Search results for: continuous-discontinuous fiber reinforced plastics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2333

Search results for: continuous-discontinuous fiber reinforced plastics

1553 Analytical Model to Predict the Shear Capacity of Reinforced Concrete Beams Externally Strengthened with CFRP Composites Conditions

Authors: Rajai Al-Rousan

Abstract:

This paper presents a proposed analytical model for predicting the shear strength of reinforced concrete beams strengthened with CFRP composites as external reinforcement. The proposed analytical model can predict the shear contribution of CFRP composites of RC beams with an acceptable coefficient of correlation with the tested results. Based on the comparison of the proposed model with the published well-known models (ACI model, Triantafillou model, and Colotti model), the ACI model had a wider range of 0.16 to 10.08 for the ratio between tested and predicted ultimate shears at failure. Also, an acceptable range of 0.27 to 2.78 for the ratio between tested and predicted ultimate shears by the Triantafillou model. Finally, the best prediction (the ratio between the tested and predicted ones) of the ultimate shear capacity is observed by using Colotti model with a range of 0.20 to 1.78. Thus, the contribution of the CFRP composites as external reinforcement can be predicted with high accuracy by using the proposed analytical model.

Keywords: predicting, shear capacity, reinforced concrete, beams, strengthened, externally, CFRP composites

Procedia PDF Downloads 221
1552 Cyclic Response of Reinforced Concrete Beam-Column Joint Strengthening by FRP

Authors: N. Attari, S. Amziane, M. Chemrouk

Abstract:

A large number of old buildings have been identified as having potentially critical detailing to resist earthquakes. The main reinforcement of lap-spliced columns just above the joint region, discontinuous bottom beam reinforcement, and little or no joint transverse reinforcement are the most critical details of interior beam column joints in such buildings. This structural type constitutes a large share of the building stock, both in developed and developing countries, and hence it represents a substantial exposure. Direct observation of damaged structures, following the Algiers 2003 earthquake, has shown that damage occurs usually at the beam-column joints, with failure in bending or shear, depending on geometry and reinforcement distribution and type. While substantial literature exists for the design of concrete frame joints to withstand this type of failure, after the earthquake many structures were classified as slightly damaged and, being uneconomic to replace them, at least in the short term, suitable means of repairs of the beam column joint area are being studied. Furthermore; there exists a large number of buildings that need retrofitting of the joints before the next earthquake. The paper reports the results of the experimental programme, constituted of three beam-column reinforced concrete joints at a scale of one to three (1/3) tested under the effect of a pre-stressing axial load acting over the column. The beams were subjected at their ends to an alternate cyclic loading under displacement control to simulate a seismic action. Strain and cracking fields were monitored with the help a digital recording camera. Following the analysis of the results, a comparison can be made between the performances in terms of ductility, strength and mode of failure of the different strengthening solution considered.

Keywords: fibre reinforced polymers, joints, reinforced concrete, beam columns

Procedia PDF Downloads 404
1551 Percentages of Alumina Phase and Different Ph on The Ha- Al2o3 Nano Composite

Authors: S. Tayyebi, F. Mirjalili, H. Samadi, A. Nemati

Abstract:

In this study, hydroxyapatite-Alumina nano composite powder, containing 15,20 and 25% weight percent of reinforced alumina were prepared by chemical precipitation from the reaction between calcium nitrate tetrahydrate and di-ammonium hydrogen phosphate with ratio of Ca / p = 1.67 and different percentage of aluminum nitrate nona hydrate in different pH of 9,10 and 11. The microstructure and thermal stability of samples were measured by X-ray diffraction (XRD), infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The results showed that the presence of reinforced alumina phase reduced the degree of crystallinity of hydroxyapatite phase and increased its decomposition to tricalcium phosphate phase. Microstructural analysis showed that the hydroxyapatite-alumina nano composite powder was obtained with spherical shape and size of less than 100 nm.

Keywords: biomaterial, hydroxyapatite, alumina, nano composite, precipitation method

Procedia PDF Downloads 528
1550 Effect of Water Hyacinth on Behaviour of Reinforced Concrete Beams

Authors: Ahmed Shaban Abdel Hay Gabr

Abstract:

Water hyacinth (W-H) has an adverse effect on Nile river in Egypt, it absorbs high quantities of water, it needs to serve these quantities especially at this time, so by burning W-H, it can be used in concrete mix to reduce the permeability of concrete and increase both the compressive and splitting strength. The effect of W-H on non-structural concrete properties was studied, but there is a lack of studies about the behavior of structural concrete containing W-H. Therefore, in the present study, the behavior of 15 RC beams with 100 x 150 mm cross section, 1250 mm span, different reinforcement ratios and different W-H ratios were studied by testing the beams under two-point bending test. The test results showed that Water Hyacinth is compatible with RC which yields promising results.

