency cepstral coefficients (MFCCs) for the Radif of Mirzâ Ábdollâh, which is the principal emblem and the heart of Persian music, performed by most famous Iranian masters on two Iranian stringed instruments ‘Tar’ and ‘Setar’ is proposed. While investigating the variance of MFCC for each record in themusic database of 1500 gushe of the repertoire belonging to 12 modal systems (dastgâh and âvâz), we have applied the Fuzzy C-Mean clustering algorithm on each of the 12 coefficient and different combinations of those coefficients. We have applied the same experiment while increasing the number of coefficients but the clustering accuracy remained the same. Therefore, we can conclude that the first 7 MFCCs (V-7MFCC) are enough for classification of The Radif of Mirzâ Ábdollâh. Classical machine learning algorithms such as MLP neural networks, K-Nearest Neighbors (KNN), Gaussian Mixture Model (GMM), Hidden Markov Model (HMM) and Support Vector Machine (SVM) have been employed. Finally, it can be realized that SVM shows a better performance in this study.Keywords: radif of Mirzâ Ábdollâh, Gushe, mel frequency cepstral coefficients, fuzzy c-mean clustering algorithm, k-nearest neighbors (KNN), gaussian mixture model (GMM), hidden markov model (HMM), support vector machine (SVM)
Procedia PDF Downloads 4452599 Shaping and Improving the Human Resource Management in Small and Medium Enterprises in Poland
Authors: Małgorzata Smolarek
Abstract:
One of the barriers to the development of small and medium-sized enterprises (SME) are difficulties connected with management of human resources. The first part of article defines the specifics of staff management in small and medium enterprises. The practical part presents results of own studies in the area of diagnosis of the state of the human resources management in small and medium-sized enterprises in Poland. It takes into account its impact on the functioning of SME in a variable environment. This part presents findings of empirical studies, which enabled verification of the hypotheses and formulation of conclusions. The findings presented in this paper were obtained during the implementation of the project entitled 'Tendencies and challenges in strategic managing SME in Silesian Voivodeship.' The aim of the studies was to diagnose the state of strategic management and human resources management taking into account its impact on the functioning of small and medium enterprises operating in Silesian Voivodeship in Poland and to indicate improvement areas of the model under diagnosis. One of the specific objectives of the studies was to diagnose the state of the process of strategic management of human resources and to identify fundamental problems. In this area, the main hypothesis was formulated: The enterprises analysed do not have comprehensive strategies for management of human resources. The survey was conducted by questionnaire. Main Research Results: Human resource management in SMEs is characterized by simplicity of procedures, and the lack of sophisticated tools and its specificity depends on the size of the company. The process of human resources management in SME has to be adjusted to the structure of an organisation, result from its objectives, so that an organisation can fully implement its strategic plans and achieve success and competitive advantage on the market. A guarantee of success is an accurately developed policy of human resources management based on earlier analyses of the existing procedures and possessed human resources.Keywords: human resources management, human resources policy, personnel strategy, small and medium enterprises
Procedia PDF Downloads 2402598 Automated Human Balance Assessment Using Contactless Sensors
Authors: Justin Tang
Abstract:
Balance tests are frequently used to diagnose concussions on the sidelines of sporting events. Manual scoring, however, is labor intensive and subjective, and many concussions go undetected. This study institutes a novel approach to conducting the Balance Error Scoring System (BESS) more quantitatively using Microsoft’s gaming system Kinect, which uses a contactless sensor and several cameras to receive data and estimate body limb positions. Using a machine learning approach, Visual Gesture Builder, and a deterministic approach, MATLAB, we tested whether the Kinect can differentiate between “correct” and erroneous stances of the BESS. We created the two separate solutions by recording test videos to teach the Kinect correct stances and by developing a code using Java. Twenty-two subjects were asked to perform a series of BESS tests while the Kinect was collecting data. The Kinect recorded the subjects and mapped key joints onto their bodies to obtain angles and measurements that are interpreted by the software. Through VGB and MATLAB, the videos are analyzed to enumerate the number of errors committed during testing. The resulting statistics demonstrate a high correlation between manual scoring and the Kinect approaches, indicating the viability of the use of remote tracking devices in conducting concussion tests.Keywords: automated, concussion detection, contactless sensors, microsoft kinect
Procedia PDF Downloads 3162597 The Relationship between Organizational Silence and Voice with the Quality of Work Life among Employees of the Youth and Sports Departments of Tehran Province
