Search results for: eating behavior patterns
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9037

Search results for: eating behavior patterns

877 Physiological and Psychological Influence on Office Workers during Demand Response

Authors: Megumi Nishida, Naoya Motegi, Takurou Kikuchi, Tomoko Tokumura

Abstract:

In recent years, power system has been changed and flexible power pricing system such as demand response has been sought in Japan. The demand response system is simple in the household sector and the owner, decision-maker, can gain the benefits of power saving. On the other hand, the execution of the demand response in the office building is more complex than household because various people such as owners, building administrators and occupants are involved in making decisions. While the owners benefit from the demand saving, the occupants are forced to be exposed to demand-saved environment certain benefits. One of the reasons is that building systems are usually centralized control and each occupant cannot choose either participate demand response event or not, and contribution of each occupant to demand response is unclear to provide incentives. However, the recent development of IT and building systems enables the personalized control of office environment where each occupant can control the lighting level or temperature around him or herself. Therefore, it can be possible to have a system which each occupant can make a decision of demand response participation in office building. This study investigates the personal behavior upon demand response requests, under the condition where each occupant can adjust their brightness individually in their workspace. Once workers participate in the demand response, their task lights are automatically turned off. The participation rates in the demand response events are compared between four groups which are divided by different motivation, the presence or absence of incentives and the way of participation. The result shows that there are the significant differences of participation rates in demand response event between four groups. The way of participation has a large effect on the participation rate. ‘Opt-out’ group, where the occupants are automatically enrolled in a demand response event if they don't express non-participation, will have the highest participation rate in the four groups. The incentive has also an effect on the participation rate. This study also reports that the impact of low illumination office environment on the occupants, such as stress or fatigue. The electrocardiogram and the questionnaire are used to investigate the autonomic nervous activity and subjective symptoms about the fatigue of the occupants. There is no big difference between dim workspace during demand response event and bright workspace in autonomic nervous activity and fatigue.

Keywords: demand response, illumination, questionnaire, electrocardiogram

Procedia PDF Downloads 346
876 Mapping of Urban Micro-Climate in Lyon (France) by Integrating Complementary Predictors at Different Scales into Multiple Linear Regression Models

Authors: Lucille Alonso, Florent Renard

Abstract:

The characterizations of urban heat island (UHI) and their interactions with climate change and urban climates are the main research and public health issue, due to the increasing urbanization of the population. These solutions require a better knowledge of the UHI and micro-climate in urban areas, by combining measurements and modelling. This study is part of this topic by evaluating microclimatic conditions in dense urban areas in the Lyon Metropolitan Area (France) using a combination of data traditionally used such as topography, but also from LiDAR (Light Detection And Ranging) data, Landsat 8 satellite observation and Sentinel and ground measurements by bike. These bicycle-dependent weather data collections are used to build the database of the variable to be modelled, the air temperature, over Lyon’s hyper-center. This study aims to model the air temperature, measured during 6 mobile campaigns in Lyon in clear weather, using multiple linear regressions based on 33 explanatory variables. They are of various categories such as meteorological parameters from remote sensing, topographic variables, vegetation indices, the presence of water, humidity, bare soil, buildings, radiation, urban morphology or proximity and density to various land uses (water surfaces, vegetation, bare soil, etc.). The acquisition sources are multiple and come from the Landsat 8 and Sentinel satellites, LiDAR points, and cartographic products downloaded from an open data platform in Greater Lyon. Regarding the presence of low, medium, and high vegetation, the presence of buildings and ground, several buffers close to these factors were tested (5, 10, 20, 25, 50, 100, 200 and 500m). The buffers with the best linear correlations with air temperature for ground are 5m around the measurement points, for low and medium vegetation, and for building 50m and for high vegetation is 100m. The explanatory model of the dependent variable is obtained by multiple linear regression of the remaining explanatory variables (Pearson correlation matrix with a |r| < 0.7 and VIF with < 5) by integrating a stepwise sorting algorithm. Moreover, holdout cross-validation is performed, due to its ability to detect over-fitting of multiple regression, although multiple regression provides internal validation and randomization (80% training, 20% testing). Multiple linear regression explained, on average, 72% of the variance for the study days, with an average RMSE of only 0.20°C. The impact on the model of surface temperature in the estimation of air temperature is the most important variable. Other variables are recurrent such as distance to subway stations, distance to water areas, NDVI, digital elevation model, sky view factor, average vegetation density, or building density. Changing urban morphology influences the city's thermal patterns. The thermal atmosphere in dense urban areas can only be analysed on a microscale to be able to consider the local impact of trees, streets, and buildings. There is currently no network of fixed weather stations sufficiently deployed in central Lyon and most major urban areas. Therefore, it is necessary to use mobile measurements, followed by modelling to characterize the city's multiple thermal environments.

Keywords: air temperature, LIDAR, multiple linear regression, surface temperature, urban heat island

Procedia PDF Downloads 130
875 Effects of Sensory Integration Techniques in Science Education of Autistic Students

Authors: Joanna Estkowska

Abstract:

Sensory integration methods are very useful and improve daily functioning autistic and mentally disabled children. Autism is a neurobiological disorder that impairs one's ability to communicate with and relate to others as well as their sensory system. Children with autism, even highly functioning kids, can find it difficult to process language with surrounding noise or smells. They are hypersensitive to things we can ignore such as sight, sounds and touch. Adolescents with highly functioning autism or Asperger Syndrome can study Science and Math but the social aspect is difficult for them. Nature science is an area of study that attracts many of these kids. It is a systematic field in which the children can focus on a small aspect. If you follow these rules you can come up with an expected result. Sensory integration program and systematic classroom observation are quantitative methods of measuring classroom functioning and behaviors from direct observations. These methods specify both the events and behaviors that are to be observed and how they are to be recorded. Our students with and without autism attended the lessons in the classroom of nature science in the school and in the laboratory of University of Science and Technology in Bydgoszcz. The aim of this study is investigation the effects of sensory integration methods in teaching to students with autism. They were observed during experimental lessons in the classroom and in the laboratory. Their physical characteristics, sensory dysfunction, and behavior in class were taken into consideration by comparing their similarities and differences. In the chemistry classroom, every autistic student is paired with a mentor from their school. In the laboratory, the children are expected to wear goggles, gloves and a lab coat. The chemistry classes in the laboratory were held for four hours with a lunch break, and according to the assistants, the children were engaged the whole time. In classroom of nature science, the students are encouraged to use the interactive exhibition of chemical, physical and mathematical models constructed by the author of this paper. Our students with and without autism attended the lessons in those laboratories. The teacher's goals are: to assist the child in inhibiting and modulating sensory information and support the child in processing a response to sensory stimulation.

Keywords: autism spectrum disorder, science education, sensory integration techniques, student with special educational needs

Procedia PDF Downloads 188
874 Intercultural Initiatives and Canadian Bilingualism

Authors: Muna Shafiq

Abstract:

Growth in international immigration is a reflection of increased migration patterns in Canada and in other parts of the world. Canada continues to promote itself as a bilingual country, yet the bilingual French and English population numbers do not reflect this platform. Each province’s integration policies focus only on second language learning of either English or French. Moreover, since English Canadians outnumber French Canadians, maintaining, much less increasing, English-French bilingualism appears unrealistic. One solution to increasing Canadian bilingualism requires creating intercultural communication initiatives between youth in Quebec and the rest of Canada. Specifically, the focus is on active, experiential learning, where intercultural competencies develop outside traditional classroom settings. The target groups are Generation Y Millennials and Generation Z Linksters, the next generations in the career and parenthood lines. Today, Canada’s education system, like many others, must continually renegotiate lines between programs it offers its immigrant and native communities. While some purists or right-wing nationalists would disagree, the survival of bilingualism in Canada has little to do with reducing immigration. Children and youth immigrants play a valuable role in increasing Canada’s French and English speaking communities. For instance, a focus on more immersion, over core French education programs for immigrant children and youth would not only increase bilingual rates; it would develop meaningful intercultural attachments between Canadians. Moreover, a vigilant increase of funding in French immersion programs is critical, as are new initiatives that focus on experiential language learning for students in French and English language programs. A favorable argument supports the premise that other than French-speaking students in Québec and elsewhere in Canada, second and third generation immigrant students are excellent ambassadors to promote bilingualism in Canada. Most already speak another language at home and understand the value of speaking more than one language in their adopted communities. Their dialogue and participation in experiential language exchange workshops are necessary. If the proposed exchanges take place inter-provincially, the momentum to increase collective regional voices increases. This regional collectivity can unite Canadians differently than nation-targeted initiatives. The results from an experiential youth exchange organized in 2017 between students at the crossroads of Generation Y and Generation Z in Vancouver and Quebec City respectively offer a promising starting point in assessing the strength of bringing together different regional voices to promote bilingualism. Code-switching between standard, international French Vancouver students, learn in the classroom versus more regional forms of Quebec French spoken locally created regional connectivity between students. The exchange was equally rewarding for both groups. Increasing their appreciation for each other’s regional differences allowed them to contribute actively to their social and emotional development. Within a sociolinguistic frame, this proposed model of experiential learning does not focus on hands-on work experience. However, the benefits of such exchanges are as valuable as work experience initiatives developed in experiential education. Students who actively code switch between French and English in real, not simulated contexts appreciate bilingualism more meaningfully and experience its value in concrete terms.