Keywords: beams, reinforcement ratio, reinforced concrete, water hyacinth

Procedia PDF Downloads 438
1549 Microfluidized Fiber Based Oleogels for Encapsulation of Lycopene

Authors: Behic Mert

Abstract:

This study reports a facile approach to structure soft solids from microfluidizer lycopene-rich plant based structure and oil. First carotenoid-rich plant material (pumpkin was used in this study) processed with high-pressure microfluidizer to release lycopene molecules, then an emulsion was formed by mixing processed plant material and oil. While, in emulsion state lipid soluble carotenoid molecules were allowed to dissolve in the oil phase, the fiber material of plant material provided the network which was required for emulsion stabilization. Additional hydrocolloids (gelatin, xhantan, and pectin) up to 0.5% were also used to reinforce the emulsion stability and their impact on final product properties were evaluated via rheological, textural and oxidation studies. Finally, water was removed from emulsion phase by drying in a tray dryer at 40°C for 36 hours, and subsequent shearing resulted in soft solid (ole gel) structures. The microstructure of these systems was revealed by cryo-scanning electron microscopy. Effect of hydrocolloids on total lycopene and surface lycopene contents were also evaluated. The surface lycopene was lowest in gelatin containing oleo gels and highest in pectin-containing oleo gels. This study outlines the novel emulsion-based structuring method that can be used to encapsulate lycopene without the need of separate extraction of them.

Keywords: lycopene, encapsulation, fiber, oleo gel

Procedia PDF Downloads 253
1548 Performance of Reinforced Concrete Wall with Opening Using Analytical Model

Authors: Alaa Morsy, Youssef Ibrahim

Abstract:

Earthquake is one of the most catastrophic events, which makes enormous harm to properties and human lives. As a piece of a safe building configuration, reinforced concrete walls are given in structures to decrease horizontal displacements under seismic load. Shear walls are additionally used to oppose the horizontal loads that might be incited by the impact of wind. Reinforced concrete walls in residential buildings might have openings that are required for windows in outside walls or for doors in inside walls or different states of openings due to architectural purposes. The size, position, and area of openings may fluctuate from an engineering perspective. Shear walls can encounter harm around corners of entryways and windows because of advancement of stress concentration under the impact of vertical or horizontal loads. The openings cause a diminishing in shear wall capacity. It might have an unfavorable impact on the stiffness of reinforced concrete wall and on the seismic reaction of structures. Finite Element Method using software package ‘ANSYS ver. 12’ becomes an essential approach in analyzing civil engineering problems numerically. Now we can make various models with different parameters in short time by using ANSYS instead of doing it experimentally, which consumes a lot of time and money. Finite element modeling approach has been conducted to study the effect of opening shape, size and position in RC wall with different thicknesses under axial and lateral static loads. The proposed finite element approach has been verified with experimental programme conducted by the researchers and validated by their variables. A very good correlation has been observed between the model and experimental results including load capacity, failure mode, and lateral displacement. A parametric study is applied to investigate the effect of opening size, shape, position on different reinforced concrete wall thicknesses. The results may be useful for improving existing design models and to be applied in practice, as it satisfies both the architectural and the structural requirements.

Keywords: Ansys, concrete walls, openings, out of plane behavior, seismic, shear wall

Procedia PDF Downloads 155
1547 'Performance-Based' Seismic Methodology and Its Application in Seismic Design of Reinforced Concrete Structures

Authors: Jelena R. Pejović, Nina N. Serdar

Abstract:

This paper presents an analysis of the “Performance-Based” seismic design method, in order to overcome the perceived disadvantages and limitations of the existing seismic design approach based on force, in engineering practice. Bearing in mind, the specificity of the earthquake as a load and the fact that the seismic resistance of the structures solely depends on its behaviour in the nonlinear field, traditional seismic design approach based on force and linear analysis is not adequate. “Performance-Based” seismic design method is based on nonlinear analysis and can be used in everyday engineering practice. This paper presents the application of this method to eight-story high reinforced concrete building with combined structural system (reinforced concrete frame structural system in one direction and reinforced concrete ductile wall system in other direction). The nonlinear time-history analysis is performed on the spatial model of the structure using program Perform 3D, where the structure is exposed to forty real earthquake records. For considered building, large number of results were obtained. It was concluded that using this method we could, with a high degree of reliability, evaluate structural behavior under earthquake. It is obtained significant differences in the response of structures to various earthquake records. Also analysis showed that frame structural system had not performed well at the effect of earthquake records on soil like sand and gravel, while a ductile wall system had a satisfactory behavior on different types of soils.

