Search results for: specific methane production
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14521

Search results for: specific methane production

13711 Location and Group Specific Differences in Human-Macaque Interactions in Singapore: Implications for Conflict Management

Authors: Srikantan L. Jayasri, James Gan

Abstract:

The changes in Singapore’s land use, natural preference of long-tailed macaques (Macaca fascicularis) to live in forest edges and their adaptability has led to interface between humans and macaques. Studies have shown that two-third of human-macaque interactions in Singapore were related to human food. We aimed to assess differences among macaques groups in their dependence on human food and interaction with humans as indicators of the level of interface. Field observations using instantaneous scan sampling and all occurrence ad-lib sampling were carried out for 23 macaque groups over 28 days recording 71.5 hours of observations. Data on macaque behaviour, demography, frequency, and nature of human-macaque interactions were collected. None of the groups were found to completely rely on human food source. Of the 23 groups, 40% of them were directly or indirectly provisioned by humans. One-third of the groups observed engaged in some form of interactions with the humans. Three groups that were directly fed by humans contributed to 83% of the total human-macaque interactions observed during the study. Our study indicated that interactions between humans and macaques exist in specific groups and in those fed by humans regularly. Although feeding monkeys is illegal in Singapore, such incidents seem to persist in specific locations. We emphasize the importance of group and location-specific assessment of the existing human-wildlife interactions. Conflict management strategies developed should be location specific to address the cause of interactions.

Keywords: primates, Southeast Asia, wildlife management, Singapore

Procedia PDF Downloads 479
13710 Sustainable Resource Use as a Means of Preserving the Integrity of the Eco-System and Environment

Authors: N. Hedayat, E. Karamifar

Abstract:

Sustainable food and fiber production is emerging as an irresistible option in agrarian planning. Although one should not underestimate the successes of the Green Revolution in enhancing crop production, its adverse environmental and ecosystem consequences have also been remarkable. The aim of this paper is to identify ways of improving crop production to ensure agricultural sustainability and environmental integrity. Systematic observations are used for data collection on intensive farming, deforestation and the environmental implications of industrial pollutants on agricultural sustainability at national and international levels. These were achieved within a comparative analytical model of data interpretation. Results show that while multiple factors enhance yield, they have a simultaneous effect in undermining the ecosystem and environmental integrity. Results show that application of excessive agrichemical have been one of the major cause of polluting the surface and underground water bodies as well as soil layers in affected croplands. Results consider rapid deforestation in the tropical regions has been the underlying cause of impairing the integrity of biodiversity and oxygen-generation regime. These, coupled with production of greenhouse gasses, have contributed to global warming and hydrological irregularities. Continuous production of pollutants and effluents has affected marine and land biodiversity arising from acid rains generated by modern farming and deforestation. Continuous production of greenhouse gases has also been instrumental in affecting climatic behavior manifested in recurring draughts and contraction of lakes and ponds as well as emergence of potential flooding of waterways and floodplains in the future.

Keywords: agricultural sustainability, environmental integrity, pollution, eco-system

Procedia PDF Downloads 401
13709 Bioinformatic Study of Follicle Stimulating Hormone Receptor (FSHR) Gene in Different Buffalo Breeds

Authors: Hamid Mustafa, Adeela Ajmal, Kim EuiSoo, Noor-ul-Ain

Abstract:

World wild, buffalo production is considered as most important component of food industry. Efficient buffalo production is related with reproductive performance of this species. Lack of knowledge of reproductive efficiency and its related genes in buffalo species is a major constraint for sustainable buffalo production. In this study, we performed some bioinformatics analysis on Follicle Stimulating Hormone Receptor (FSHR) gene and explored the possible relationship of this gene among different buffalo breeds and with other farm animals. We also found the evolution pattern for this gene among these species. We investigate CDS lengths, Stop codon variation, homology search, signal peptide, isoelectic point, tertiary structure, motifs and phylogenetic tree. The results of this study indicate 4 different motif in this gene, which are Activin-recp, GS motif, STYKc Protein kinase and transmembrane. The results also indicate that this gene has very close relationship with cattle, bison, sheep and goat. Multiple alignment (MA) showed high conservation of motif which indicates constancy of this gene during evolution. The results of this study can be used and applied for better understanding of this gene for better characterization of Follicle Stimulating Hormone Receptor (FSHR) gene structure in different farm animals, which would be helpful for efficient breeding plans for animal’s production.

Keywords: buffalo, FSHR gene, bioinformatics, production

Procedia PDF Downloads 532
13708 Potentials of Additive Manufacturing: An Approach to Increase the Flexibility of Production Systems

Authors: A. Luft, S. Bremen, N. Balc

Abstract:

The task of flexibility planning and design, just like factory planning, for example, is to create the long-term systemic framework that constitutes the restriction for short-term operational management. This is a strategic challenge since, due to the decision defect character of the underlying flexibility problem, multiple types of flexibility need to be considered over the course of various scenarios, production programs, and production system configurations. In this context, an evaluation model has been developed that integrates both conventional and additive resources on a basic task level and allows the quantification of flexibility enhancement in terms of mix and volume flexibility, complexity reduction, and machine capacity. The model helps companies to decide in early decision-making processes about the potential gains of implementing additive manufacturing technologies on a strategic level. For companies, it is essential to consider both additive and conventional manufacturing beyond pure unit costs. It is necessary to achieve an integrative view of manufacturing that incorporates both additive and conventional manufacturing resources and quantifies their potential with regard to flexibility and manufacturing complexity. This also requires a structured process for the strategic production systems design that spans the design of various scenarios and allows for multi-dimensional and comparative analysis. A respective guideline for the planning of additive resources on a strategic level is being laid out in this paper.