Authors: Soodabeh Dehghan, Siavash Hamidzadeh, Naqshbandi Seyyed Salahedin, Ali Mohammad Safania
Abstract:
The present research with the aim of the relationship between organizational silence and organizational voice with quality of work-life among employees of the sport and youth departments of Tehran Province was done. The statistical population of this research includes all employees of the sport and youth departments of Tehran province, and considering the not very large number of society, the sample and society were considered to be the same, and the sample was considered as the whole number. To measure each of these variables, a questionnaire was used. The research questionnaire was presented in four sections. The results showed that, since the extension of the process of organizational silence is usually done by managers, their attitude and attitudes toward this phenomenon are prioritized and also because silence reduces learning due to lack of knowledge sharing, makes it less effective and makes changes more difficult, it is necessary to take steps to break the silence and to further urge the staff (employees) to express their beliefs (organizational voices) and to share them in the organization's fate individuals, whose beliefs are respected and so called taken into account in the organization, would be dependent on the organization and feel obliged to remain with the organization during the hardships. This affects employees' quality of work life and their satisfaction too much.Keywords: organizational silence, organizational voice, quality of work life, the sports and youth departments of Tehran province
Procedia PDF Downloads 1462596 Predicting Destination Station Based on Public Transit Passenger Profiling
Authors: Xuyang Song, Jun Yin
Abstract:
The smart card has been an extremely universal tool in public transit. It collects a large amount of data on buses, urban railway transit, and ferries and provides possibilities for passenger profiling. This paper combines offline analysis of passenger profiling and real-time prediction to propose a method that can accurately predict the destination station in real-time when passengers tag on. Firstly, this article constructs a static database of user travel characteristics after identifying passenger travel patterns based on the Density-Based Spatial Clustering of Applications with Noise (DBSCAN). The dual travel passenger habits are identified: OD travel habits and D station travel habits. Then a rapid real-time prediction algorithm based on Transit Passenger Profiling is proposed, which can predict the destination of in-board passengers. This article combines offline learning with online prediction, providing a technical foundation for real-time passenger flow prediction, monitoring and simulation, and short-term passenger behavior and demand prediction. This technology facilitates the efficient and real-time acquisition of passengers' travel destinations and demand. The last, an actual case was simulated and demonstrated feasibility and efficiency.Keywords: travel behavior, destination prediction, public transit, passenger profiling
Procedia PDF Downloads 182595 Learn Better to Earn Better: Importance of CPD in Dentistry
Authors: Junaid Ahmed, Nandita Shenoy
Abstract:
Maintaining lifelong knowledge and skills is essential for safe clinical practice. Continuing Professional Development (CPD) is an established method that can facilitate lifelong learning. It focuses on maintaining or developing knowledge, skills and relationships to ensure competent practice.To date, relatively little has been done to comprehensively and systematically synthesize evidence to identify subjects of interest among practising dentist. Hence the aim of our study was to identify areas in clinical practice that would be favourable for continuing professional dental education amongst practicing dentists. Participants of this study consisted of the practicing dental surgeons of Mangalore, a city in Dakshina Kannada, Karnataka. 95% of our practitioners felt that regular updating as a one day program once in 3-6 months is required, to keep them abreast in clinical practice. 60% of subjects feel that CPD programs enrich their theoretical knowledge and helps in patient care. 27% of them felt that CPD programs should be related to general dentistry. Most of them felt that CPD programs should not be charged nominally between one to two thousand rupees. The acronym ‘CPD’ should be seen in a broader view in which professionals continuously enhance not only their knowledge and skills, but also their thinking,understanding and maturity; they grow not only as professionals, but also as persons; their development is not restricted to their work roles, but may also extend to new roles and responsibilities.Keywords: continuing professional development, competent practice, dental education, practising dentist
Procedia PDF Downloads 2592594 Treatment of a Galvanization Wastewater in a Fixed-Bed Column Using L. hyperborean and P. canaliculata Macroalgae as Natural Cation Exchangers
Authors: Tatiana A. Pozdniakova, Maria A. P. Cechinel, Luciana P. Mazur, Rui A. R. Boaventura, Vitor J. P. Vilar.