Keywords: ductile wall, frame system, nonlinear time-history analysis, performance-based methodology, RC building

Procedia PDF Downloads 357
1546 The Influence of Winding Angle on Functional Failure of FRP Pipes

Authors: Roham Rafiee, Hadi Hesamsadat

Abstract:

In this study, a parametric finite element modeling is developed to analyze failure modes of FRP pipes subjected to internal pressure. First-ply failure pressure and functional failure pressure was determined by a progressive damage modeling and then it is validated using experimental observations. The influence of both winding angle and fiber volume fraction is studied on the functional failure of FRP pipes and it corresponding pressure. It is observed that despite the fact that increasing fiber volume fraction will enhance the mechanical properties, it will be resulted in lower values for functional failure pressure. This shortcoming can be compensated by modifying the winding angle in angle plies of pipe wall structure.

Keywords: composite pipe, functional failure, progressive modeling, winding angle

Procedia PDF Downloads 533
1545 Measurement of Temperature, Humidity and Strain Variation Using Bragg Sensor

Authors: Amira Zrelli, Tahar Ezzeddine

Abstract:

Measurement and monitoring of temperature, humidity and strain variation are very requested in great fields and areas such as structural health monitoring (SHM) systems. Currently, the use of fiber Bragg grating sensors (FBGS) is very recommended in SHM systems due to the specifications of these sensors. In this paper, we present the theory of Bragg sensor, therefore we try to measure the efficient variation of strain, temperature and humidity (SV, ST, SH) using Bragg sensor. Thus, we can deduce the fundamental relation between these parameters and the wavelength of Bragg sensor.

Keywords: Fiber Bragg Grating Sensors (FBGS), strain, temperature, humidity, structural health monitoring (SHM)

Procedia PDF Downloads 304
1544 Keratin Fiber Fabrication from Biowaste for Biomedical Application

Authors: Ashmita Mukherjee, Yogesh Harishchandra Kabutare, Suritra Bandyopadhyay, Paulomi Ghosh

Abstract:

Uncontrolled bleeding in the battlefield and the operation rooms can lead to serious injuries, trauma and even be lethal. Keratin was reported to be a haemostatic material which rapidly activates thrombin followed by activation of fibrinogen leading to the formation of insoluble fibrin. Also platelets, the main initiator of haemostasis are reported to adhere to keratin. However, the major limitation of pure keratin as a biomaterial is its poor physical property and corresponding low mechanical strength. To overcome this problem, keratin was cross-linked with alginate to increase its mechanical stability. In our study, Keratin extracted from feather waste showed yield of 80.5% and protein content of 8.05 ± 0.43 mg/mL (n=3). FTIR and CD spectroscopy confirmed the presence of the essential functional groups and preservation of the secondary structures of keratin. The keratin was then cross-linked with alginate to make a dope. The dope was used to draw fibers of desired diameters in a suitable coagulation bath using a customized wet spinning setup. The resultant morphology of keratin fibers was observed under a brightfield microscope. The FT-IR analysis implied that there was a presence of both keratin and alginate peaks in the fibers. The cross-linking was confirmed in the keratin alginate fibers by a shift of the amide A and amide B peaks towards the right and disappearance of the peak for N-H stretching (1534.68 cm-1). Blood was drawn in citrate vacutainers for whole blood clotting test and blood clotting kinetics, which showed that the keratin fibers could accelerate blood coagulation compared to that of alginate fibers and tissue culture plate. Additionally, cross-linked keratin-alginate fiber was found to have lower haemolytic potential compared to alginate fiber. Thus, keratin cross-linked fibers can have potential applications to combat unrestrained bleeding.

Keywords: biomaterial, biowaste, fiber, keratin

Procedia PDF Downloads 179
1543 Effects of Kenaf and Rice Husk on Water Absorption and Flexural Properties of Kenaf/CaCO3/HDPE and Rice Husk/CaCO3/HDPE Hybrid Composites

Authors: Noor Zuhaira Abd Aziz

Abstract:

Rice husk and kenaf filled with calcium carbonate (CaCO3) and high density polyethylene (HDPE) composite were prepared separately using twin-screw extruder at 50rpm. Different filler loading up to 30 parts of rice husk particulate and kenaf fiber were mixed with the fixed 30% amount of CaCO3 mineral filler to produce rice husk/CaCO3/HDPE and kenaf/CaCO3/HDPE hybrid composites. In this study, the effects of natural fiber for both rice husk and kenaf in CaCO3/HDPE composite on physical and mechanical properties were investigated. The property analyses showed that water absorption increased with the presence of kenaf and rice husk fillers. Natural fibers in composite significantly influence water absorption properties due to natural characters of fibers which contain cellulose, hemicellulose and lignin structures. The result showed that 10% of additional natural fibers into hybrid composite had caused decreased flexural strength, however additional of high natural fiber (>10%) filler loading has proved to increase its flexural strength.