Keywords: additive manufacturing, production system design, flexibility enhancement, strategic guideline

Procedia PDF Downloads 124
13707 Analysis of Constraints and Opportunities in Dairy Production in Botswana

Authors: Som Pal Baliyan

Abstract:

Dairy enterprise has been a major source of employment and income generation in most of the economies worldwide. Botswana government has also identified dairy as one of the agricultural sectors towards diversification of the mineral dependent economy of the country. The huge gap between local demand and supply of milk and milk products indicated that there are not only constraints but also; opportunities exist in this sub sector of agriculture. Therefore, this study was an attempt to identify constraints and opportunities in dairy production industry in Botswana. The possible ways to mitigate the constraints were also identified. The findings should assist the stakeholders especially, policy makers in the formulation of effective policies for the growth of dairy sector in the country. This quantitative study adopted a survey research design. A final survey followed by a pilot survey was conducted for data collection. The purpose of the pilot survey was to collect basic information on the nature and extent of the constraints, opportunities and ways to mitigate the constraints in dairy production. Based on the information from pilot survey, a four point Likert’s scale type questionnaire was constructed, validated and tested for its reliability. The data for the final survey were collected from purposively selected twenty five dairy farms. The descriptive statistical tools were employed to analyze data. Among the twelve constraints identified; high feed costs, feed shortage and availability, lack of technical support, lack of skilled manpower, high prevalence of pests and diseases and, lack of dairy related technologies were the six major constraints in dairy production. Grain feed production, roughage feed production, manufacturing of dairy feed, establishment of milk processing industry and, development of transportation systems were the five major opportunities among the eight opportunities identified. Increasing production of animal feed locally, increasing roughage feed production locally, provision of subsidy on animal feed, easy access to sufficient financial support, training of the farmers and, effective control of pests and diseases were identified as the six major ways to mitigate the constraints. It was recommended that the identified constraints and opportunities as well as the ways to mitigate the constraints need to be carefully considered by the stakeholders especially, policy makers during the formulation and implementation of the policies for the development of dairy sector in Botswana.

Keywords: dairy enterprise, milk production, opportunities, production constraints

Procedia PDF Downloads 404
13706 The Names of the Traditional Motif of Batik Solo

Authors: Annisa D. Febryandini

Abstract:

Batik is a unique cultural heritage that strongly linked with its community. As a product of current culture in Solo, Batik Solo not only has a specific design and color to represent the cultural identity, cultural values, and spirituality of the community, but also has some specific names given by its community which are not arbitrary. This qualitative research paper uses the primary data by interview method as well as the secondary data to support it. Based on the data, this paper concludes that the names consist of a word or words taken from a current name of things in Javanese language. They indicate the cultural meaning such as a specific event, a hope, and the social status of the people who use the motif. Different from the other research, this paper takes a look at the names of traditional motif of Batik Solo which analyzed linguistically to reveal the cultural meaning.

Keywords: traditional motif, Batik, solo, anthropological linguistics

Procedia PDF Downloads 277
13705 Influence of AgNO3 Treatment on the Flavonolignan Production in Cell Suspension Culture of Silybum marianum (L.) Gaertn

Authors: Anna Vildová, H. Hendrychová, J. Kubeš, L. Tůmová

Abstract:

The abiotic elicitation is one of the methods for increasing the secondary metabolites production in plant tissue cultures and it seems to be more effective than traditional strategies. This study verified the use of silver nitrate as elicitor to enhance flavonolignans and flavonoid taxifolin production in suspension culture of Sylibum marianum (L.) Gaertn. Silver nitrate in various concentrations (5.887.10-3 mol/L, 5.887.10-4 mol/L, 5.887.10-5 mol/L) was used as elicitor. The content of secondary metabolites in cell suspension cultures was determined by high performance liquid chromatography. The samples were taken after 6, 12, 24, 48, 72 and 168 hours of treatment. The highest content of taxifolin production (2.2 mg.g-1) in cell suspension culture of Silybum marianum (L.) Gaertn. was detected after silver nitrate (5.887.10-4 mol/L) treatment and 72 h application. Flavonolignans such as silybinA, silybin B, silydianin, silychristin, isosilybin A, isosilybin B were not produced by cell suspension culture of S. marianum after elicitor treatment. Our results show that the secondarymetabolites could be released from S. marianum cells into the nutrient medium by changed permeability of cell wall.

Keywords: Silybum marianum (L.) Gaertn., elicitation, silver nitrate, taxifolin

Procedia PDF Downloads 444
13704 Progress in Replacing Antibiotics in Farm Animal Production

Authors: Debabrata Biswas

Abstract:

The current trend in the development of antibiotic resistance by multiple bacterial pathogens has resulted in a troubling loss of effective antibiotic options for human. The emergence of multi-drug-resistant pathogens has necessitated higher dosages and combinations of multiple antibiotics, further exacerbating the problem of antibiotic resistance. Zoonotic bacterial pathogens, such as Salmonella, Campylobacter, Shiga toxin-producing Escherichia coli (such as enterohaemorrhagic E. coli or EHEC), and Listeria are the most common and predominant foodborne enteric infectious agents. It was observed that these pathogens gained/developed their ability to survive in the presence of antibiotics either in farm animal gut or farm environment and researchers believe that therapeutic and sub-therapeutic antibiotic use in farm animal production might play an important role in it. The mechanism of action of antimicrobial components used in farm animal production in genomic interplay in the gut and farm environment, has not been fully characterized. Even the risk of promoting the exchange of mobile genetic elements between microbes specifically pathogens needs to be evaluated in depth, to ensure sustainable farm animal production, safety of our food and to mitigate/limit the enteric infection with multiple antibiotic resistant bacterial pathogens. Due to the consumer’s demand and considering the current emerging situation, many countries are in process to withdraw antibiotic use in farm animal production. Before withdrawing use of the sub-therapeutic antibiotic or restricting the use of therapeutic antibiotics in farm animal production, it is essential to find alternative natural antimicrobials for promoting the growth of farm animal and/or treating animal diseases. Further, it is also necessary to consider whether that compound(s) has the potential to trigger the acquisition or loss of genetic materials in zoonotic and any other bacterial pathogens. Development of alternative therapeutic and sub-therapeutic antimicrobials for farm animal production and food processing and preservation and their effective implementation for sustainable strategies for farm animal production as well as the possible risk for horizontal gene transfer in major enteric pathogens will be focus in the study.