Abstract:
Two brown macroalgae, Laminaria hyperborea and Pelvetia canaliculata, were employed as natural cation exchangers in a fixed-bed column for Zn(II) removal from a galvanization wastewater. The column (4.8 cm internal diameter) was packed with 30-59 g of previously hydrated algae up to a bed height of 17-27 cm. The wastewater or eluent was percolated using a peristaltic pump at a flow rate of 10 mL/min. The effluent used in each experiment presented similar characteristics: pH of 6.7, 55 mg/L of chemical oxygen demand and about 300, 44, 186 and 244 mg/L of sodium, calcium, chloride and sulphate ions, respectively. The main difference was nitrate concentration: 20 mg/L for the effluent used with L. hyperborean and 341 mg/L for the effluent used with P. canaliculata. The inlet zinc concentration also differed slightly: 11.2 mg/L for L. hyperborean and 8.9 mg/L for P. canaliculata experiments. The breakthrough time was approximately 22.5 hours for both macroalgae, corresponding to a service capacity of 43 bed volumes. This indicates that 30 g of biomass is able to treat 13.5 L of the galvanization wastewater. The uptake capacities at the saturation point were similar to that obtained in batch studies (unpublished data) for both algae. After column exhaustion, desorption with 0.1 M HNO3 was performed. Desorption using 9 and 8 bed volumes of eluent achieved an efficiency of 100 and 91%, respectively for L. hyperborean and P. canaliculata. After elution with nitric acid, the column was regenerated using different strategies: i) convert all the binding sites in the sodium form, by passing a solution of 0.5 M NaCl, until achieve a final pH of 6.0; ii) passing only tap water in order to increase the solution pH inside the column until pH 3.0, and in this case the second sorption cycle was performed using protonated algae. In the first approach, in order to remove the excess of salt inside the column, distilled water was passed through the column, leading to the algae structure destruction and the column collapsed. Using the second approach, the algae remained intact during three consecutive sorption/desorption cycles without loss of performance.Keywords: biosorption, zinc, galvanization wastewater, packed-bed column
Procedia PDF Downloads 3112593 Representation of Memory of Forced Displacement in Central and Eastern Europe after World War II in Polish and German Cinemas
Authors: Ilona Copik
Abstract:
The aim of this study is to analyze the representation of memories of the forced displacement of Poles and Germans from the eastern territories in 1945 as depicted by Polish and German feature films between the years 1945-1960. The aftermath of World War II and the Allied agreements concluded at Yalta and Potsdam (1945) resulted in changes in national borders in Central and Eastern Europe and the large-scale transfer of civilians. The westward migration became a symbol of the new post-war division of Europe, new spheres of influence separated by the Iron Curtain. For years it was a controversial topic in both Poland and Germany due to the geopolitical alignment (the socialist East and capitalist West of Europe), as well as the unfinished debate between the victims and perpetrators of the war. The research premise is to take a comparative view of the conflicted cultures of Polish and German memory, to reflect on the possibility of an international dialogue about the past recorded in film images, and to discover the potential of film as a narrative warning against totalitarian inclinations. Until now, films made between 1945 and 1960 in Poland and the German occupation zones have been analyzed mainly in the context of artistic strategies subordinated to ideology and historical politics. In this study, the intention is to take a critical approach leading to the recognition of how films work as collective memory media, how they reveal the mechanisms of memory/forgetting, and what settlement topoi and migration myths they contain. The main hypothesis is that feature films about forced displacement, in addition to the politics of history - separate in each country - reveal comparable transnational individual experiences: the chaos of migration, the trauma of losing one's home, the conflicts accompanying the familiar/foreign, the difficulty of cultural adaptation, the problem of lost identity, etc.Keywords: forced displacement, Polish and German cinema, war victims, World War II
Procedia PDF Downloads 662592 PsyVBot: Chatbot for Accurate Depression Diagnosis using Long Short-Term Memory and NLP
Authors: Thaveesha Dheerasekera, Dileeka Sandamali Alwis
Abstract:
The escalating prevalence of mental health issues, such as depression and suicidal ideation, is a matter of significant global concern. It is plausible that a variety of factors, such as life events, social isolation, and preexisting physiological or psychological health conditions, could instigate or exacerbate these conditions. Traditional approaches to diagnosing depression entail a considerable amount of time and necessitate the involvement of adept practitioners. This underscores the necessity for automated systems capable of promptly detecting and diagnosing symptoms of depression. The PsyVBot system employs sophisticated natural language processing and machine learning methodologies, including the use of the NLTK toolkit for dataset preprocessing and the utilization of a Long Short-Term Memory (LSTM) model. The PsyVBot exhibits a remarkable ability to diagnose depression with a 94% accuracy rate through the analysis of user input. Consequently, this resource proves to be efficacious for individuals, particularly those enrolled in academic institutions, who may encounter challenges pertaining to their psychological well-being. The PsyVBot employs a Long Short-Term Memory (LSTM) model that comprises a total of three layers, namely an embedding layer, an LSTM layer, and a dense layer. The stratification of these layers facilitates a precise examination of linguistic patterns that are associated with the condition of depression. The PsyVBot has the capability to accurately assess an individual's level of depression through the identification of linguistic and contextual cues. The task is achieved via a rigorous training regimen, which is executed by utilizing a dataset comprising information sourced from the subreddit r/SuicideWatch. The diverse data present in the dataset ensures precise and delicate identification of symptoms linked with depression, thereby guaranteeing accuracy. PsyVBot not only possesses diagnostic capabilities but also enhances the user experience through the utilization of audio outputs. This feature enables users to engage in more captivating and interactive interactions. The PsyVBot platform offers individuals the opportunity to conveniently diagnose mental health challenges through a confidential and user-friendly interface. Regarding the advancement of PsyVBot, maintaining user confidentiality and upholding ethical principles are of paramount significance. It is imperative to note that diligent efforts are undertaken to adhere to ethical standards, thereby safeguarding the confidentiality of user information and ensuring its security. Moreover, the chatbot fosters a conducive atmosphere that is supportive and compassionate, thereby promoting psychological welfare. In brief, PsyVBot is an automated conversational agent that utilizes an LSTM model to assess the level of depression in accordance with the input provided by the user. The demonstrated accuracy rate of 94% serves as a promising indication of the potential efficacy of employing natural language processing and machine learning techniques in tackling challenges associated with mental health. The reliability of PsyVBot is further improved by the fact that it makes use of the Reddit dataset and incorporates Natural Language Toolkit (NLTK) for preprocessing. PsyVBot represents a pioneering and user-centric solution that furnishes an easily accessible and confidential medium for seeking assistance. The present platform is offered as a modality to tackle the pervasive issue of depression and the contemplation of suicide.Keywords: chatbot, depression diagnosis, LSTM model, natural language process
Procedia PDF Downloads 682591 Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis
Authors: Cuneyt Yucelbas, Seral Ozsen, Sule Yucelbas, Gulay Tezel
Abstract:
Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems.Keywords: artificial immune system, breast cancer diagnosis, Euclidean function, Gaussian function
Procedia PDF Downloads 4332590 Domain specific Ontology-Based Knowledge Extraction Using R-GNN and Large Language Models
Authors: Andrey Khalov
Abstract:
The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.Keywords: ontology mapping, R-GNN, knowledge extraction, large language models, NER, knowlege graph
Procedia PDF Downloads 142589 The Optimal Utilization of Centrally Located Land: The Case of the Bloemfontein Show Grounds
Authors: D. F. Coetzee, M. M. Campbell
Abstract:
The urban environment is constantly expanding and the optimal use of centrally located land is important in terms of sustainable development. Bloemfontein has expanded and this affects land-use functions. The purpose of the study is to examine the possible shift in location of the Bloemfontein show grounds to utilize the space of the grounds more effectively in context of spatial planning. The research method used is qualitative case study research with the case study on the Bloemfontein show grounds. The purposive sample consisted of planners who work or consult in the Bloemfontein area and who are registered with the South African Council for Planners (SACPLAN). Interviews consisting of qualitative open-ended questionnaires were used. When considering relocation the social and economic aspects need to be considered. The findings also indicated a majority consensus that the property can be utilized more effectively in terms of mixed land use. The showground development trust compiled a master plan to ensure that the property is used to its full potential without the relocation of the showground function