Keywords: experiential learning, intercultural communication, social and emotional learning, sociolinguistic code-switching

Procedia PDF Downloads 133
873 The Effectiveness of Prefabricated Vertical Drains for Accelerating Consolidation of Tunis Soft Soil

Authors: Marwa Ben Khalifa, Zeineb Ben Salem, Wissem Frikha

Abstract:

The purpose of the present work is to study the consolidation behavior of highly compressible Tunis soft soil “TSS” by means of prefabricated vertical drains (PVD’s) associated to preloading based on laboratory and field investigations. In the first hand, the field performance of PVD’s on the layer of Tunis soft soil was analysed based on the case study of the construction of embankments of “Radès la Goulette” bridge project. PVD’s Geosynthetics drains types were installed with triangular grid pattern until 10 m depth associated with step-by-step surcharge. The monitoring of the soil settlement during preloading stage for Radès La Goulette Bridge project was provided by an instrumentation composed by various type of tassometer installed in the soil. The distribution of water pressure was monitored through piezocone penetration. In the second hand, a laboratory reduced tests are performed on TSS subjected also to preloading and improved with PVD's Mebradrain 88 (Mb88) type. A specific test apparatus was designed and manufactured to study the consolidation. Two series of consolidation tests were performed on TSS specimens. The first series included consolidation tests for soil improved by one central drain. In thesecond series, a triangular mesh of three geodrains was used. The evolution of degree of consolidation and measured settlements versus time derived from laboratory tests and field data were presented and discussed. The obtained results have shown that PVD’s have considerably accelerated the consolidation of Tunis soft soil by shortening the drainage path. The model with mesh of three drains gives results more comparative to field one. A longer consolidation time is observed for the cell improved by a single central drain. A comparison with theoretical analysis, basically that of Barron (1948) and Carillo (1942), was presented. It’s found that these theories overestimate the degree of consolidation in the presence of PVD.

Keywords: tunis soft soil, prefabricated vertical drains, acceleration of consolidation, dissipation of excess pore water pressures, radès bridge project, barron and carillo’s theories

Procedia PDF Downloads 118
872 Relationships Between the Petrophysical and Mechanical Properties of Rocks and Shear Wave Velocity

Authors: Anamika Sahu

Abstract:

The Himalayas, like many mountainous regions, is susceptible to multiple hazards. In recent times, the frequency of such disasters is continuously increasing due to extreme weather phenomena. These natural hazards are responsible for irreparable human and economic loss. The Indian Himalayas has repeatedly been ruptured by great earthquakes in the past and has the potential for a future large seismic event as it falls under the seismic gap. Damages caused by earthquakes are different in different localities. It is well known that, during earthquakes, damage to the structure is associated with the subsurface conditions and the quality of construction materials. So, for sustainable mountain development, prior estimation of site characterization will be valuable for designing and constructing the space area and for efficient mitigation of the seismic risk. Both geotechnical and geophysical investigation of the subsurface is required to describe the subsurface complexity. In mountainous regions, geophysical methods are gaining popularity as areas can be studied without disturbing the ground surface, and also these methods are time and cost-effective. The MASW method is used to calculate the Vs30. Vs30 is the average shear wave velocity for the top 30m of soil. Shear wave velocity is considered the best stiffness indicator, and the average of shear wave velocity up to 30 m is used in National Earthquake Hazards Reduction Program (NEHRP) provisions (BSSC,1994) and Uniform Building Code (UBC), 1997 classification. Parameters obtained through geotechnical investigation have been integrated with findings obtained through the subsurface geophysical survey. Joint interpretation has been used to establish inter-relationships among mineral constituents, various textural parameters, and unconfined compressive strength (UCS) with shear wave velocity. It is found that results obtained through the MASW method fitted well with the laboratory test. In both conditions, mineral constituents and textural parameters (grain size, grain shape, grain orientation, and degree of interlocking) control the petrophysical and mechanical properties of rocks and the behavior of shear wave velocity.

Keywords: MASW, mechanical, petrophysical, site characterization

Procedia PDF Downloads 83
871 Tablet Computer Based Cognitive Rehabilitation Program, Injini, for Children with Cognitive Impairment

Authors: Eun Jae Ko, In Young Sung, Eui Soo Joeng

Abstract:

Cognitive impairment is commonly encountered problem in children with various clinical diseases, including Down syndrome, autism spectrum disorder, brain injury, and others. Cognitive impairment limits participation in education and society, and this further hinders development in cognition. However, young children with cognitive impairment tend not to respond well to traditional cognitive treatments, therefore alternative treatment choices are need. As a cognitive training program, touch screen technology can easily be applied to very young children by involving visual and auditory support. Injini was developed as tablet computer based cognitive rehabilitation program for young children or individuals with severe cognitive impairment, which targeted on cognitive ages of 18 to 36 months. The aim of this study was to evaluate the efficacy of a tablet computer based cognitive rehabilitation program (Injini) for children with cognitive impairment. 38 children between cognitive ages of 18 to 36 months confirmed by cognitive evaluations were recruited and randomly assigned to the intervention group (n=20) and the control group (n=18). The intervention group received tablet computer based cognitive rehabilitation program (Injini) for 30 minutes per session, twice a week, over a period of 12 weeks, in addition to the traditional rehabilitation program. The control group received traditional rehabilitation program only. Mental score of Bayley Scales of Infant Development II (BSID II), Pediatric Evaluation of Disability Inventory (PEDI), Laboratory Temperament Assessment Battery (Lab-TAB), Early Childhood Behavior Questionnaire (ECBQ), and Goal Attainment Scale (GAS) were evaluated before and after 12 weeks of therapeutic intervention. When comparing the baseline characteristics, there was no significant difference between the two groups in the measurements of cognitive function. After 12 weeks of treatment, both group showed improvements in all measurements. However, in comparison of improvements after treatment, the intervention group showed more improvements in the mental score of BSID II, social function domain of PEDI, observation domain of Lab-TAB, and GAS, as compared to the control group. Application of the tablet computer based cognitive rehabilitation program (Injini) would be beneficial for improvement of cognitive function in young children with cognitive impairment.

Keywords: cognitive therapy, computer-assisted therapy, early intervention, tablets

Procedia PDF Downloads 279
870 The Role of Community Activism in Promoting Social Justice around Housing Issues: A Case Study of the Western Cape

Authors: Mapule Maema

Abstract:

The paper aims to highlight the role that community activism has played in promoting social justice around housing issues in the Western Cape. The Western Cape is one of the largest spatially segregated provinces in South Africa which continues to exhibit grave inequalities between cities, townships and farms. These inequalities cut across intersectional issues such as, race, class, gender, and politics. The main challenges facing marginalized communities in the Western Cape include access to housing, land and basic services. This is not peculiar to only the Western Cape, the entire country is facing similar challenges however the Western Cape is seen as a fasted urbanizing province in the country due to tourism. Various social movements have been formed across the country to counter these challenges, however, this paper focuses on the resilience communities have fostered despite the myriad housing and spatial crisis they are faced with. The paper focuses on the Legal Resource’s Centre’s clients from an informal settlement called Imizamo Yethu based in Hout Bay Valley area. The 18 hectare settlement houses approximately 33600 people. On the 21st July 2017, Hout Bay experienced violent protests following an eviction order passed by the City of Cape Town. The protest was characterized by tensions within the community regarding the super-blocking initiative which aims to establish roads in informal settlements to ensure basic services. Residents against the process argued that there were no proper consultations done to educate them on what this process entailed. Public participation is one of the objectives the municipalities aim to promote however it remains a great challenge. In order to highlight the experiences of the LRC clients in relation to what motivated their involvement in the movement, how it felt their participation, and aspirations, the paper will employ qualitative research methods. Qualitative research methods enable the researcher to get a deeper and nuanced understanding of the social world in the eyes of those who experienced it. It is a flexible methodology that enables one to also understand social processes and the significance they generate. Data will be collected through the use of the World Cafe as a focus group method. The World Café is a simple, effective and flexible format for hosting group dialogue. The steps taken when setting up a World Café includes the following: setting the context (why you are bringing people together and what you want to achieve), create hospitality space (make participants feel at home and free to discuss issues), explore questions that matter, connect diverse perspectives (the opportunity to actively contribute your thinking), listen together for patterns and insights, share collective discoveries and learnings. Secondary data will be used to augment the data collected. Stories of impact will be drawn from the exercises. This paper will contribute to the discourse of sustainable housing and urban development and the research outputs will be disseminated to the public for learning.