Keywords: food safety, natural antimicrobial, sustainable farming, antibiotic resistance

Procedia PDF Downloads 270
13703 Combining Bio-Molecular and Isotopic Tools to Determine the Fate of Halogenated Compounds in Polluted Groundwater

Authors: N. Balaban, A. Buernstein, F. Gelman, Z. Ronen

Abstract:

Brominated flame retardants are widespread pollutants, and are known to be toxic, carcinogenic, endocrinic disrupting as well as recalcitrant. The industrial complex Neot Hovav, in the Northern Negev, Israel, is situated above a fractured chalk aquitard, which is polluted by a wide variety of halogenated organic compounds. Two of the abundant pollutants found in the site are Dibromoneopentyl-glycol (DBNPG) and tribromoneopentyl-alcohol (TBNPA). Due to the elusive nature of the groundwater flow, it is difficult to connect between the spatial changes in contaminant concentrations to degradation. In this study, we attempt to determine whether these compounds are biodegraded in the groundwater, and to gain a better understanding concerning the bacterial community in the groundwater. This was achieved through the application of compound-specific isotope analysis (CSIA) of carbon (13^C/12^C) and bromine (81^Br/79^Br), and new-generation MiSeq pyrosequencing. The sampled boreholes were distributed among three main areas of the industrial complex: around the production plant of TBNPA and DBNPG; along the Hovav Wadi (small ephemeral stream) which crosses and drains the industrial complex; and downstream to the industrial area. TBNPA and DBNPG are found in all three areas, with no clear connection to the proximity of the borehole to the production plant. Initial isotopic data of TBNPA from boreholes in the area surrounding the production plant, reveal no changes in the carbon and bromine isotopic values. When observing the microbial groundwater community, the dominant phylum is Proteobacteria. Known anaerobic dehalogenating bacteria such as Dehalococcoides from the Chloroflexi phylum have also been detected. A statistical comparison of the groundwater microbial diversity using a multi-variant ordination of non-metric multidimensional scaling (NMDS) reveals three main clusters in accordance to spatial location in the industrial complex: all the boreholes sampled adjacent to the production plant cluster together and separately from the Wadi Hovav boreholes cluster and the downstream to the industrial area borehole cluster. This work provides the basis for the development and implication of an isotopic fractionation based tool for assessing the biodegradation of brominated organic compounds in contaminated environments, and a novel attempt to characterize the spatial microbial diversity in the contaminated site.

Keywords: biodegradation, brominated flame retardants, groundwater, isotopic fractionation, microbial diversity

Procedia PDF Downloads 236
13702 Repeated Batch Production of Biosurfactant from Pseudomonas mendocina NK41 Using Agricultural and Agro-Industrial Wastes as Substate

Authors: Natcha Ruamyat, Nichakorn Khondee

Abstract:

The potential of an alkaliphilic bacteria isolated from soil in Thailand to utilized agro-industrial and agricultural wastes for the production of biosurfactants was evaluated in this study. Among five isolates, Pseudomonas mendocina NK41 used soapstock as substrate showing a high biosurfactant concentration of 7.10 g/L, oil displacement of 97.8 %, and surface tension reduction to 29.45 mN/m. Various agricultural residues were applied as mixed substrates with soapstock to enhance the synthesis of biosurfactants. The production of biosurfactant and bacterial growth was found to be the highest with coconut oil cake as compared to Sacha inchi shell, coconut kernel cake, and durian shell. The biodegradability of agro-industrial wastes was better than agricultural wastes, which allowed higher bacterial growth. The pretreatment of coconut oil cake by combined alkaline and hydrothermal method increased the production of biosurfactant from 12.69 g/L to 13.82 g/L. The higher microbial accessibility was improved by the swelling of the alkali-hydrothermal pretreated coconut oil cake, which enhanced its porosity and surface area. The pretreated coconut oil cake was reused twice in the repeated batch production, showing higher biosurfactant concentration up to 16.94 g/L from the second cycle. These results demonstrated the capability of using lignocellulosic wastes from agricultural and agro-industrial activities to produce a highly valuable biosurfactant. High biosurfactant yield with low-cost substrate reveals its potential towards further commercialization of biosurfactant on large-scale production.

Keywords: alkaliphilic bacteria, agricultural/agro-industrial wastes, biosurfactant, combined alkaline-hydrothermal pretreatment

Procedia PDF Downloads 257
13701 An Economic Study for Fish Production in Egypt

Authors: Manal Elsayed Elkheshin, Rasha Saleh Mansour, Mohamed Fawzy Mohamed Eldnasury, Mamdouh Elbadry Mohamed

Abstract:

This research Aims to identify the main factors affecting the production and the fish consumption in Egypt, through the econometric estimation for various forms functions of fish production and fish consumption during the period (1991-2014), as the aim of this research to forecast the production and the fish consumption in Egypt until 2020, through determine the best standard methods using (ARIMA).This research also aims to the economic feasibility of the production of fish in aquaculture farms study; investment cost and represents the value of land, buildings, equipment and irrigation. Aquaculture requires three types of fish (Tilapia, carp fish, and mullet fish), and the total area of the farm, about an acre. The annual Fish production from this project about 3.5 tons. The annual investment costs of about 50500 pounds, Find conclude that the project can repay the cost of their investments after about 4 years and 5 months, and therefore recommend the implementation of the project, and internal rate of return reached (IRR) of about 22.1%, where it is clear that the rate of large internal rate of return, and achieves pound invested in this project annual return is estimated at 22.1 pounds, more than the opportunity cost, so we recommend the need to implement the project.Recommendations:1. Increasing the fish agriculture to decrease the gap of animal protein. 2.Increasing the number of mechanism fishing boats, and the provision of transport equipped to maintain the quality of fish production. 3.Encourage and attract the local and foreign investments, providing advice to the investor on the aquaculture field. 4. Action newsletters awareness of the importance of these projects where these projects resulted in a net profit after recovery in less than five years, IRR amounted to about 23%, which is much more than the opportunity cost of a bank interest rate is about 7%, helping to create work and graduates opportunities, and contribute to the reduction of imports of the fish, and improve the performance of the food trade balance.