Keywords: Hybrid composites, Water absorption, Mechanical properties

Procedia PDF Downloads 456
1542 ED Machining of Particulate Reinforced Metal Matrix Composites

Authors: Sarabjeet Singh Sidhu, Ajay Batish, Sanjeev Kumar

Abstract:

This paper reports the optimal process conditions for machining of three different types of metal matrix composites (MMCs): 65vol%SiC/A356.2; 10vol%SiC-5vol%quartz/Al and 30vol%SiC/A359 using PMEDM process. Metal removal rate (MRR), tool wear rate (TWR), surface roughness (SR) and surface integrity (SI) were evaluated after each trial and contributing process parameters were identified. The four responses were then collectively optimized using the technique for order preference by similarity to ideal solution (TOPSIS) and optimal process conditions were identified for each type of MMCS. The density of reinforced particles shields the matrix material from spark energy hence the high MRR and SR was observed with lowest reinforced particle. TWR was highest with Cu-Gr electrode due to disintegration of the weakly bonded particles in the composite electrode. Each workpiece was examined for surface integrity and ranked as per severity of surface defects observed and their rankings were used for arriving at the most optimal process settings for each workpiece.

Keywords: metal matrix composites (MMCS), metal removal rate (MRR), surface roughness (SR), surface integrity (SI), tool wear rate (TWR), technique for order preference by similarity to ideal solution (TOPSIS)

Procedia PDF Downloads 281
1541 Mechanical Behavior of Corroded RC Beams Strengthened by NSM CFRP Rods

Authors: Belal Almassri, Amjad Kreit, Firas Al Mahmoud, Raoul François

Abstract:

Corrosion of steel in reinforced concrete leads to several major defects. Firstly, a reduction in the crosssectional area of the reinforcement and in its ductility results in premature bar failure. Secondly, the expansion of the corrosion products causes concrete cracking and steel–concrete bond deterioration and also affects the bending stiffness of the reinforced concrete members, causing a reduction in the overall load-bearing capacity of the reinforced concrete beams. This paper investigates the validity of a repair technique using Near Surface Mounted (NSM) carbon-fibre-reinforced polymer (CFRP) rods to restore the mechanical performance of corrosion-damaged RC beams. In the NSM technique, the CFRP rods are placed inside pre-cut grooves and are bonded to the concrete with epoxy adhesive. Experimental results were obtained on two beams: a corroded beam that had been exposed to natural corrosion for 25 years and a control beam, (both are 3 m long) repaired in bending only. Each beam was repaired with one 6-mm-diameter NSM CFRP rod. The beams were tested in a three-point bending test up to failure. Overall stiffness and crack maps were studied before and after the repair. Ultimate capacity, ductility and failure mode were also reviewed. Finally some comparisons were made between repaired and non-repaired beams in order to assess the effectiveness of the NSM technique. The experimental results showed that the NSM technique improved the overall characteristics (ultimate load capacity and stiffness) of the control and corroded beams and allowed sufficient ductility to be restored to the repaired corroded elements, thus restoring the safety margin, despite the non-classical mode of failure that occurred in the corroded beam, with the separation of the concrete cover due to corrosion products.

Keywords: carbon fibre, corrosion, strength, mechanical testing

Procedia PDF Downloads 442
1540 Investigation of Physical Properties of Asphalt Binder Modified by Recycled Polyethylene and Ground Tire Rubber

Authors: Sajjad H. Kasanagh, Perviz Ahmedzade, Alexander Fainleib, Taylan Gunay

Abstract:

Modification of asphalt is a fundamental method around the world mainly on the purpose of providing more durable pavements which lead to diminish repairing cost during the lifetime of highways. Various polymers such as styrene-butadiene-styrene (SBS) and ethylene vinyl acetate (EVA) make up the greater parts of the all-over asphalt modifiers generally providing better physical properties of asphalt by decreasing temperature dependency which eventually diminishes permanent deformation on highways such as rutting. However, some waste and low-cost materials such as recycled plastics and ground rubber tire have been attempted to utilize in asphalt as modifier instead of manufactured polymer modifiers due to decreasing the eventual highway cost. On the other hand, the usage of recycled plastics has become a worldwide requirement and awareness in order to decrease the pollution made by waste plastics. Hence, finding an area in which recycling plastics could be utilized has been targeted by many research teams so as to reduce polymer manufacturing and plastic pollution. To this end, in this paper, thermoplastic dynamic vulcanizate (TDV) obtained from recycled post-consumer polyethylene and ground tire rubber (GTR) were used to provide an efficient modifier for asphalt which decreases the production cost as well and finally might provide an ecological solution by decreasing polymer disposal problems. TDV was synthesized by the chemists in the research group by means of the abovementioned components that are considered as compatible physical characteristic of asphalt materials. TDV modified asphalt samples having different rate of proportions of 3, 4, 5, 6, 7 wt.% TDV modifier were prepared. Conventional tests, such as penetration, softening point and roll thin film oven (RTFO) tests were performed to obtain fundamental physical and aging properties of the base and modified binders. The high temperature performance grade (PG) of binders was determined by Superpave tests conducted on original and aged binders. The multiple stress creep and recovery (MSCR) test which is relatively up-to-date method for classifying asphalts taking account of their elasticity abilities was carried out to evaluate PG plus grades of binders. The results obtained from performance grading, and MSCR tests were also evaluated together so as to make a comparison between the methods both aiming to determine rheological parameters of asphalt. The test results revealed that TDV modification leads to a decrease in penetration, an increase in softening point, which proves an increasing stiffness of asphalt. DSR results indicate an improvement in PG for modified binders compared to base asphalt. On the other hand, MSCR results that are compatible with DSR results also indicate an enhancement on rheological properties of asphalt. However, according to the results, the improvement is not as distinct as observed in DSR results since elastic properties are fundamental in MSCR. At the end of the testing program, it can be concluded that TDV can be used as modifier which provides better rheological properties for asphalt and might diminish plastic waste pollution since the material is 100% recycled.