Keywords: community activism, influence, social justice, development

Procedia PDF Downloads 134
869 Spatiotemporal Evaluation of Climate Bulk Materials Production in Atmospheric Aerosol Loading

Authors: Mehri Sadat Alavinasab Ashgezari, Gholam Reza Nabi Bidhendi, Fatemeh Sadat Alavinasab Ashkezari

Abstract:

Atmospheric aerosol loading (AAL) from anthropogenic sources is an evidence in industrial development. The accelerated trends in material consumption at the global scale in recent years demonstrate consumption paradigms sensible to the planetary boundaries (PB). This paper is a statistical approach on recognizing the path of climate-relevant bulk materials production (CBMP) of steel, cement and plastics to AAL via an updated and validated spatiotemporal distribution. The methodology of statistical analysis used the most updated regional or global databases or instrumental technologies. This corresponded to a selection of processes and areas capable for tracking AAL within the last decade, analyzing the most validated data while leading to explore the behavior functions or models. The results also represented a correlation within socio economic metabolism idea between the materials specified as macronutrients of society and AAL as a PB with an unknown threshold. The selected country contributors of China, India, US and the sample country of Iran show comparable cumulative AAL values vs to the bulk materials domestic extraction and production rate in the study period of 2012 to 2022. Generally, there is a tendency towards gradual descend in the worldwide and regional aerosol concentration after 2015. As of our evaluation, a considerable share of human role, equivalent 20% from CBMP, is for the main anthropogenic species of aerosols, including sulfate, black carbon and organic particulate matters too. This study, in an innovative approach, also explores the potential role of AAL control mechanisms from the economy sectors where ordered and smoothing loading trends are accredited through the disordered phenomena of CBMP and aerosol precursor emissions. The equilibrium states envisioned is an approval to the well-established theory of Spin Glasses applicable in physical system like the Earth and here to AAL.

Keywords: atmospheric aeroso loading, material flows, climate bulk materials, industrial ecology

Procedia PDF Downloads 72
868 Identifying Factors of Wellbeing in Russian Orphans

Authors: Alexandra Telitsyna, Galina Semya, Elvira Garifulina

Abstract:

Introduction: Starting from 2012 Russia conducts deinstitutionalization policy and now the main indicator of success is the number of children living in institutions. Active family placement process has resulted in residents of the institution now mainly consists of adolescents with behavioral and emotional problems, children with disabilities and groups of siblings. Purpose of science research: The purpose of science research is to identify factors for child’s wellbeing while temporary stay in an orphanage and the subjective assessment of children's level of well-being (psychological well-being). Methods: The data used for this project was collected by the questionnaire of 72 indicators, a tool for monitoring the behavior of children and caregivers, an additional questionnaire for children; well-being assessment questionnaire containing 10 scales for three age groups from preschool to older adolescents. In 2016-2018, the research was conducted in 1873 institution in 85 regions of Russia. In each region a team of academics, specialists from Non-profits, independent experts was created. Training was conducted for team members through a series of webinars prior to undertaking the assessment. The results: To ensure the well-being of the children, the following conditions are necessary: 1- Life of children in institution is organised according to the principles of family care (including the creation of conditions for attachment to be formed); 2- Contribution to find family-based placement for children (including reintegration into the primary family); 3- Work with parents of children, who are placed in an organization at the request of parents; 4- Children attend schools according to their needs; 5- Training of staff and volunteers; 6- Special environment and services for children with special needs and children with disabilities; 7- Cooperation with NGOs; 8 - Openness and accessibility of the organization. Conclusion: A study of the psychological well-being of children showed that the most emotionally stressful for children were questions about the presence and frequency of contact with relatives, and the level of well-being is higher in the presence of a trusted adult and respect for rights. The greatest contribution to the trouble is made by the time the child is in the orphanage, the lack of contact with parents and relatives, the uncertainty of the future.

Keywords: identifying factors, orphans, Russia, wellbeing

Procedia PDF Downloads 126
867 Coach-Created Motivational Climate and the Coach-Athlete Relationship

Authors: Kamila Irena Szpunar

Abstract:

The central idea of the study is considered from two perspectives. The first perspective includes the interpersonal relationships formed by coach and athlete. Another perspective is connected with motivational environment which is created by the coach in team. This study will show the interplay between the perceived motivational climate created by the coach and the interpersonal dynamics between coaches and athletes. It is important because it will supply knowledge of the interpersonal conditions that can foster adaptive or maladaptive behavior in sport conditions. It also ensures implications for understanding how the perceived motivational atmosphere in a team is manifested at the level of coach – athlete relationship and interactions. The primary purpose of the study was to identify the association between coach-athlete relationship and athletes' perception of the motivational climate in team sports. The secondary purposes examined the differences between female and male athletes in perceiving of the motivational climate and the coach athlete-relationship. To check coach-athlete relationship Polish translation of The Coach-Athlete Relationship Questionnaire will be used. It measures athletes' perceptions of coach- athlete relationship defined by 3+1 Cs conceptual model of the coach-athlete relationship. From this model were used three constructs such as closeness (feelings of trust, respect etc.), commitment (thoughts about the future of the relationship), and complementarity (co-operative interactions during practice sessions). To check perceived motivational climate will be used Polish translation of The Perceived Motivational Climate in Sport Questionnaire-2 (PMCSQ-2). PMCSQ-2 was created to assess athletes' perceptions of the motivational climates in their teams. The questionnaire includes two general dimensions, the perceived task-involving climate and the perceived ego-involving climate; each contains three subscales. To check the associations between elements the motivational climate and coach-athlete relationship was used canonical correlation analysis. Student's t-test was used to check gender differences in athletes' perceptions of the motivational climate and the coach-athlete relationship. The findings suggest that in Polish athletes' perceptions of the coach-athlete relationship have motivational significance and that there are gender differences between female and male athletes in both variables – coach-athlete relationship and kind of motivational climate. According to the author's knowledge, such kind of study has not been conducted in Polish conditions before and is the first study on the subject of the motivational climate and the coach-athlete relationship in Poland. Information from this study can be useful for the development of interventions for enhancing the quality of coach- athlete relationship and its associated outcomes connected with motivational climate.

Keywords: coach-athlete relationship, ego-involving climate, motivational climate, task-involving climate

Procedia PDF Downloads 196
866 The Contact between a Rigid Substrate and a Thick Elastic Layer

Authors: Nicola Menga, Giuseppe Carbone

Abstract:

Although contact mechanics has been widely focused on the study of contacts between half-space, it has been recently pointed out that in presence of finite thickness elastic layers the results of the contact problem show significant difference in terms of the main contact quantities (e.g. contact area, penetration, mean pressure, etc.). Actually, there exist a wide range of industrial application demanding for this kind of studies, such as seals leakage prediction or pressure-sensitive coatings for electrical applications. In this work, we focus on the contact between a rigid profile and an elastic layer of thickness h confined under two different configurations: rigid constrain and applied uniform pressure. The elastic problem at hand has been formalized following Green’s function method and then numerically solved by means of a matrix inversion. We study different contact conditions, both considering and neglecting adhesive interactions at the interface. This leads to different solution techniques: Adhesive contacts equilibrium solution is found, in term of contact area for given penetration, making stationary the total free energy of the system; whereas, adhesiveless contacts are addressed defining an equilibrium criterion, again on the contact area, relying on the fracture mechanics stress intensity factor KI. In particular, we make the KI vanish at the edges of the contact area, as peculiar for adhesiveless elastic contacts. The results are obtained in terms of contact area, penetration, and mean pressure for both adhesive and adhesiveless contact conditions. As expected, in the case of a uniform applied pressure the slab turns out much more compliant than the rigidly constrained one. Indeed, we have observed that the peak value of the contact pressure, for both the adhesive and adhesiveless condition, is much higher for the rigidly constrained configuration than in the case of applied uniform pressure. Furthermore, we observed that, for little contact area, both systems behave the same and the pull-off occurs at approximately the same contact area and mean contact pressure. This is an expected result since in this condition the ratio between the layers thickness and the contact area is very high and both layer configurations recover the half-space behavior where the pull-off occurrence is mainly controlled by the adhesive interactions, which are kept constant among the cases.