Keywords: equation model, individual share, red meat, consumption, production, endogenous variable, exogenous variable, financial performance evaluates fish culture, feasibility study, fish production, aquaculture

Procedia PDF Downloads 369
13700 Trend and Cuses of Decline in Trifoliate Yam (Dioscorea dumentorum) Production in Enugu State, Nigeria: Implication for Food Security and Biodiversity Conservation

Authors: J. C. Iwuchukwu, K. C. Okwor

Abstract:

In recent time and in the study area, yam farmers are moving into less laborious and more economical crops and very few yam farmers are growing trifoliate yam. In yam markets, little or no bitter yam is displayed or sold. The work was therefore designed to ascertain trend and causes of decline in trifoliate yam production in Enugu state. Three agricultural zones, six blocks, eighteen circles and one hundred and eight trifoliate yam farmers that were purposively selected constituted sample for the study. An interview schedule was used to collect data while percentage, mean score and standard deviation were used for data analysis. Findings of the study revealed that the respondents had no extension contact, Majority (90.7%) sourced information on trifoliate yam from neighbours/friends/relatives and produced mainly for consumption (67.6%) during rainy season (70.4%). Trifoliate yam was produced manually(71.3%) and organically (58.3%) in a mixture of other crops (87%) using indigenous/local varieties (73.1%). Mean size of land allocated to trifoliate yam production was relatively steady, mean cost of input and income were increasing while output was decreasing within the years under consideration (before 2001 to 2014). Poor/lack of finance(M=1.8) and drudgery associated with trifoliate yam product(M=1.72) were some of the causes of decline in trifoliate yam production in the area. The study recommended that more research and public enlightenment campaigns on the importance of trifoliate yam should be carried out to encourage and consolidate farmers and the masses effort in production and consumption of the crop so that it will not go extinct and then contribute to food security.

Keywords: causes, decline, trend, trifoliate yam

Procedia PDF Downloads 402
13699 Enhanced Photocatalytic H₂ Production from H₂S on Metal Modified Cds-Zns Semiconductors

Authors: Maali-Amel Mersel, Lajos Fodor, Otto Horvath

Abstract:

Photocatalytic H₂ production by H₂S decomposition is regarded to be an environmentally friendly process to produce carbon-free energy through direct solar energy conversion. For this purpose, sulphide-based materials, as photocatalysts, were widely used due to their excellent solar spectrum responses and high photocatalytic activity. The loading of proper co-catalysts that are based on cheap and earth-abundant materials on those semiconductors was shown to play an important role in the improvement of their efficiency. In this research, CdS-ZnS composite was studied because of its controllable band gap and excellent performance for H₂ evolution under visible light irradiation. The effects of the modification of this photocatalyst with different types of materials and the influence of the preparation parameters on its H₂ production activity were investigated. The CdS-ZnS composite with an enhanced photocatalytic activity for H₂ production was synthesized from ammine complexes. Two types of modification were used: compounds of Ni-group metals (NiS, PdS, and Pt) were applied as co-catalyst on the surface of CdS-ZnS semiconductor, while NiS, MnS, CoS, Ag₂S, and CuS were used as a dopant in the bulk of the catalyst. It was found that 0.1% of noble metals didn’t remarkably influence the photocatalytic activity, while the modification with 0.5% of NiS was shown to be more efficient in the bulk than on the surface. The modification with other types of metals results in a decrease of the rate of H₂ production, while the co-doping seems to be more promising. The preparation parameters (such as the amount of ammonia to form the ammine complexes, the order of the preparation steps together with the hydrothermal treatment) were also found to highly influence the rate of H₂ production. SEM, EDS and DRS analyses were made to reveal the structure of the most efficient photocatalysts. Moreover, the detection of the conduction band electron on the surface of the catalyst was also investigated. The excellent photoactivity of the CdS-ZnS catalysts with and without modification encourages further investigations to enhance the hydrogen generation by optimization of the reaction conditions.

Keywords: H₂S, photoactivity, photocatalytic H₂ production, CdS-ZnS

Procedia PDF Downloads 131
13698 Historical Studies on Gilt Decorations on Glazed Surfaces

Authors: Sabra Saeidi

Abstract:

This research focuses on the historical techniques associated with the lajevardina and Haft-Rangi production methods in creating tiles, with emphasis on the identification of the techniques of inserting gold sheets on the surface of such historical glazed tiles. In this regard, firstly, the history of the production of enamel, gold plated, and Lajevardina glazed pottery work made during the Khwarizmanshahid and Mongol era (eleventh to the thirteenth century) have been assessed to reach a better understanding of the background and the history associated with historical glazing methods. After the historical overview of the production technique of glazed pottery work and introductions of the civilizations using those techniques, we focused on the niches production methods of enamel and Lajevardina glazing, which are two categories of decorations usually found in tiles. Next, a general classification method for various types of gilt tiles has been introduced, which is applicable to the tile works up to Safavid period (Sixteenth to the seventeenth century). Gilded lajevardina glazed tiles, gilt Haft-Rangi tiles, monolithic glazed gilt tiles, and gilt mosaic tiles are included in the categories.

Keywords: gilt tiles, Islamic art, Iranian art, historical studies, gilding

Procedia PDF Downloads 123
13697 Heat Capacity of a Soluble in Water Protein: Equilibrium Molecular Dynamics Simulation

Authors: A. Rajabpour, A. Hadizadeh Kheirkhah

Abstract:

Heat transfer is of great importance to biological systems in order to function properly. In the present study, specific heat capacity as one of the most important heat transfer properties is calculated for a soluble in water Lysozyme protein. Using equilibrium molecular dynamics (MD) simulation, specific heat capacities of pure water, dry lysozyme, and lysozyme-water solution are calculated at 300K for different weight fractions. It is found that MD results are in good agreement with ideal binary mixing rule at small weight fractions. Results of all simulations have been validated with experimental data.