Keywords: asphalt, ground tire rubber, recycled polymer, thermoplastic dynamic vulcanizate

Procedia PDF Downloads 211
1539 The Impact of Electrospinning Parameters on Surface Morphology and Chemistry of PHBV Fibers

Authors: Lukasz Kaniuk, Mateusz M. Marzec, Andrzej Bernasik, Urszula Stachewicz

Abstract:

Electrospinning is one of the commonly used methods to produce micro- or nano-fibers. The properties of electrospun fibers allow them to be used to produce tissue scaffolds, biodegradable bandages, or purification membranes. The morphology of the obtained fibers depends on the composition of the polymer solution as well as the processing parameters. Interesting properties such as high fiber porosity can be achieved by changing humidity during electrospinning. Moreover, by changing voltage polarity in electrospinning, we are able to alternate functional groups at the surface of fibers. In this study, electrospun fibers were made of natural, thermoplastic polyester – PHBV (poly(3-hydroxybutyric acid-co-3-hydrovaleric acid). The fibrous mats were obtained using both positive and negative voltage polarities, and their surface was characterized using X-ray photoelectron spectroscopy (XPS, Ulvac-Phi, Chigasaki, Japan). Furthermore, the effect of the humidity on surface morphology was investigated using scanning electron microscopy (SEM, Merlin Gemini II, Zeiss, Germany). Electrospun PHBV fibers produced with positive and negative voltage polarity had similar morphology and the average fiber diameter, 2.47 ± 0.21 µm and 2.44 ± 0.15 µm, respectively. The change of the voltage polarity had a significant impact on the reorientation of the carbonyl groups what consequently changed the surface potential of the electrospun PHBV fibers. The increase of humidity during electrospinning causes porosity in the surface structure of the fibers. In conclusion, we showed within our studies that the process parameters such as humidity and voltage polarity have a great influence on fiber morphology and chemistry, changing their functionality. Surface properties of polymer fiber have a significant impact on cell integration and attachment, which is very important in tissue engineering. The possibility of changing surface porosity allows the use of fibers in various tissue engineering and drug delivery systems. Acknowledgment: This study was conducted within 'Nanofiber-based sponges for atopic skin treatment' project., carried out within the First TEAM programme of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund, project no POIR.04.04.00-00- 4571/18-00.

Keywords: cells integration, electrospun fiber, PHBV, surface characterization

Procedia PDF Downloads 111
1538 Numerical Analysis of Shear Crack Propagation in a Concrete Beam without Transverse Reinforcement

Authors: G. A. Rombach, A. Faron

Abstract:

Crack formation and growth in reinforced concrete members are, in many cases, the cause of the collapse of technical structures. Such serious failures impair structural behavior and can also damage property and persons. An intensive investigation of the crack propagation is indispensable. Numerical methods are being developed to analyze crack growth in an element and to detect fracture failure at an early stage. For reinforced concrete components, however, further research and action are required in the analysis of shear cracks. This paper presents numerical simulations and continuum mechanical modeling of bending shear crack propagation in a three-dimensional reinforced concrete beam without transverse reinforcement. The analysis will provide a further understanding of crack growth and redistribution of inner forces in concrete members. As a numerical method to map discrete cracks, the extended finite element method (XFEM) is applied. The crack propagation is compared with the smeared crack approach using concrete damage plasticity. For validation, the crack patterns of real experiments are compared with the results of the different finite element models. The evaluation is based on single span beams under bending. With the analysis, it is possible to predict the fracture behavior of concrete members.