Keywords: contact mechanics, adhesion, friction, thick layer

Procedia PDF Downloads 502
865 Effect of Different Ground Motion Scaling Methods on Behavior of 40 Story RC Core Wall Building

Authors: Muhammad Usman, Munir Ahmed

Abstract:

The demand of high-rise buildings has grown fast during the past decades. The design of these buildings by using RC core wall have been widespread nowadays in many countries. The RC core wall (RCCW) buildings encompasses central core wall and boundary columns joined through post tension slab at different floor levels. The core wall often provides greater stiffness as compared to the collective stiffness of the boundary columns. Hence, the core wall dominantly resists lateral loading i.e. wind or earthquake load. Non-linear response history analysis (NLRHA) procedure is the finest seismic design procedure of the times for designing high-rise buildings. The modern design tools for nonlinear response history analysis and performance based design has provided more confidence to design these structures for high-rise buildings. NLRHA requires selection and scaling of ground motions to match design spectrum for site specific conditions. Designers use several techniques for scaling ground motion records (time series). Time domain and frequency domain scaling are most commonly used which comprises their own benefits and drawbacks. Due to lengthy process of NLRHA, application of only one technique is conceivable. To the best of author’s knowledge, no consensus on the best procedures for the selection and scaling of the ground motions is available in literature. This research aims to provide the finest ground motion scaling technique specifically for designing 40 story high-rise RCCW buildings. Seismic response of 40 story RCCW building is checked by applying both the frequency domain and time domain scaling. Variable sites are selected in three critical seismic zones of Pakistan. The results indicates that there is extensive variation in seismic response of building for these scaling. There is still a need to build a consensus on the subjected research by investigating variable sites and buildings heights.

Keywords: 40-storied RC core wall building, nonlinear response history analysis, ground motions, time domain scaling, frequency domain scaling

Procedia PDF Downloads 130
864 Experimental Study and Numerical Modelling of Failure of Rocks Typical for Kuzbass Coal Basin

Authors: Mikhail O. Eremin

Abstract:

Present work is devoted to experimental study and numerical modelling of failure of rocks typical for Kuzbass coal basin (Russia). The main goal was to define strength and deformation characteristics of rocks on the base of uniaxial compression and three-point bending loadings and then to build a mathematical model of failure process for both types of loading. Depending on particular physical-mechanical characteristics typical rocks of Kuzbass coal basin (sandstones, siltstones, mudstones, etc. of different series – Kolchuginsk, Tarbagansk, Balohonsk) manifest brittle and quasi-brittle character of failure. The strength characteristics for both tension and compression are found. Other characteristics are also found from the experiment or taken from literature reviews. On the base of obtained characteristics and structure (obtained from microscopy) the mathematical and structural models are built and numerical modelling of failure under different types of loading is carried out. Effective characteristics obtained from modelling and character of failure correspond to experiment and thus, the mathematical model was verified. An Instron 1185 machine was used to carry out the experiments. Mathematical model includes fundamental conservation laws of solid mechanics – mass, impulse, energy. Each rock has a sufficiently anisotropic structure, however, each crystallite might be considered as isotropic and then a whole rock model has a quasi-isotropic structure. This idea gives an opportunity to use the Hooke’s law inside of each crystallite and thus explicitly accounting for the anisotropy of rocks and the stress-strain state at loading. Inelastic behavior is described in frameworks of two different models: von Mises yield criterion and modified Drucker-Prager yield criterion. The damage accumulation theory is also implemented in order to describe a failure process. Obtained effective characteristics of rocks are used then for modelling of rock mass evolution when mining is carried out both by an open-pit or underground opening.

Keywords: damage accumulation, Drucker-Prager yield criterion, failure, mathematical modelling, three-point bending, uniaxial compression

Procedia PDF Downloads 170
863 A Postmodern Framework for Quranic Hermeneutics

Authors: Christiane Paulus

Abstract:

Post-Islamism assumes that the Quran should not be viewed in terms of what Lyotard identifies as a ‘meta-narrative'. However, its socio-ethical content can be viewed as critical of power discourse (Foucault). Practicing religion seems to be limited to rites and individual spirituality, taqwa. Alternatively, can we build on Muhammad Abduh's classic-modern reform and develop it through a postmodernist frame? This is the main question of this study. Through his general and vague remarks on the context of the Quran, Abduh was the first to refer to the historical and cultural distance of the text as an obstacle for interpretation. His application, however, corresponded to the modern absolute idea of authentic sharia. He was followed by Amin al-Khuli, who hermeneutically linked the content of the Quran to the theory of evolution. Fazlur Rahman and Nasr Hamid abu Zeid remain reluctant to go beyond the general level in terms of context. The hermeneutic circle, therefore, persists in challenging, how to get out to overcome one’s own assumptions. The insight into and the acceptance of the lasting ambivalence of understanding can be grasped as a postmodern approach; it is documented in Derrida's discovery of the shift in text meanings, difference, also in Lyotard's theory of différend. The resulting mixture of meanings (Wolfgang Welsch) can be read together with the classic ambiguity of the premodern interpreters of the Quran (Thomas Bauer). Confronting hermeneutic difficulties in general, Niklas Luhmann proves every description an attribution, tautology, i.e., remaining in the circle. ‘De-tautologization’ is possible, namely by analyzing the distinctions in the sense of objective, temporal and social information that every text contains. This could be expanded with the Kantian aesthetic dimension of reason (critique of pure judgment) corresponding to the iʽgaz of the Coran. Luhmann asks, ‘What distinction does the observer/author make?’ Quran as a speech from God to the first listeners could be seen as a discourse responding to the problems of everyday life of that time, which can be viewed as the general goal of the entire Qoran. Through reconstructing koranic Lifeworlds (Alfred Schütz) in detail, the social structure crystallizes the socio-economic differences, the enormous poverty. The koranic instruction to provide the basic needs for the neglected groups, which often intersect (old, poor, slaves, women, children), can be seen immediately in the text. First, the references to lifeworlds/social problems and discourses in longer koranic passages should be hypothesized. Subsequently, information from the classic commentaries could be extracted, the classical Tafseer, in particular, contains rich narrative material for reconstructing. By selecting and assigning suitable, specific context information, the meaning of the description becomes condensed (Clifford Geertz). In this manner, the text gets necessarily an alienation and is newly accessible. The socio-ethical implications can thus be grasped from the difference of the original problem and the revealed/improved order/procedure; this small step can be materialized as such, not as an absolute solution but as offering plausible patterns for today’s challenges as the Agenda 2030.

Keywords: postmodern hermeneutics, condensed description, sociological approach, small steps of reform

Procedia PDF Downloads 214
862 Medicompills Architecture: A Mathematical Precise Tool to Reduce the Risk of Diagnosis Errors on Precise Medicine

Authors: Adriana Haulica

Abstract:

Powered by Machine Learning, Precise medicine is tailored by now to use genetic and molecular profiling, with the aim of optimizing the therapeutic benefits for cohorts of patients. As the majority of Machine Language algorithms come from heuristics, the outputs have contextual validity. This is not very restrictive in the sense that medicine itself is not an exact science. Meanwhile, the progress made in Molecular Biology, Bioinformatics, Computational Biology, and Precise Medicine, correlated with the huge amount of human biology data and the increase in computational power, opens new healthcare challenges. A more accurate diagnosis is needed along with real-time treatments by processing as much as possible from the available information. The purpose of this paper is to present a deeper vision for the future of Artificial Intelligence in Precise medicine. In fact, actual Machine Learning algorithms use standard mathematical knowledge, mostly Euclidian metrics and standard computation rules. The loss of information arising from the classical methods prevents obtaining 100% evidence on the diagnosis process. To overcome these problems, we introduce MEDICOMPILLS, a new architectural concept tool of information processing in Precise medicine that delivers diagnosis and therapy advice. This tool processes poly-field digital resources: global knowledge related to biomedicine in a direct or indirect manner but also technical databases, Natural Language Processing algorithms, and strong class optimization functions. As the name suggests, the heart of this tool is a compiler. The approach is completely new, tailored for omics and clinical data. Firstly, the intrinsic biological intuition is different from the well-known “a needle in a haystack” approach usually used when Machine Learning algorithms have to process differential genomic or molecular data to find biomarkers. Also, even if the input is seized from various types of data, the working engine inside the MEDICOMPILLS does not search for patterns as an integrative tool. This approach deciphers the biological meaning of input data up to the metabolic and physiologic mechanisms, based on a compiler with grammars issued from bio-algebra-inspired mathematics. It translates input data into bio-semantic units with the help of contextual information iteratively until Bio-Logical operations can be performed on the base of the “common denominator “rule. The rigorousness of MEDICOMPILLS comes from the structure of the contextual information on functions, built to be analogous to mathematical “proofs”. The major impact of this architecture is expressed by the high accuracy of the diagnosis. Detected as a multiple conditions diagnostic, constituted by some main diseases along with unhealthy biological states, this format is highly suitable for therapy proposal and disease prevention. The use of MEDICOMPILLS architecture is highly beneficial for the healthcare industry. The expectation is to generate a strategic trend in Precise medicine, making medicine more like an exact science and reducing the considerable risk of errors in diagnostics and therapies. The tool can be used by pharmaceutical laboratories for the discovery of new cures. It will also contribute to better design of clinical trials and speed them up.