Keywords: specific heat capacity, molecular dynamics simulation, lysozyme protein, equilibrium

Procedia PDF Downloads 308
13696 A Heuristic Based Decomposition Approach for a Hierarchical Production Planning Problem

Authors: Nusrat T. Chowdhury, M. F. Baki, A. Azab

Abstract:

The production planning problem is concerned with specifying the optimal quantities to produce in order to meet the demand for a prespecified planning horizon with the least possible expenditure. Making the right decisions in production planning will affect directly the performance and productivity of a manufacturing firm, which is important for its ability to compete in the market. Therefore, developing and improving solution procedures for production planning problems is very significant. In this paper, we develop a Dantzig-Wolfe decomposition of a multi-item hierarchical production planning problem with capacity constraint and present a column generation approach to solve the problem. The original Mixed Integer Linear Programming model of the problem is decomposed item by item into a master problem and a number of subproblems. The capacity constraint is considered as the linking constraint between the master problem and the subproblems. The subproblems are solved using the dynamic programming approach. We also propose a multi-step iterative capacity allocation heuristic procedure to handle any kind of infeasibility that arises while solving the problem. We compare the computational performance of the developed solution approach against the state-of-the-art heuristic procedure available in the literature. The results show that the proposed heuristic-based decomposition approach improves the solution quality by 20% as compared to the literature.

Keywords: inventory, multi-level capacitated lot-sizing, emission control, setup carryover

Procedia PDF Downloads 138
13695 Application of Lean Manufacturing Tools in Hot Asphalt Production

Authors: S. Bayona, J. Nunez, D. Paez, C. Diaz

Abstract:

The application of Lean manufacturing tools continues to be an effective solution for increasing productivity, reducing costs and eliminating waste in the manufacture of goods and services. This article analyzes the production process of a hot asphalt manufacturing company from an administrative and technical perspective. Three main phases were analyzed, the first phase was related to the determination of the risk priority number of the main operations in asphalt mix production process by an FMEA (Failure Mode Effects Analysis), in the second phase the Value Stream Mapping (VSM) of the production line was performed and in the third phase a SWOT (Strengths, Weaknesses Opportunities, Threats) matrix was constructed. Among the most valued failure modes were the lack training of workers in occupational safety and health issues, the lack of signaling and classification of granulated material, and the overweight of vehicles loaded. The analysis of the results in the three phases agree on the importance of training operational workers, improve communication with external actors in order to minimize delays in material orders and strengthen control suppliers.

Keywords: asphalt, lean manufacturing, productivity, process

Procedia PDF Downloads 116
13694 Evaluation of the Operating Parameters for Biodiesel Production Using a Membrane Reactor

Authors: S. S. L. Andrade, E. A. Souza, L. C. L. Santos, C. Moraes, A. K. C. L. Lobato

Abstract:

Biodiesel production using membrane reactor has become increasingly studied, because this process minimizes some of the main problems encountered in the biodiesel purification. The membrane reactor tries to minimize post-treatment steps, resulting in cost savings and enabling the competitiveness of biodiesel produced by homogeneous alkaline catalysis. This is due to the reaction and product separation may occur simultaneously. In order to evaluate the production of biodiesel from soybean oils using a tubular membrane reactor, a factorial experimental design was conducted (2³) to evaluate the influence of following variables: temperature (45 to 60 °C), catalyst concentration (0.5 to 1% by weight) and molar ratio of oil/methanol (1/6 to 1/9). In addition, the parametric sensitivity was evaluated by the analysis of variance and model through the response surface. The results showed a tendency of influence of the variables in the reaction conversion. The significance effect was higher for the catalyst concentration followed by the molar ratio of oil/methanol and finally the temperature. The best result was obtained under the conditions of 1% catalyst (KOH), molar ratio oil/methanol of 1/9 and temperature of 60 °C, resulting in an ester content of 99.07%.

Keywords: biodiesel production, factorial design, membrane reactor, soybean oil

Procedia PDF Downloads 377
13693 Optimization Approach to Integrated Production-Inventory-Routing Problem for Oxygen Supply Chains

Authors: Yena Lee, Vassilis M. Charitopoulos, Karthik Thyagarajan, Ian Morris, Jose M. Pinto, Lazaros G. Papageorgiou

Abstract:

With globalisation, the need to have better coordination of production and distribution decisions has become increasingly important for industrial gas companies in order to remain competitive in the marketplace. In this work, we investigate a problem that integrates production, inventory, and routing decisions in a liquid oxygen supply chain. The oxygen supply chain consists of production facilities, external third-party suppliers, and multiple customers, including hospitals and industrial customers. The product produced by the plants or sourced from the competitors, i.e., third-party suppliers, is distributed by a fleet of heterogenous vehicles to satisfy customer demands. The objective is to minimise the total operating cost involving production, third-party, and transportation costs. The key decisions for production include production and inventory levels and product amount from third-party suppliers. In contrast, the distribution decisions involve customer allocation, delivery timing, delivery amount, and vehicle routing. The optimisation of the coordinated production, inventory, and routing decisions is a challenging problem, especially when dealing with large-size problems. Thus, we present a two-stage procedure to solve the integrated problem efficiently. First, the problem is formulated as a mixed-integer linear programming (MILP) model by simplifying the routing component. The solution from the first-stage MILP model yields the optimal customer allocation, production and inventory levels, and delivery timing and amount. Then, we fix the previous decisions and solve a detailed routing. In the second stage, we propose a column generation scheme to address the computational complexity of the resulting detailed routing problem. A case study considering a real-life oxygen supply chain in the UK is presented to illustrate the capability of the proposed models and solution method. Furthermore, a comparison of the solutions from the proposed approach with the corresponding solutions provided by existing metaheuristic techniques (e.g., guided local search and tabu search algorithms) is presented to evaluate the efficiency.