itself. This Master Plan can be seen as the next logical step for the showground property itself, and it is indeed an attempt to better utilize the land parcel without relocating the show function. The question arises whether the proposed Master Plan is a permanent solution or whether it is merely delaying the relocation of the core showground function to another location. For now, it is a sound solution, making the best out of the situation at hand and utilizing the property more effectively. If the show grounds were to be relocated the researcher proposed a recommendation of mixed-use development, in terms an expansion on the commercial business/retail, together with a sport and recreation function. The show grounds in Bloemfontein are well positioned to capitalize on and to meet the needs of the changing economy, while complimenting the future economic growth strategies of the city if the right plans are in place.Keywords: centrally located land, spatial planning, show grounds, central business district
Procedia PDF Downloads 4132588 Implementing Search-Based Activities in Mathematics Instruction, Grounded in Intuitive Reasoning
Authors: Zhanna Dedovets
Abstract:
Fostering a mathematical style of thinking is crucial for cultivating intellectual personalities capable of thriving in modern society. Intuitive thinking stands as a cornerstone among the components of mathematical cognition, playing a pivotal role in grasping mathematical truths across various disciplines. This article delves into the exploration of leveraging search activities rooted in students' intuitive thinking, particularly when tackling geometric problems. Emphasizing both student engagement with the task and their active involvement in the search process, the study underscores the importance of heuristic procedures and the freedom for students to chart their own problem-solving paths. Spanning several years (2019-2023) at the Physics and Mathematics Lyceum of Dushanbe, the research engaged 17 teachers and 78 high school students. After assessing the initial levels of intuitive thinking in both control and experimental groups, the experimental group underwent training following the authors' methodology. Subsequent analysis revealed a significant advancement in thinking levels among the experimental group students. The methodological approaches and teaching materials developed through this process offer valuable resources for mathematics educators seeking to enhance their students' learning experiences effectively.Keywords: teaching of mathematics, intuitive thinking, heuristic procedures, geometric problem, students.
Procedia PDF Downloads 452587 Automated Multisensory Data Collection System for Continuous Monitoring of Refrigerating Appliances Recycling Plants
Authors: Georgii Emelianov, Mikhail Polikarpov, Fabian Hübner, Jochen Deuse, Jochen Schiemann
Abstract:
Recycling refrigerating appliances plays a major role in protecting the Earth's atmosphere from ozone depletion and emissions of greenhouse gases. The performance of refrigerator recycling plants in terms of material retention is the subject of strict environmental certifications and is reviewed periodically through specialized audits. The continuous collection of Refrigerator data required for the input-output analysis is still mostly manual, error-prone, and not digitalized. In this paper, we propose an automated data collection system for recycling plants in order to deduce expected material contents in individual end-of-life refrigerating appliances. The system utilizes laser scanner measurements and optical data to extract attributes of individual refrigerators by applying transfer learning with pre-trained vision models and optical character recognition. Based on Recognized features, the system automatically provides material categories and target values of contained material masses, especially foaming and cooling agents. The presented data collection system paves the way for continuous performance monitoring and efficient control of refrigerator recycling plants.Keywords: automation, data collection, performance monitoring, recycling, refrigerators
Procedia PDF Downloads 1622586 Preparing Undergraduate Nursing and Midwifery Students for Culturally Competent Health Care: A Qualitative Study
Authors: Olayide Ogunsiji, Glenda McDonald
Abstract:
Engendering cultural competence in nursing and midwifery students is germane to reducing disparities in contemporary health care settings, increasingly patronized by people from diverse background. Professional standards for registration in Australia require nurses and midwives to be culturally competent. Nursing and midwifery academics worldwide are responsible for preparing students for clinical practice, yet limited attention is paid to exploring how students are being prepared to care for a culturally diverse population. This paper provides insight into the perceptions of academics about how they are preparing undergraduate nursing and midwifery students for culturally competent health care. Academics were drawn from a tertiary educational institution in metropolitan Australia. They responded to a generic email indicating their interest in participating in the study. A total of nine academics who have taught undergraduate nursing and midwifery students in a unit that focused on health and illness perspectives for culturally diverse communities; and provided written consent to participate were included. These academics were engaged in a qualitative digitally-recorded semi-structured face-to-face or telephone interviews which lasted for about 45-60 minutes. Interview data were transcribed verbatim. Through constant comparison, three themes emerged: experiences of the teachers, strategies used for preparing students and challenges in preparing students. The participants spoke about their experiences of teaching in the unit and with the students. They faced challenges related to physical and relational space. They utilised a number of didactic approaches in teaching the unit and critiqued the adequacy of the content in preparing students for practice. This study demonstrated that didactic classroom approaches need to be supported with clinical practice and cultural immersion for a meaningful preparation of nursing and midwifery students to care for culturally diverse populations.Keywords: cultural competence, nursing students, preparation, undergraduate
Procedia PDF Downloads 1522585 Importance of Positive Education: A Focus on the Importance of Character Strength Building
Authors: Hajra Hussain
Abstract:
Positive education, the inclusion of social, emotional and intellectual skills across a curriculum, is fundamental to the optimal functioning of young people in any society because it combines the best teaching practices with the principles of positive psychology. While learning institutions foster academic skills, little attention is being paid to the identification and development of character strengths and their integration into teaching. There is an increasing recognition of the important role education plays in equipping today’s youth with 21st century social skills. For youth to succeed in this highly competitive environment, there is a need for positive education that is focused on character strengths such as the growth of social, emotional and intellectual skills that promote the flourishing of well-rounded individuals. Character strength programs and awareness are a necessity if the human capital within a region is to be competitive, productive and happy. The Counselling & Wellbeing Centre at Amity University Dubai has consistently implemented Character Strength awareness workshops and has found that such workshops have increased student life satisfaction due to individual awareness of signature strengths. A positive education/positive psychology framework with its key focus on the development of character strengths can be fundamental to individual's confidence and self-awareness; thus allowing both optimum flourishing and functioning.Keywords: positive psychology, positive education, strengths, youth, happiness
Procedia PDF Downloads 2712584 Parental Awareness and Willingness to Vaccinate Adolescent Daughters against Human Papilloma Virus for Cervical Cancer Prevention in Eastern Region of Kenya: Towards Affirmative Action
Authors: Jacinta Musyoka, Wesley Too
Abstract:
Cervical cancer is the second leading cause of cancer-related deaths in Kenya and the second most common cancer among women, yet preventable following prevention strategies put in place, which includes vaccination with Human Papilloma Virus Vaccine (HPPV) among the young adolescent girls. Kenya has the highest burden of cervical cancer and the leading cause of death among women of reproductive age and is a known frequent type of cancer amongst women. This is expected to double by 2025 if the necessary steps are not taken, which include vaccinating girls between the ages of 9 and 14 and screening women. Parental decision is critical in ensuring that their daughters receive this vaccine. Hence this study sought to establish parental willingness and factors associate with the acceptability to vaccine adolescent daughters against the human papilloma virus for cervical cancer prevention in Machakos County, Eastern Region of Kenya. Method: Cross-sectional study design utilizing a mixed methods approach was used to collect data from Nguluni Health Centre in Machakos County; Matungulu sub-county, Kenya. This study targeted all parents of adolescent girls seeking health care services in the Matungulu sub-county area who were aged 18 years and above. A total of 220 parents with adolescent girls aged 10-14 years were enrolled into the study after informed consent were sought. All ethical considerations were observed. Quantitative data were analyzed using Multivariate regression analysis, and thematic analysis was used for qualitative data related to perceptions of parents on HPVV. Results, conclusions, and recommendations- ongoing. We expect to report findings and articulate contributions based on the study findings in due course before October 2022Keywords: adolescents, human papilloma virus, kenya, parents