Keywords: bio-semantic units, multiple conditions diagnosis, NLP, omics

Procedia PDF Downloads 63
861 Slosh Investigations on a Spacecraft Propellant Tank for Control Stability Studies

Authors: Sarath Chandran Nair S, Srinivas Kodati, Vasudevan R, Asraff A. K

Abstract:

Spacecrafts generally employ liquid propulsion for their attitude and orbital maneuvers or raising it from geo-transfer orbit to geosynchronous orbit. Liquid propulsion systems use either mono-propellant or bi-propellants for generating thrust. These propellants are generally stored in either spherical tanks or cylindrical tanks with spherical end domes. The propellant tanks are provided with a propellant acquisition system/propellant management device along with vanes and their conical mounting structure to ensure propellant availability in the outlet for thrust generation even under a low/zero-gravity environment. Slosh is the free surface oscillations in partially filled containers under external disturbances. In a spacecraft, these can be due to control forces and due to varying acceleration. Knowledge of slosh and its effect due to internals is essential for understanding its stability through control stability studies. It is mathematically represented by a pendulum-mass model. It requires parameters such as slosh frequency, damping, sloshes mass and its location, etc. This paper enumerates various numerical and experimental methods used for evaluating the slosh parameters required for representing slosh. Numerical methods like finite element methods based on linear velocity potential theory and computational fluid dynamics based on Reynolds Averaged Navier Stokes equations are used for the detailed evaluation of slosh behavior in one of the spacecraft propellant tanks used in an Indian space mission. Experimental studies carried out on a scaled-down model are also discussed. Slosh parameters evaluated by different methods matched very well and finalized their dispersion bands based on experimental studies. It is observed that the presence of internals such as propellant management devices, including conical support structure, alters slosh parameters. These internals also offers one order higher damping compared to viscous/ smooth wall damping. It is an advantage factor for the stability of slosh. These slosh parameters are given for establishing slosh margins through control stability studies and finalize the spacecraft control system design.

Keywords: control stability, propellant tanks, slosh, spacecraft, slosh spacecraft

Procedia PDF Downloads 239
860 Mortar Positioning Effects on Uniaxial Compression Behavior in Hollow Concrete Block Masonry

Authors: José Álvarez Pérez, Ramón García Cedeño, Gerardo Fajardo-San Miguel, Jorge H. Chávez Gómez, Franco A. Carpio Santamaría, Milena Mesa Lavista

Abstract:

The uniaxial compressive strength and modulus of elasticity in hollow concrete block masonry (HCBM) represent key mechanical properties for structural design considerations. These properties are obtained through experimental tests conducted on prisms or wallettes and depend on various factors, with the HCB contributing significantly to overall strength. One influential factor in the compressive behaviour of masonry is the thickness and method of mortar placement. Mexican regulations stipulate mortar placement over the entire net area (full-shell) for strength computation based on the gross area. However, in professional practice, there's a growing trend to place mortar solely on the lateral faces. Conversely, the United States of America standard dictates mortar placement and computation over the net area of HCB. The Canadian standard specifies mortar placement solely on the lateral face (Face-Shell-Bedding), where computation necessitates the use of the effective load area, corresponding to the mortar's placement area. This research aims to evaluate the influence of different mortar placement methods on the axial compression behaviour of HCBM. To achieve this, an experimental campaign was conducted, including: (1) 10 HCB specimens with mortar on the entire net area, (2) 10 HCB specimens with mortar placed on the lateral faces, (3) 10 prisms of 2-course HCB under axial compression with mortar in full-shell, (4) 10 prisms of 2-course HCB under axial compression with mortar in face-shell-bedding, (5) 10 prisms of 3-course HCB under axial compression with mortar in full-shell, (6) 10 prisms of 3-course HCB under axial compression with mortar in face-shell-bedding, (7) 10 prisms of 4-course HCB under axial compression with mortar in full-shell, and, (8) 10 prisms of 4-course HCB under axial compression with mortar in face-shell-bedding. A combination of sulphur and fly ash in a 2:1 ratio was used for the capping material, meeting the average compressive strength requirement of over 35 MPa as per NMX-C-036 standards. Additionally, a mortar with a strength of over 17 MPa was utilized for the prisms. The results indicate that prisms with mortar placed over the full-shell exhibit higher strength compared to those with mortar over the face-shell-bedding. However, the elastic modulus was lower for prisms with mortar placement over the full-shell compared to face-shell bedding.

Keywords: masonry, hollow concrete blocks, mortar placement, prisms tests

Procedia PDF Downloads 54
859 National Culture, Personal Values, and Supervisors’ Ethical Behavior: Examining a Partial Mediation Model of Merton’s Anomie Theory

Authors: Kristine Tuliao

Abstract:

Although it is of primary concern to ensure that supervisors behave appropriately, research shows that unethical behaviors are prevalent and may cost organizations’ economic and reputational damages. Nevertheless, few studies have considered the roles of the different levels of values in shaping one’s ethicality, and the examination of the possible mediation in the process of their influence has been rarely done. To address this gap, this research employs Merton’s anomie theory in designing a mediation analysis to test the direct impacts of national cultural values on supervisors’ justification of unethical behaviors as well as their indirect impacts through personal values. According to Merton’s writings, individual behaviors are affected by the society’s culture given its role in defining the members’ goals as well as the acceptable methods of attaining those goals. Also, Merton’s framework suggests that individuals develop their personal values depending on the assimilation of their society’s culture. Using data of 9,813 supervisors across 30 countries, results of hierarchical linear modeling (HLM) indicated that national cultural values, specifically assertiveness, performance orientation, in-group collectivism, and humane orientation, positively affect supervisors’ unethical inclination. Some cultural values may encourage unethical tendencies, especially if they urge and pressure individuals to attain purely monetary success. In addition, some of the influence of national cultural values went through personal monetary and non-monetary success values, indicating partial mediation. These findings substantiated the assertions of Merton’s anomie theory that national cultural values influence supervisors’ ethics through their integration with personal values. Given that some of the results contradict Merton’s anomie theory propositions, complementary arguments, such as incomplete assimilation of culture, and the probable impact of job position in perceptions, values, and behaviors, could be the plausible rationale for these outcomes. Consequently, this paper advances the understanding of differences in national and personal values and how these factors impact supervisors’ justification of unethical behaviors. Alongside these contributions, suggestions are presented for the public and organizations to craft policies and procedures that will minimize the tendency of supervisors to commit unethical acts.

Keywords: mediation model, national culture, personal values, supervisors' ethics

Procedia PDF Downloads 196
858 Affective Robots: Evaluation of Automatic Emotion Recognition Approaches on a Humanoid Robot towards Emotionally Intelligent Machines

Authors: Silvia Santano Guillén, Luigi Lo Iacono, Christian Meder

Abstract:

One of the main aims of current social robotic research is to improve the robots’ abilities to interact with humans. In order to achieve an interaction similar to that among humans, robots should be able to communicate in an intuitive and natural way and appropriately interpret human affects during social interactions. Similarly to how humans are able to recognize emotions in other humans, machines are capable of extracting information from the various ways humans convey emotions—including facial expression, speech, gesture or text—and using this information for improved human computer interaction. This can be described as Affective Computing, an interdisciplinary field that expands into otherwise unrelated fields like psychology and cognitive science and involves the research and development of systems that can recognize and interpret human affects. To leverage these emotional capabilities by embedding them in humanoid robots is the foundation of the concept Affective Robots, which has the objective of making robots capable of sensing the user’s current mood and personality traits and adapt their behavior in the most appropriate manner based on that. In this paper, the emotion recognition capabilities of the humanoid robot Pepper are experimentally explored, based on the facial expressions for the so-called basic emotions, as well as how it performs in contrast to other state-of-the-art approaches with both expression databases compiled in academic environments and real subjects showing posed expressions as well as spontaneous emotional reactions. The experiments’ results show that the detection accuracy amongst the evaluated approaches differs substantially. The introduced experiments offer a general structure and approach for conducting such experimental evaluations. The paper further suggests that the most meaningful results are obtained by conducting experiments with real subjects expressing the emotions as spontaneous reactions.