Keywords: production planning, inventory routing, column generation, mixed-integer linear programming

Procedia PDF Downloads 112
13692 Differential Proteomic Profile and Terpenoid Production in Somatic Embryos of Jatropha curcas

Authors: Anamarel Medina-Hernandez, Teresa Ponce-Noyola, Ileana Vera-Reyes, Ana C. Ramos-Valdivia

Abstract:

Somatic embryos reproduce original seed characteristics and could be implemented in biotechnological studies. Jatropha curcas L. is an important plant for biodiesel production, but also is used in traditional medicine. Seeds from J. curcas are toxic because contain diterpenoids called phorbol esters, but in Mexico exist a non-toxic variety. Therefore, somatic embryos suspension cultures from non-toxic J. curcas variety were induced. In order to investigate the characteristics of somatic embryos, a differential proteomic analysis was made between pre-globular and globular stages by 2-D gel electrophoresis. 108 spots were differentially expressed (p<0.02), and 20 spots from globular somatic embryos were sequenced by MALDI-TOF-TOF mass spectrometry. A comparative analysis of terpenoids production between the two stages was made by RP-18 TLC plates. The sequenced proteins were related to energy production (68%), protein destination and storage (9%), secondary metabolism (9%), signal transduction (5%), cell structure (5%) and aminoacid metabolism (4%). Regarding terpenoid production, in pre-globular and globular somatic embryos were identified sterols and triterpenes of pharmacological interest (alpha-amyrin and betulinic acid) but also it was found compounds that were unique to each stage. The results of this work are the basis to characterize at different levels the J. curcas somatic embryos so that this system can be used efficiently in biotechnological processes.

Keywords: Jatropha curcas, proteomics, somatic embryo, terpenoids

Procedia PDF Downloads 256
13691 Factors Influencing the Profitability of the Conventional and Islamic Banks in Four Asian Countries

Authors: Vijay Kumar, Ron Bird

Abstract:

The study investigates the effect of bank-specific, industry-specific and macroeconomic variables on the profitability of conventional and Islamic banks. Our sample comprises 1,781 bank-year observations of 205 banks from four countries in the Asian region for the period 2004-2014. Our results suggest that credit quality, cost management and bank size are the keys factors that contribute positively to bank profitability in Asia. The banks with high non-performing loans and high cost-to-income ratio are more likely to be exposed to losses. The impacts of the bank-specific variables are stronger than are the industry-specific and macroeconomic variables. We find that Malaysian banks are the least profitable compared to the banks in Bangladesh, Indonesia and Pakistan. There is strong evidence to suggest that conventional banks are more profitable than Islamic banks. Our results suggest that the impact of capital adequacy ratio and bank size and loan to deposit ratio vary across Islamic and conventional banks and across different subsamples.

Keywords: capital adequacy ratio, Islamic banks, non-performing loan ratio, ownership

Procedia PDF Downloads 161
13690 Redirection of Cytokine Production Patterns by Dydrogesterone, an Orally-Administered Progestogen

Authors: Raj Raghupathy

Abstract:

Recurrent Spontaneous Miscarriage (RSM) is a common form of pregnancy loss, 50% of which are due to ‘unexplained’ causes. Evidence exists to suggest that RSM may be caused by immunologic factors such as cytokines which are critical molecules of the immune system, with an impressive array of capabilities. An association appears to exist between Th2-type reactivity (mediated by Th2 or anti-inflammatory cytokines) and normal, successful pregnancy, and between unexplained RSM and Th1 cytokine dominance. If pro-inflammatory cytokines are indeed associated with pregnancy loss, the suppression of these cytokines, and thus the ‘redirection’ of maternal reactivity, may help prevent cytokine-mediated pregnancy loss. The objective of this study was to explore the possibility of modulating cytokine production using Dydrogesterone (Duphaston®), an orally-administered progestogen. Peripheral blood mononuclear cells from 34 women with a history of at least 3 unexplained recurrent miscarriages were stimulated in vitro with a mitogen (to elicit cytokine production) in the presence and absence of dydrogesterone. Levels of selected pro- and anti-inflammatory cytokines produced by peripheral blood mononuclear cells were measured after exposure to these progestogens. Dydrogesterone down-regulates the production of pro-inflammatory cytokines and up-regulates the production of anti-inflammatory cytokines. The ratios of Th2 to Th1 cytokines are markedly elevated in the presence of dydrogesterone, indicating a shift from potentially harmful maternal Th1 reactivity to a more pregnancy-conducive Th2 profile. We used a progesterone receptor antagonist to show that this cytokine-modulating effect of dydrogesterone is mediated via the progesterone receptor. Dydrogesterone also induces the production of the Progesterone-Induced Blocking Factor (PIBF); lymphocytes exposed to PIBF produce higher levels of Th2 cytokines, affecting a Th1 → Th2 cytokine shift which could be favourable to the success of pregnancy. We conclude that modulation of maternal cytokine production profiles is possible with dydrogesterone which has the merits that it can be administered orally and that it is safe.

Keywords: cytokines, dydrogesterone, progesterone, recurrent spontaneous miscarriage

Procedia PDF Downloads 289
13689 Highly Specific DNA-Aptamer-Based Electrochemical Biosensor for Mercury (II) and Lead (II) Ions Detection in Water Samples

Authors: H. Abu-Ali, A. Nabok, T. Smith

Abstract:

Aptamers are single-strand of DNA or RNA nucleotides sequence which is designed in vitro using selection process known as SELEX (systematic evolution of ligands by exponential enrichment) were developed for the selective detection of many toxic materials. In this work, we have developed an electrochemical biosensor for highly selective and sensitive detection of Hg2+ and Pb2+ using a specific aptamer probe (SAP) labelled with ferrocene (or methylene blue) in (5′) end and the thiol group at its (3′) termini, respectively. The SAP has a specific coil structure that matching with G-G for Pb2+ and T-T for Hg2+ interaction binding nucleotides ions, respectively. Aptamers were immobilized onto surface of screen-printed gold electrodes via SH groups; then the cyclic voltammograms were recorded in binding buffer with the addition of the above metal salts in different concentrations. The resulted values of anode current increase upon binding heavy metal ions to aptamers and analyte due to the presence of electrochemically active probe, i.e. ferrocene or methylene blue group. The correlation between the anodic current values and the concentrations of Hg2+ and Pb2+ ions has been established in this work. To the best of our knowledge, this is the first example of using a specific DNA aptamers for electrochemical detection of heavy metals. Each increase in concentration of 0.1 μM results in an increase in the anode current value by simple DC electrochemical test i.e (Cyclic Voltammetry), thus providing an easy way of determining Hg2+ and Pb2+concentration.