Keywords: concrete damage plasticity, crack propagation, extended finite element method, fracture mechanics

Procedia PDF Downloads 114
1537 Study on Comparison Between Acoustic Emission Behavior and Strain on Concrete Surface During Rebar Corrosion in Reinforced Concrete

Authors: Ejazulhaq Rahimi

Abstract:

The development of techniques evaluating deterioration on concrete structures is vital for structural health monitoring (SHM). One of the main reasons for reinforced concrete structure's deterioration is the corroding of embedded rebars. It is a natural process that begins when the rebar starts to rust. It occurs when the protective layer on the rebar is destroyed. The rebar in concrete is usually protected against corrosion by the high pH of the surrounding cement paste. However, there are chemicals that can destroy the protective layer, making it susceptible to corrosion. It is very destructive for the lifespan and durability of the concrete structure. Corrosion products which are 3 to 6 times voluminous than the rebar stress its surrounding concrete and lead to fracture as cracks even peeling off the cover concrete over the rebar. As is clear that concrete shows limit elastic behavior in its stress strain property, so corrosion product stresses can be detected as strains from the concrete surface. It means that surface strains have a relation with the situation and amount of corrosion products and related concrete fractures inside reinforced concrete. In this paper, a comparative study of surface strains due to corrosion products detected by strain gauges and acoustic emission (AE) testing under periodic accelerated corrosion in the salty environment with 3% NaCl is reported. From the results, three different stages of strains were clearly observed based on the type and rate of strains in each corrosion situation and related fracture types. AE parameters which mostly are related to fracture and their shapes, describe the same phases. It is confirmed that there is a great agreement to the result of each other and describes three phases as generation and expansion of corrosion products and initiation and propagation of corrosion-induced cracks, and surface cracks. In addition, the strain on the concrete surface was rapidly increased before the cracks arrived at the surface of the concrete.

Keywords: acoustic emission, monitoring, rebar corrosion, reinforced concrete, strain

Procedia PDF Downloads 173
1536 Study of Hydrothermal Behavior of Thermal Insulating Materials Based on Natural Fibers

Authors: J. Zach, J. Hroudova, J. Brozovsky

Abstract:

Thermal insulation materials based on natural fibers represent a very promising area of materials based on natural easy renewable row sources. These materials may be in terms of the properties of most competing synthetic insulations, but show somewhat higher moisture sensitivity and thermal insulation properties are strongly influenced by the density and orientation of fibers. The paper described the problem of hygrothermal behavior of thermal insulation materials based on natural plant and animal fibers. This is especially the dependence of the thermal properties of these materials on the type of fiber, bulk density, temperature, moisture and the fiber orientation.

Keywords: thermal insulating materials, hemp fibers, sheep wool fibers, thermal conductivity, moisture

Procedia PDF Downloads 377
1535 Forced Vibration of a Fiber Metal Laminated Beam Containing a Delamination

Authors: Sh. Mirhosseini, Y. Haghighatfar, M. Sedighi

Abstract:

Forced vibration problem of a delaminated beam made of fiber metal laminates is studied in this paper. Firstly, a delamination is considered to divide the beam into four sections. The classic beam theory is assumed to dominate each section. The layers on two sides of the delamination are constrained to have the same deflection. This hypothesis approves the conditions of compatibility as well. Consequently, dynamic response of the beam is obtained by the means of differential transform method (DTM). In order to verify the correctness of the results, a model is constructed using commercial software ABAQUS 6.14. A linear spring with constant stiffness takes the effect of contact between delaminated layers into account. The attained semi-analytical outcomes are in great agreement with finite element analysis.

Keywords: delamination, forced vibration, finite element modelling, natural frequency

Procedia PDF Downloads 287
1534 Oil Palm Leaf and Corn Stalk, Mechanical Properties and Surface Characterization

Authors: Zawawi Daud

Abstract:

Agro waste can be defined as waste from agricultural plant. Oil palm leaf and corn stalk can be categorized as ago waste material. At first, the comparison between oil palm leaf and corn stalk by mechanical properties from soda pulping process. After that, focusing on surface characterization by Scanning Electron Microscopy (SEM). Both material have a potential due to mechanical properties (tensile, tear, burst and fold) and surface characterization but corn stalk shows more in strength and compactness due to fiber characterization compared to oil palm leaf. This study promoting the green technology in develop a friendly product and suitable to be used as an alternative pulp in paper making industry.