Keywords: affective computing, emotion recognition, humanoid robot, human-robot-interaction (HRI), social robots

Procedia PDF Downloads 222
857 Numerical Investigation of Turbulent Flow Control by Suction and Injection on a Subsonic NACA23012 Airfoil by Proper Orthogonal Decomposition Analysis and Perturbed Reynolds Averaged Navier‐Stokes Equations

Authors: Azam Zare

Abstract:

Separation flow control for performance enhancement over airfoils at high incidence angle has become an increasingly important topic. This work details the characteristics of an efficient feedback control of the turbulent subsonic flow over NACA23012 airfoil using forced reduced‐order model based on the proper orthogonal decomposition/Galerkin projection and perturbation method on the compressible Reynolds Averaged Navier‐Stokes equations. The forced reduced‐order model is used in the optimal control of the turbulent separated flow over a NACA23012 airfoil at Mach number of 0.2, Reynolds number of 5×106, and high incidence angle of 24° using blowing/suction controlling jets. The Spallart-Almaras turbulence model is implemented for high Reynolds number calculations. The main shortcoming of the POD/Galerkin projection on flow equations for controlling purposes is that the blowing/suction controlling jet velocity does not show up explicitly in the resulting reduced order model. Combining perturbation method and POD/Galerkin projection on flow equations introduce a forced reduced‐order model that can predict the time-varying influence of the blowing/suction controlling jet velocity. An optimal control theory based on forced reduced‐order system is used to design a control law for a nonlinear reduced‐order model, which attempts to minimize the vorticity content in the turbulent flow field over NACA23012 airfoil. Numerical simulations were performed to help understand the behavior of the controlled suction jet at 12% to 18% chord from leading edge and a pair of blowing/suction jets at 15% to 18% and 24% to 30% chord from leading edge, respectively. Analysis of streamline profiles indicates that the blowing/suction jets are efficient in removing separation bubbles and increasing the lift coefficient up to 22%, while the perturbation method can predict the flow field in an accurate Manner.

Keywords: flow control, POD, Galerkin projection, separation

Procedia PDF Downloads 146
856 Calpoly Autonomous Transportation Experience: Software for Driverless Vehicle Operating on Campus

Authors: F. Tang, S. Boskovich, A. Raheja, Z. Aliyazicioglu, S. Bhandari, N. Tsuchiya

Abstract:

Calpoly Autonomous Transportation Experience (CATE) is a driverless vehicle that we are developing to provide safe, accessible, and efficient transportation of passengers throughout the Cal Poly Pomona campus for events such as orientation tours. Unlike the other self-driving vehicles that are usually developed to operate with other vehicles and reside only on the road networks, CATE will operate exclusively on walk-paths of the campus (potentially narrow passages) with pedestrians traveling from multiple locations. Safety becomes paramount as CATE operates within the same environment as pedestrians. As driverless vehicles assume greater roles in today’s transportation, this project will contribute to autonomous driving with pedestrian traffic in a highly dynamic environment. The CATE project requires significant interdisciplinary work. Researchers from mechanical engineering, electrical engineering and computer science are working together to attack the problem from different perspectives (hardware, software and system). In this abstract, we describe the software aspects of the project, with a focus on the requirements and the major components. CATE shall provide a GUI interface for the average user to interact with the car and access its available functionalities, such as selecting a destination from any origin on campus. We have developed an interface that provides an aerial view of the campus map, the current car location, routes, and the goal location. Users can interact with CATE through audio or manual inputs. CATE shall plan routes from the origin to the selected destination for the vehicle to travel. We will use an existing aerial map for the campus and convert it to a spatial graph configuration where the vertices represent the landmarks and edges represent paths that the car should follow with some designated behaviors (such as stay on the right side of the lane or follow an edge). Graph search algorithms such as A* will be implemented as the default path planning algorithm. D* Lite will be explored to efficiently recompute the path when there are any changes to the map. CATE shall avoid any static obstacles and walking pedestrians within some safe distance. Unlike traveling along traditional roadways, CATE’s route directly coexists with pedestrians. To ensure the safety of the pedestrians, we will use sensor fusion techniques that combine data from both lidar and stereo vision for obstacle avoidance while also allowing CATE to operate along its intended route. We will also build prediction models for pedestrian traffic patterns. CATE shall improve its location and work under a GPS-denied situation. CATE relies on its GPS to give its current location, which has a precision of a few meters. We have implemented an Unscented Kalman Filter (UKF) that allows the fusion of data from multiple sensors (such as GPS, IMU, odometry) in order to increase the confidence of localization. We also noticed that GPS signals can easily get degraded or blocked on campus due to high-rise buildings or trees. UKF can also help here to generate a better state estimate. In summary, CATE will provide on-campus transportation experience that coexists with dynamic pedestrian traffic. In future work, we will extend it to multi-vehicle scenarios.

Keywords: driverless vehicle, path planning, sensor fusion, state estimate

Procedia PDF Downloads 139
855 Experience in Caring for a Patient with Terminal Aortic Dissection of Lung Cancer and Paralysis of the Lower Limbs after Surgery

Authors: Pei-Shan Liang

Abstract:

Objective: This article explores the care experience of a terminal lung cancer patient who developed lower limb paralysis after surgery for aortic dissection. The patient, diagnosed with aortic dissection during chemotherapy for lung cancer, faced post-surgical lower limb paralysis, leading to feelings of helplessness and hopelessness as they approached death with reduced mobility. Methods: The nursing period was from July 19 to July 27, during which the author, alongside the intensive care team and palliative care specialists, conducted a comprehensive assessment through observation, direct care, conversations, physical assessments, and medical record review. Gordon's eleven functional health patterns were used for a holistic evaluation, identifying four nursing health issues: "pain related to terminal lung cancer and invasive procedures," "decreased cardiac tissue perfusion due to hemodynamic instability," "impaired physical mobility related to lower limb paralysis," and "hopelessness due to the unpredictable prognosis of terminal lung cancer." Results: The medical team initially focused on symptom relief, administering Morphine 5mg in 0.9% N/S 50ml IVD q6h for pain management and continuing chemotherapy as prescribed. Open communication was employed to address the patient's physical, psychological, and spiritual concerns. Non-pharmacological interventions, including listening, caring, companionship, opioid medication, and distraction techniques like comfortable positioning and warm foot baths, were used to alleviate pain, reducing the pain score to 3 on the numeric rating scale and easing respiratory discomfort. The palliative care team was also involved, guiding the patient and family through the "Four Paths of Life," helping the patient achieve a good end-of-life experience and the family to experience a peaceful life. This process also served to promote the concept of palliative care, enabling more patients and families to receive high-quality and dignified care. The patient was encouraged to express inner anxiety through drawing or writing, which helped reduce the hopelessness caused by psychological distress and uncertainty about the disease's prognosis, as assessed by the Hospital Anxiety and Depression Scale, reaching a level of mild anxiety but acceptable without affecting sleep. Conclusion: What left a deep impression during the care process was the need for intensive care providers to consider the patient's psychological state, not just their physical condition, when the patient's situation changes. Family support and involvement often provide the greatest solace for the patient, emphasizing the importance of comfort and dignity. This includes oral care to maintain cleanliness and comfort, frequent repositioning to alleviate pressure and discomfort, and timely removal of invasive devices and unnecessary medications to avoid unnecessary suffering. The nursing process should also address the patient's psychological needs, offering comfort and support to ensure that they can face the end of life with peace and dignity.