Keywords: aptamer, based, biosensor, DNA, electrochemical, highly, specific

Procedia PDF Downloads 159
13688 Modeling of the Fermentation Process of Enzymatically Extracted Annona muricata L. Juice

Authors: Calister Wingang Makebe, Wilson Agwanande Ambindei, Zangue Steve Carly Desobgo, Abraham Billu, Emmanuel Jong Nso, P. Nisha

Abstract:

Traditional liquid-state fermentation processes of Annona muricata L. juice can result in fluctuating product quality and quantity due to difficulties in control and scale up. This work describes a laboratory-scale batch fermentation process to produce a probiotic Annona muricata L. enzymatically extracted juice, which was modeled using the Doehlert design with independent extraction factors being incubation time, temperature, and enzyme concentration. It aimed at a better understanding of the traditional process as an initial step for future optimization. Annona muricata L. juice was fermented with L. acidophilus (NCDC 291) (LA), L. casei (NCDC 17) (LC), and a blend of LA and LC (LCA) for 72 h at 37 °C. Experimental data were fitted into mathematical models (Monod, Logistic and Luedeking and Piret models) using MATLAB software, to describe biomass growth, sugar utilization, and organic acid production. The optimal fermentation time was obtained based on cell viability, which was 24 h for LC and 36 h for LA and LCA. The model was particularly effective in estimating biomass growth, reducing sugar consumption, and lactic acid production. The values of the determination coefficient, R2, were 0.9946, 0.9913 and 0.9946, while the residual sum of square error, SSE, was 0.2876, 0.1738 and 0.1589 for LC, LA and LCA, respectively. The growth kinetic parameters included the maximum specific growth rate, µm, which was 0.2876 h-1, 0.1738 h-1 and 0.1589 h-1, as well as the substrate saturation, Ks, with 9.0680 g/L, 9.9337 g/L and 9.0709 g/L respectively for LC, LA and LCA. For the stoichiometric parameters, the yield of biomass based on utilized substrate (YXS) was 50.7932, 3.3940 and 61.0202, and the yield of product based on utilized substrate (YPS) was 2.4524, 0.2307 and 0.7415 for LC, LA, and LCA, respectively. In addition, the maintenance energy parameter (ms) was 0.0128, 0.0001 and 0.0004 with respect to LC, LA and LCA. With the kinetic model proposed by Luedeking and Piret for lactic acid production rate, the growth associated and non-growth associated coefficients were determined as 1.0028 and 0.0109, respectively. The model was demonstrated for batch growth of LA, LC, and LCA in Annona muricata L. juice. The present investigation validates the potential of Annona muricata L. based medium for heightened economical production of a probiotic medium.

Keywords: L. acidophilus, L. casei, fermentation, modelling, kinetics

Procedia PDF Downloads 68
13687 Production of Friendly Environmental Material as Building Element from Plastic Waste

Authors: Dheyaa Wajid Abbood, Mohanad Salih Farhan, Awadh E. Ajeel

Abstract:

The basic goal of this study is the production of cheap building elements from plastic waste. environmentally friendly and of good thermal insulation. The study depends on the addition of plastic waste as aggregates to the mixes of concrete at different percentages by weight (12 percentages) to produce lightweight aggregate concrete the density (1095 - 1892) kg/m3.The experimental work includes 120 specimens of concrete 72 cubes (150*150*150)mm, 48 cylinder (150*300) mm. The results obtained for concrete were for local raw materials without any additional materials or treatment. The mechanical and thermal properties determined were (compressive strength, static modulus of elasticity, density, thermal conductivity (k), specific heat capacity (Cp), thermal expansion (α) after (7) days of curing at 20 0C. The increase in amount of plastic waste decreases the density of concrete which leads to decrease in the mechanical and to improvement in thermal properties. The average measured static modulus of elasticity are found less than the predicted static modulus of elasticity and splitting tensile strength (ACI 318-2008 and ACI 213R-2003). All cubes specimens when exposed to heat at (200, 400, 600 0C), the compressive strength of all mixes decreases gradually at 600 0C, the strength of lightweight aggregate concrete were disintegrated. Lightweight aggregate concrete is about 25% lighter than normal concrete in dead load, and to the improve the properties of thermal insulation of building blocks.

Keywords: LWAC, plastic waste, thermal property, thermal insulation

Procedia PDF Downloads 428
13686 Effect of Climate Variability on Honeybee's Production in Ondo State, Nigeria

Authors: Justin Orimisan Ijigbade

Abstract:

The study was conducted to assess the effect of climate variability on honeybee’s production in Ondo State, Nigeria. Multistage sampling technique was employed to collect the data from 60 beekeepers across six Local Government Areas in Ondo State. Data collected were subjected to descriptive statistics and multiple regression model analyses. The results showed that 93.33% of the respondents were male with 80% above 40 years of age. Majority of the respondents (96.67%) had formal education and 90% produced honey for commercial purpose. The result revealed that 90% of the respondents admitted that low temperature as a result of long hours/period of rainfall affected the foraging efficiency of the worker bees, 73.33% claimed that long period of low humidity resulted in low level of nectar flow, while 70% submitted that high temperature resulted in improper composition of workers, dunes and queen in the hive colony. The result of multiple regression showed that beekeepers’ experience, educational level, access to climate information, temperature and rainfall were the main factors affecting honey bees production in the study area. Therefore, beekeepers should be given more education on climate variability and its adaptive strategies towards ensuring better honeybees production in the study area.