Keywords: fiber, oil palm leaf, corn stalk, green technology

Procedia PDF Downloads 475
1533 Investigation of the Ductility Improvement of Replaceable Hinge Member on Different Types of Precast Concrete Frames

Authors: Ali Berk Bozan, Reşat Atalay Oyguç

Abstract:

The demand for precast reinforced concrete (RC) structures is growing, considering their certain benefits, including faster assembly, homogeneous materials, and high-quality labor. The structural integrity of precast reinforced concrete (RC) constructions is influenced by the effectiveness of the joints and connections. This paper contains an analytical study about four types of precast reinforced concrete frames, which vary according to the number of storeys and the number of bays with two different types of moment-resisting beam-to-column connection is investigated under cyclic displacement loading up to 5.6% drift rate by using ABAQUS software. The first connection type is the widely used moment-resisting connection that is defined as a wet connection in the Turkish Seismic Code (TBDY). The second connection type is known as Artificial Controllable Plastic Hinge. The goal of this connection is to defend reinforced concrete components from earthquake-related plastic deformations by keeping them in a specialized connecting section. It will be possible to repair the broken connections after the earthquake. The cyclic behavior of the four types of frames with the mechanical plastic hinge and wet connection was analytically investigated, and then comparisons and suggestions were made on period, ductility, and structural system behavior coefficient. The analytical study shows that the replaceable plastic hinge element provides a significant period increase. Especially in the case of two storeys and two bays, the change in the period was felt the most compared to other frames. The results for ductility show a significant change in the ductility of the frames with replaceable plastic hinges. For the structural system behavior coefficient, a recommendation between 3.90 and 4.52 values was made.

Keywords: precast structures, replaceable plastic hinge, beam to column connections, ductility

Procedia PDF Downloads 19
1532 Microwave Heating and Catalytic Activity of Iron/Carbon Materials for H₂ Production from the Decomposition of Plastic Wastes

Authors: Peng Zhang, Cai Liang

Abstract:

The non-biodegradable plastic wastes have posed severe environmental and ecological contaminations. Numerous technologies, such as pyrolysis, incineration, and landfilling, have already been employed for the treatment of plastic waste. Compared with conventional methods, microwave has displayed unique advantages in the rapid production of hydrogen from plastic wastes. Understanding the interaction between microwave radiation and materials would promote the optimization of several parameters for the microwave reaction system. In this work, various carbon materials have been investigated to reveal microwave heating performance and the ensuing catalytic activity. Results showed that the diversity in the heating characteristic was mainly due to the dielectric properties and the individual microstructures. Furthermore, the gaps and steps among the surface of carbon materials would lead to the distortion of the electromagnetic field, which correspondingly induced plasma discharging. The intensity and location of local plasma were also studied. For high-yield H₂ production, iron nanoparticles were selected as the active sites, and a series of iron/carbon bifunctional catalysts were synthesized. Apart from the high catalytic activity, the iron particles in nano-size close to the microwave skin depth would transfer microwave irradiation to the heat, intensifying the decomposition of plastics. Under microwave radiation, iron is supported on activated carbon material with 10wt.% loading exhibited the best catalytic activity for H₂ production. Specifically, the plastics were rapidly heated up and subsequently converted into H₂ with a hydrogen efficiency of 85%. This work demonstrated a deep understanding of microwave reaction systems and provided the optimization for plastic treatment.

Keywords: plastic waste, recycling, hydrogen, microwave

Procedia PDF Downloads 57
1531 Identification and Classification of Fiber-Fortified Semolina by Near-Infrared Spectroscopy (NIR)

Authors: Amanda T. Badaró, Douglas F. Barbin, Sofia T. Garcia, Maria Teresa P. S. Clerici, Amanda R. Ferreira

Abstract:

Food fortification is the intentional addition of a nutrient in a food matrix and has been widely used to overcome the lack of nutrients in the diet or increasing the nutritional value of food. Fortified food must meet the demand of the population, taking into account their habits and risks that these foods may cause. Wheat and its by-products, such as semolina, has been strongly indicated to be used as a food vehicle since it is widely consumed and used in the production of other foods. These products have been strategically used to add some nutrients, such as fibers. Methods of analysis and quantification of these kinds of components are destructive and require lengthy sample preparation and analysis. Therefore, the industry has searched for faster and less invasive methods, such as Near-Infrared Spectroscopy (NIR). NIR is a rapid and cost-effective method, however, it is based on indirect measurements, yielding high amount of data. Therefore, NIR spectroscopy requires calibration with mathematical and statistical tools (Chemometrics) to extract analytical information from the corresponding spectra, as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). PCA is well suited for NIR, once it can handle many spectra at a time and be used for non-supervised classification. Advantages of the PCA, which is also a data reduction technique, is that it reduces the data spectra to a smaller number of latent variables for further interpretation. On the other hand, LDA is a supervised method that searches the Canonical Variables (CV) with the maximum separation among different categories. In LDA, the first CV is the direction of maximum ratio between inter and intra-class variances. The present work used a portable infrared spectrometer (NIR) for identification and classification of pure and fiber-fortified semolina samples. The fiber was added to semolina in two different concentrations, and after the spectra acquisition, the data was used for PCA and LDA to identify and discriminate the samples. The results showed that NIR spectroscopy associate to PCA was very effective in identifying pure and fiber-fortified semolina. Additionally, the classification range of the samples using LDA was between 78.3% and 95% for calibration and 75% and 95% for cross-validation. Thus, after the multivariate analysis such as PCA and LDA, it was possible to verify that NIR associated to chemometric methods is able to identify and classify the different samples in a fast and non-destructive way.