Keywords: intensive care, lung cancer, aortic dissection, lower limb paralysis

Procedia PDF Downloads 11
854 Cfd Simulation for Urban Environment for Evaluation of a Wind Energy Potential of a Building or a New Urban Planning

Authors: David Serero, Loic Couton, Jean-Denis Parisse, Robert Leroy

Abstract:

This paper presents an analysis method of airflow at the periphery of several typologies of architectural volumes. To understand the complexity of the urban environment on the airflows in the city, we compared three sites at different architectural scale. The research sets a method to identify the optimal location for the installation of wind turbines on the edges of a building and to achieve an improvement in the performance of energy extracted by precise localization of an accelerating wing called “aero foil”. The objective is to define principles for the installation of wind turbines and natural ventilation design of buildings. Instead of theoretical winds analysis, we combined numerical aeraulic simulations using STAR CCM + software with wind data, over long periods of time (greater than 1 year). If airflows computer fluid analysis (CFD) simulation of buildings are current, we have calibrated a virtual wind tunnel with wind data using in situ anemometers (to establish localized cartography of urban winds). We can then develop a complete volumetric model of the behavior of the wind on a roof area, or an entire urban island. With this method, we can categorize: - the different types of wind in urban areas and identify the minimum and maximum wind spectrum, - select the type of harvesting devices - fixing to the roof of a building, - the altimetry of the device in relation to the levels of the roofs - The potential nuisances around. This study is carried out from the recovery of a geolocated data flow, and the connection of this information with the technical specifications of wind turbines, their energy performance and their speed of engagement. Thanks to this method, we can thus define the characteristics of wind turbines to maximize their performance in urban sites and in a turbulent airflow regime. We also study the installation of a wind accelerator associated with buildings. The “aerofoils which are integrated are improvement to control the speed of the air, to orientate it on the wind turbine, to accelerate it and to hide, thanks to its profile, the device on the roof of the building.

Keywords: wind energy harvesting, wind turbine selection, urban wind potential analysis, CFD simulation for architectural design

Procedia PDF Downloads 144
853 Bioproduction of L(+)-Lactic Acid and Purification by Ion Exchange Mechanism

Authors: Zelal Polat, Şebnem Harsa, Semra Ülkü

Abstract:

Lactic acid exists in nature optically in two forms, L(+), D(-)-lactic acid, and has been used in food, leather, textile, pharmaceutical and cosmetic industries. Moreover, L(+)-lactic acid constitutes the raw material for the production of poly-L-lactic acid which is used in biomedical applications. Microbially produced lactic acid was aimed to be recovered from the fermentation media efficiently and economically. Among the various downstream operations, ion exchange chromatography is highly selective and yields a low cost product recovery within a short period of time. In this project, Lactobacillus casei NRRL B-441 was used for the production of L(+)-lactic acid from whey by fermentation at pH 5.5 and 37°C that took 12 hours. The product concentration was 50 g/l with 100% L(+)-lactic acid content. Next, the suitable resin was selected due to its high sorption capacity with rapid equilibrium behavior. Dowex marathon WBA, weakly basic anion exchanger in OH form reached the equilibrium in 15 minutes. The batch adsorption experiments were done approximately at pH 7.0 and 30°C and sampling was continued for 20 hours. Furthermore, the effect of temperature and pH was investigated and their influence was found to be unimportant. All the adsorption/desorption experiments were applied to both model lactic acid and biomass free fermentation broth. The ion exchange equilibria of lactic acid and L(+)-lactic acid in fermentation broth on Dowex marathon WBA was explained by Langmuir isotherm. The maximum exchange capacity (qm) for model lactic acid was 0.25 g La/g wet resin and for fermentation broth 0.04 g La/g wet resin. The equilibrium loading and exchange efficiency of L(+)-lactic acid in fermentation broth were reduced as a result of competition by other ionic species. The competing ions inhibit the binding of L(+)-lactic acid to the free sites of ion exchanger. Moreover, column operations were applied to recover adsorbed lactic acid from the ion exchanger. 2.0 M HCl was the suitable eluting agent to recover the bound L(+)-lactic acid with a flowrate of 1 ml/min at ambient temperature. About 95% of bound L(+)-lactic acid was recovered from Dowex marathon WBA. The equilibrium was reached within 15 minutes. The aim of this project was to investigate the purification of L(+)-lactic acid with ion exchange method from fermentation broth. The additional goals were to investigate the end product purity, to obtain new data on the adsorption/desorption behaviours of lactic acid and applicability of the system in industrial usage.

Keywords: fermentation, ion exchange, lactic acid, purification, whey

Procedia PDF Downloads 500
852 Classroom Curriculum That Includes Wisdom Skills

Authors: Brian Fleischli, Shani Robins

Abstract:

In recent years, the implementation of wisdom skills, including emotional intelligence, mindfulness, empathy, compassion, gratitude, realism (Cognitive-Behavioral Therapy), and humility, within K-12 educational settings has demonstrated significant benefits in reducing stress, anxiety, anger, and conflict among students. This study summarizes the findings of research conducted over several years, showcasing the positive outcomes associated with teaching these skills to elementary and high school students. Additionally, this overview includes an updated synthesis of current literature concerning the application and effectiveness of training these skill sets in K-12 schools. The research outcomes highlight substantial improvements in student well-being and behavior. Demonstrated with treatment group students exhibiting notable reductions in anger, anxiety, depression, and disruptive behaviors compared to control groups. For instance, fourth-grade students showed enhanced empathy, responsibility, and attention, particularly benefiting those with lower initial scores on these measures. Specific interaction effects suggest that older students and males particularly benefit from these interventions, showcasing the nuanced impact of wisdom skill training across different demographics. Furthermore, this presentation emphasizes the critical role of Social and Emotional Learning (SEL) programs in addressing the multifaceted challenges faced by children and adolescents, including mental health issues, academic performance, and social behaviors. The integration of wisdom skills into school curricula not only fosters individual growth and emotional regulation but also enhances overall school climate and academic achievement. In conclusion, the findings contribute to the growing body of empirical evidence supporting the efficacy of teaching wisdom skills in educational settings. The success of these interventions underscores the potential for widespread implementation of evidence-based programs to promote emotional well-being and academic success among students nationwide.

Keywords: wisdom skills, CBT, cognitive behavioral training, mindfulness, empathy, anxiety

Procedia PDF Downloads 38
851 Enhanced Kinetic Solubility Profile of Epiisopiloturine Solid Solution in Hipromellose Phthalate

Authors: Amanda C. Q. M. Vieira, Cybelly M. Melo, Camila B. M. Figueirêdo, Giovanna C. R. M. Schver, Salvana P. M. Costa, Magaly A. M. de Lyra, Ping I. Lee, José L. Soares-Sobrinho, Pedro J. Rolim-Neto, Mônica F. R. Soares

Abstract:

Epiisopiloturine (EPI) is a drug candidate that is extracted from Pilocarpus microphyllus and isolated from the waste of Pilocarpine. EPI has demonstrated promising schistosomicidal, leishmanicide, anti-inflammatory and antinociceptive activities, according to in vitro studies that have been carried out since 2009. However, this molecule shows poor aqueous solubility, which represents a problem for the release of the drug candidate and its absorption by the organism. The purpose of the present study is to investigate the extent of enhancement of kinetic solubility of a solid solution (SS) of EPI in hipromellose phthalate HP-55 (HPMCP), an enteric polymer carrier. SS was obtained by the solvent evaporation methodology, using acetone/methanol (60:40) as solvent system. Both EPI and polymer (drug loading 10%) were dissolved in this solvent until a clear solution was obtained, and then dried in oven at 60ºC during 12 hours, followed by drying in a vacuum oven for 4 h. The results show a considerable modification in the crystalline structure of the drug candidate. For instance, X-ray diffraction (XRD) shows a crystalline behavior for the EPI, which becomes amorphous for the SS. Polarized light microscopy, a more sensitive technique than XRD, also shows completely absence of crystals in SS sample. Differential Scanning Calorimetric (DSC) curves show no signal of EPI melting point in SS curve, indicating, once more, no presence of crystal in this system. Interaction between the drug candidate and the polymer were found in Infrared microscopy, which shows a carbonyl 43.3 cm-1 band shift, indicating a moderate-strong interaction between them, probably one of the reasons to the SS formation. Under sink conditions (pH 6.8), EPI SS had its dissolution performance increased in 2.8 times when compared with the isolated drug candidate. EPI SS sample provided a release of more than 95% of the drug candidate in 15 min, whereas only 45% of EPI (alone) could be dissolved in 15 min and 70% in 90 min. Thus, HPMCP demonstrates to have a good potential to enhance the kinetic solubility profile of EPI. Future studies to evaluate the stability of SS are required to conclude the benefits of this system.