Keywords: climate variability, honeybees production, humidity, rainfall and temperature

Procedia PDF Downloads 272
13685 The Quality of Management: A Leadership Maturity Model to Leverage Complexity

Authors: Marlene Kuhn, Franziska Schäfer, Heiner Otten

Abstract:

Today´s production processes experience a constant increase in complexity paving new ways for progressive forms of leadership. In the customized production, individual customer requirements drive companies to adapt their manufacturing processes constantly while the pressure for smaller lot sizes, lower costs and faster lead times grows simultaneously. When production processes are becoming more dynamic and complex, the conventional quality management approaches show certain limitations. This paper gives an introduction to complexity science from a quality management perspective. By analyzing and evaluating different characteristics of complexity, the critical complexity parameters are identified and assessed. We found that the quality of leadership plays a crucial role when dealing with increasing complexity. Therefore, we developed a concept for qualitative leadership customized for the management within complex processes based on a maturity model. The maturity model was then applied in the industry to assess the leadership quality of several shop floor managers with a positive evaluation feedback. In result, the maturity model proved to be a sustainable approach to leverage the rising complexity in production processes more effectively.

Keywords: maturity model, process complexity, quality of leadership, quality management

Procedia PDF Downloads 370
13684 Improvement in Acoustic Performance at Low Frequency via Application of Acoustic Resistance of Vented Hole in In-Ear Earphones

Authors: Tzu-Hsuan Lei, Shu-Chien Wu, Kuang-Che Lo, Shu-Chi Liu, Yu-Cheng Liu

Abstract:

The focus of this study was on the effects of air propagation associated with vented holes on acoustic resistance properties. A cylindrical hole with diameter and depth of 0.7 mm and 1.0 mm, respectively, was the research target. By constructing a finite element analytical model of its sound field properties, the acoustic-specific airflow resistance relationships were obtained for the differences in sound pressure and flow velocity at the two ends of this vented hole. In addition, the acoustic properties of this vented hole were included in the in-ear earphone simulation model to complete the sound pressure curve simulation analysis of the in-ear earphone system with a vented hole of corresponding size. Then, the simulation results were compared with actual measurements obtained from the standard system. Based on the results, when the in-ear earphone vented hole simulation model considered the simulated specific airflow resistance values of this cylindrical hole, the overall simulated sound pressure performance was highly consistent with that of measured values. The difference in the first peak values of sound pressure at mid-to-low frequencies was reduced from 5.64% when the simulation model did not consider the specific airflow resistance of the cylindrical hole to 1.18%, and the accuracy of the overall simulation was around 70%. This indicates the importance of the acoustic resistance properties of vented holes. Moreover, as specific airflow resistance values were able to be further quantified, the accuracy of the entire in-ear earphone simulation was ultimately and effectively elevated.

Keywords: specific airflow resistance, vented holes, in-ear earphone, finite element method

Procedia PDF Downloads 43
13683 Ultradrawing and Ultimate Tensile Properties of Ultrahigh Molecular Weight Polyethylene Composite Fibers Filled with Activated Nanocarbon Particles with Varying Specific Surface Areas

Authors: Wang-Xi Fan, Yi Ding, Zhong-Dan Tu, Kuo-Shien Huang, Chao-Ming Huang, Jen-Taut Yeh

Abstract:

Original and/or functionalized activated nanocarbon particles with a quoted specific surface area of 100, 500, 1000 and 1400 m2/g, respectively, were used to investigate the influence of specific surface areas of activated nanocarbon on ultra drawing and ultimate tensile properties of ultrahigh molecular weight polyethylene (UHMWPE), UHMWPE/activated nanocarbon and UHMWPE/ functionalized activated nanocarbon fibers. The specific surface areas of well dispersed functionalized activated nanocarbon in UHMWPE/functionalized activated nanocarbon fibers can positively affect their ultra drawing, orientation, ultimate tensile properties and “micro-fibril” characteristics. Excellent orientation and ultimate tensile properties of UHMWPE/nanofiller fibers can be prepared by ultra drawing the UHMWPE/functionalized activated nanocarbon as-prepared fibers with optimal contents and compositions of functionalized activated nanocarbon. The ultimate tensile strength value of the best prepared UHMWPE/functionalized activated nanocarbon drawn fiber reached 8.0 GPa, which was about 2.86 times of that of the best-prepared UHMWPE drawn fiber prepared in this study. Specific surface area, morphological and Fourier transform infrared analyses of original and functionalized activated nanocarbon and/or investigations of thermal, orientation factor and ultimate tensile properties of as-prepared and/or drawn UHMWPE/functionalized activated nanocarbon fibers were performed to understand the above-improved ultra drawing and ultimate tensile properties of the UHMWPE/functionalized activated nanocarbon fibers.

Keywords: activated nanocarbon, specific surface areas, ultradrawing, ultrahigh molecular weight polyethylene

Procedia PDF Downloads 372
13682 The Cost and Benefit on the Investment in Safety and Health of the Enterprises in Thailand

Authors: Charawee Butbumrung

Abstract:

The purpose of this study is to evaluate the monetary worthiness of investment and the usefulness of risk estimation as a tool employed by a production section of an electronic factory. This study employed the case study of accidents occurring in production areas. Data is collected from interviews with six production of safety coordinators and collect the information from the relevant section. The study will present the ratio of benefits compared with the operation costs for investment. The result showed that it is worthwhile for investment with the safety measures. In addition, the organizations must be able to analyze the causes of accidents about the benefits of investing in protective working process. They also need to quickly provide the manual for the staff to learn how to protect themselves from accidents and how to use all of the safety equipment.

Keywords: cost and benefit, enterprises in Thailand, investment in safety and health, risk estimation

Procedia PDF Downloads 265