Procedia PDF Downloads 1082583 Survey of Related Field for Artificial Intelligence Window Development
Authors: Young Kwon Yang, Bo Rang Park, Hyo Eun Lee, Tea Won Kim, Eun Ji Choi, Jin Chul Park
Abstract:
To develop an artificial intelligence based automatic ventilation system, recent research trends were analyzed and analyzed. This research method is as follows. In the field of architecture and window technology, the use of artificial intelligence, the existing study of machine learning model and the theoretical review of the literature were carried out. This paper collected journals such as Journal of Energy and Buildings, Journal of Renewable and Sustainable Energy Reviews, and articles published on Web-sites. The following keywords were searched for articles from 2000 to 2016. We searched for the above keywords mainly in the title, keyword, and abstract. As a result, the global artificial intelligence market is expected to grow at a CAGR of 14.0% from USD127bn in 2015 to USD165bn in 2017. Start-up investments in artificial intelligence increased from the US $ 45 million in 2010 to the US $ 310 million in 2015, and the number of investments increased from 6 to 54. Although AI is making efforts to advance to advanced countries, the level of technology is still in its infant stage. Especially in the field of architecture, artificial intelligence (AI) is very rare. Based on the data of this study, it is expected that the application of artificial intelligence and the application of architectural field will be revitalized through the activation of artificial intelligence in the field of architecture and window.Keywords: artificial intelligence, window, fine dust, thermal comfort, ventilation system
Procedia PDF Downloads 2732582 Relevance Feedback within CBIR Systems
Authors: Mawloud Mosbah, Bachir Boucheham
Abstract:
We present here the results for a comparative study of some techniques, available in the literature, related to the relevance feedback mechanism in the case of a short-term learning. Only one method among those considered here is belonging to the data mining field which is the K-Nearest Neighbours Algorithm (KNN) while the rest of the methods is related purely to the information retrieval field and they fall under the purview of the following three major axes: Shifting query, Feature Weighting and the optimization of the parameters of similarity metric. As a contribution, and in addition to the comparative purpose, we propose a new version of the KNN algorithm referred to as an incremental KNN which is distinct from the original version in the sense that besides the influence of the seeds, the rate of the actual target image is influenced also by the images already rated. The results presented here have been obtained after experiments conducted on the Wang database for one iteration and utilizing colour moments on the RGB space. This compact descriptor, Colour Moments, is adequate for the efficiency purposes needed in the case of interactive systems. The results obtained allow us to claim that the proposed algorithm proves good results; it even outperforms a wide range of techniques available in the literature.Keywords: CBIR, category search, relevance feedback, query point movement, standard Rocchio’s formula, adaptive shifting query, feature weighting, original KNN, incremental KNN
Procedia PDF Downloads 2782581 Artificial Intelligence-Based Chest X-Ray Test of COVID-19 Patients
Authors: Dhurgham Al-Karawi, Nisreen Polus, Shakir Al-Zaidi, Sabah Jassim
Abstract:
The management of COVID-19 patients based on chest imaging is emerging as an essential tool for evaluating the spread of the pandemic which has gripped the global community. It has already been used to monitor the situation of COVID-19 patients who have issues in respiratory status. There has been increase to use chest imaging for medical triage of patients who are showing moderate-severe clinical COVID-19 features, this is due to the fast dispersal of the pandemic to all continents and communities. This article demonstrates the development of machine learning techniques for the test of COVID-19 patients using Chest X-Ray (CXR) images in nearly real-time, to distinguish the COVID-19 infection with a significantly high level of accuracy. The testing performance has covered a combination of different datasets of CXR images of positive COVID-19 patients, patients with viral and bacterial infections, also, people with a clear chest. The proposed AI scheme successfully distinguishes CXR scans of COVID-19 infected patients from CXR scans of viral and bacterial based pneumonia as well as normal cases with an average accuracy of 94.43%, sensitivity 95%, and specificity 93.86%. Predicted decisions would be supported by visual evidence to help clinicians speed up the initial assessment process of new suspected cases, especially in a resource-constrained environment.Keywords: COVID-19, chest x-ray scan, artificial intelligence, texture analysis, local binary pattern transform, Gabor filter
Procedia PDF Downloads 144