Keywords: epiisopiloturine, hipromellose phthalate HP-55, pharmaceuticaltechnology, solubility

Procedia PDF Downloads 605
850 Prevalence, Median Time, and Associated Factors with the Likelihood of Initial Antidepressant Change: A Cross-Sectional Study

Authors: Nervana Elbakary, Sami Ouanes, Sadaf Riaz, Oraib Abdallah, Islam Mahran, Noriya Al-Khuzaei, Yassin Eltorki

Abstract:

Major Depressive Disorder (MDD) requires therapeutic interventions during the initial month after being diagnosed for better disease outcomes. International guidelines recommend a duration of 4–12 weeks for an initial antidepressant (IAD) trial at an optimized dose to get a response. If depressive symptoms persist after this duration, guidelines recommend switching, augmenting, or combining strategies as the next step. Most patients with MDD in the mental health setting have been labeled incorrectly as treatment-resistant where in fact they have not been subjected to an adequate trial of guideline-recommended therapy. Premature discontinuation of IAD due to ineffectiveness can cause unfavorable consequences. Avoiding irrational practices such as subtherapeutic doses of IAD, premature switching between the ADs, and refraining from unjustified polypharmacy can help the disease to go into a remission phase We aimed to determine the prevalence and the patterns of strategies applied after an IAD was changed because of a suboptimal response as a primary outcome. Secondary outcomes included the median survival time on IAD before any change; and the predictors that were associated with IAD change. This was a retrospective cross- sectional study conducted in Mental Health Services in Qatar. A dataset between January 1, 2018, and December 31, 2019, was extracted from the electronic health records. Inclusion and exclusion criteria were defined and applied. The sample size was calculated to be at least 379 patients. Descriptive statistics were reported as frequencies and percentages, in addition, to mean and standard deviation. The median time of IAD to any change strategy was calculated using survival analysis. Associated predictors were examined using two unadjusted and adjusted cox regression models. A total of 487 patients met the inclusion criteria of the study. The average age for participants was 39.1 ± 12.3 years. Patients with first experience MDD episode 255 (52%) constituted a major part of our sample comparing to the relapse group 206(42%). About 431 (88%) of the patients had an occurrence of IAD change to any strategy before end of the study. Almost half of the sample (212 (49%); 95% CI [44–53%]) had their IAD changed less than or equal to 30 days. Switching was consistently more common than combination or augmentation at any timepoint. The median time to IAD change was 43 days with 95% CI [33.2–52.7]. Five independent variables (age, bothersome side effects, un-optimization of the dose before any change, comorbid anxiety, first onset episode) were significantly associated with the likelihood of IAD change in the unadjusted analysis. The factors statistically associated with higher hazard of IAD change in the adjusted analysis were: younger age, un-optimization of the IAD dose before any change, and comorbid anxiety. Because almost half of the patients in this study changed their IAD as early as within the first month, efforts to avoid treatment failure are needed to ensure patient-treatment targets are met. The findings of this study can have direct clinical guidance for health care professionals since an optimized, evidence-based use of AD medication can improve the clinical outcomes of patients with MDD; and also, to identify high-risk factors that could worsen the survival time on IAD such as young age and comorbid anxiety

Keywords: initial antidepressant, dose optimization, major depressive disorder, comorbid anxiety, combination, augmentation, switching, premature discontinuation

Procedia PDF Downloads 145
849 User-Controlled Color-Changing Textiles: From Prototype to Mass Production

Authors: Joshua Kaufman, Felix Tan, Morgan Monroe, Ayman Abouraddy

Abstract:

Textiles and clothing have been a staple of human existence for millennia, yet the basic structure and functionality of textile fibers and yarns has remained unchanged. While color and appearance are essential characteristics of a textile, an advancement in the fabrication of yarns that allows for user-controlled dynamic changes to the color or appearance of a garment has been lacking. Touch-activated and photosensitive pigments have been used in textiles, but these technologies are passive and cannot be controlled by the user. The technology described here allows the owner to control both when and in what pattern the fabric color-change takes place. In addition, the manufacturing process is compatible with mass-producing the user-controlled, color-changing yarns. The yarn fabrication utilizes a fiber spinning system that can produce either monofilament or multifilament yarns. For products requiring a more robust fabric (backpacks, purses, upholstery, etc.), larger-diameter monofilament yarns with a coarser weave are suitable. Such yarns are produced using a thread-coater attachment to encapsulate a 38-40 AWG metal wire inside a polymer sheath impregnated with thermochromic pigment. Conversely, products such as shirts and pants requiring yarns that are more flexible and soft against the skin comprise multifilament yarns of much smaller-diameter individual fibers. Embedding a metal wire in a multifilament fiber spinning process has not been realized to date. This research has required collaboration with Hills, Inc., to design a liquid metal-injection system to be combined with fiber spinning. The new system injects molten tin into each of 19 filaments being spun simultaneously into a single yarn. The resulting yarn contains 19 filaments, each with a tin core surrounded by a polymer sheath impregnated with thermochromic pigment. The color change we demonstrate is distinct from garments containing LEDs that emit light in various colors. The pigment itself changes its optical absorption spectrum to appear a different color. The thermochromic color-change is induced by a temperature change in the inner metal wire within each filament when current is applied from a small battery pack. The temperature necessary to induce the color change is near body temperature and not noticeable by touch. The prototypes already developed either use a simple push button to activate the battery pack or are wirelessly activated via a smart-phone app over Wi-Fi. The app allows the user to choose from different activation patterns of stripes that appear in the fabric continuously. The power requirements are mitigated by a large hysteresis in the activation temperature of the pigment and the temperature at which there is full color return. This was made possible by a collaboration with Chameleon International to develop a new, customized pigment. This technology enables a never-before seen capability: user-controlled, dynamic color and pattern change in large-area woven and sewn textiles and fabrics with wide-ranging applications from clothing and accessories to furniture and fixed-installation housing and business décor. The ability to activate through Wi-Fi opens up possibilities for the textiles to be part of the ‘Internet of Things.’ Furthermore, this technology is scalable to mass-production levels for wide-scale market adoption.

Keywords: activation, appearance, color, manufacturing

Procedia PDF Downloads 272
848 Intelligent Materials and Functional Aspects of Shape Memory Alloys

Authors: Osman Adiguzel

Abstract:

Shape-memory alloys are a new class of functional materials with a peculiar property known as shape memory effect. These alloys return to a previously defined shape on heating after deformation in low temperature product phase region and take place in a class of functional materials due to this property. The origin of this phenomenon lies in the fact that the material changes its internal crystalline structure with changing temperature. Shape memory effect is based on martensitic transitions, which govern the remarkable changes in internal crystalline structure of materials. Martensitic transformation, which is a solid state phase transformation, occurs in thermal manner in material on cooling from high temperature parent phase region. This transformation is governed by changes in the crystalline structure of the material. Shape memory alloys cycle between original and deformed shapes in bulk level on heating and cooling, and can be used as a thermal actuator or temperature-sensitive elements due to this property. Martensitic transformations usually occur with the cooperative movement of atoms by means of lattice invariant shears. The ordered parent phase structures turn into twinned structures with this movement in crystallographic manner in thermal induced case. The twinned martensites turn into the twinned or oriented martensite by stressing the material at low temperature martensitic phase condition. The detwinned martensite turns into the parent phase structure on first heating, first cycle, and parent phase structures turn into the twinned and detwinned structures respectively in irreversible and reversible memory cases. On the other hand, shape memory materials are very important and useful in many interdisciplinary fields such as medicine, pharmacy, bioengineering, metallurgy and many engineering fields. The choice of material as well as actuator and sensor to combine it with the host structure is very essential to develop main materials and structures. Copper based alloys exhibit this property in metastable beta-phase region, which has bcc-based structures at high temperature parent phase field, and these structures martensitically turn into layered complex structures with lattice twinning following two ordered reactions on cooling. Martensitic transition occurs as self-accommodated martensite with inhomogeneous shears, lattice invariant shears which occur in two opposite directions, <110 > -type directions on the {110}-type plane of austenite matrix which is basal plane of martensite. This kind of shear can be called as {110}<110> -type mode and gives rise to the formation of layered structures, like 3R, 9R or 18R depending on the stacking sequences on the close-packed planes of the ordered lattice. In the present contribution, x-ray diffraction and transmission electron microscopy (TEM) studies were carried out on two copper based alloys which have the chemical compositions in weight; Cu-26.1%Zn 4%Al and Cu-11%Al-6%Mn. X-ray diffraction profiles and electron diffraction patterns reveal that both alloys exhibit super lattice reflections inherited from parent phase due to the displacive character of martensitic transformation. X-ray diffractograms taken in a long time interval show that locations and intensities of diffraction peaks change with the aging time at room temperature. In particular, some of the successive peak pairs providing a special relation between Miller indices come close each other.

Keywords: Shape memory effect, martensite, twinning, detwinning, self-accommodation, layered structures

Procedia PDF Downloads 423