Keywords: Chemometrics, fiber, linear discriminant analysis, near-infrared spectroscopy, principal component analysis, semolina

Procedia PDF Downloads 199
1530 Development of Hybrid Materials Combining Biomass as Fique Fibers with Metal-Organic Frameworks, and Their Potential as Mercury Adsorbents

Authors: Karen G. Bastidas Gomez, Hugo R. Zea Ramirez, Manuel F. Ribeiro Pereira, Cesar A. Sierra Avila, Juan A. Clavijo Morales

Abstract:

The contamination of water sources with heavy metals such as mercury has been an environmental problem; it has generated a high impact on the environment and human health. In countries such as Colombia, mercury contamination due to mining has reached levels much higher than the world average. This work proposes the use of fique fibers as adsorbent in mercury removal. The evaluation of the material was carried out under five different conditions (raw, pretreated by organosolv, functionalized by TEMPO oxidation, fiber functionalized plus MOF-199 and fiber functionalized plus MOF-199-SH). All the materials were characterized using FTIR, SEM, EDX, XRD, and TGA. Regarding the mercury removal, it was done under room pressure and temperature, also pH = 7 for all materials presentations, followed by Atomic Absorption Spectroscopy. The high cellulose content in fique is the main particularity of this lignocellulosic biomass since the degree of oxidation depends on the number of hydroxyl groups on the surface capable of oxidizing into carboxylic acids, a functional group capable of increasing ion exchange with mercury in solution. It was also expected that the impregnation of the MOF would increase the mercury removal; however, it was found that the functionalized fique achieved a greater percentage of removal, resulting in 81.33% of removal, 44% for the fique with the MOF-199 and 72% for the MOF-199-SH with. The pretreated fiber and raw also showed 74% and 56%, respectively, which indicates that fique does not require considerable modifications in its structure to achieve good performances. Even so, the functionalized fiber increases the percentage of removal considerably compared to the pretreated fique, which suggests that the functionalization process is a feasible procedure to apply with the purpose of improving the removal percentage. In addition, this is a procedure that follows a green approach since the reagents involved have low environmental impact, and the contribution to the remediation of natural resources is high.

Keywords: biomass, nanotechnology, science materials, wastewater treatment

Procedia PDF Downloads 108
1529 Fuzzy Sliding Mode Control of a Flexible Structure for Vibration Suppression Using MFC Actuator

Authors: Jinsiang Shaw, Shih-Chieh Tseng

Abstract:

Active vibration control is good for low frequency excitation, with advantages of light weight and adaptability. This paper use a macro-fiber composite (MFC) actuator for vibration suppression in a cantilevered beam due to its higher output force to suppress the disturbance. A fuzzy sliding mode controller is developed and applied to this system. Experimental results illustrate that the controller and MFC actuator are very effective in attenuating the structural vibration near the first resonant freuqency. Furthermore, this controller is shown to outperform the traditional skyhook controller, with nearly 90% of the vibration suppressed at the first resonant frequency of the structure.

Keywords: Fuzzy sliding mode controller, macro-fiber-composite actuator, skyhook controller, vibration suppression

Procedia PDF Downloads 387
1528 Study of Structure and Properties of Polyester/Carbon Blends for Technical Applications

Authors: Manisha A. Hira, Arup Rakshit

Abstract:

Textile substrates are endowed with flexibility and ease of making–up, but are non-conductors of electricity. Conductive materials like carbon can be incorporated into textile structures to make flexible conductive materials. Such conductive textiles find applications as electrostatic discharge materials, electromagnetic shielding materials and flexible materials to carry current or signals. This work focuses on use of carbon fiber as conductor of electricity. Carbon fibers in staple or tow form can be incorporated in textile yarn structure to conduct electricity. The paper highlights the process for development of these conductive yarns of polyester/carbon using Friction spinning (DREF) as well as ring spinning. The optimized process parameters for processing hybrid structure of polyester with carbon tow on DREF spinning and polyester with carbon staple fiber using ring spinning have been presented. The studies have been linked to highlight the electrical conductivity of the developed yarns. Further, the developed yarns have been incorporated as weft in fabric and their electrical conductivity has been evaluated. The paper demonstrates the structure and properties of fabrics developed from such polyester/carbon blend yarns and their suitability as electrically dissipative fabrics.

Keywords: carbon fiber, conductive textiles, electrostatic dissipative materials, hybrid yarns

Procedia PDF Downloads 288
1527 Regenerated Cellulose Prepared by Using NaOH/Urea

Authors: Lee Chiau Yeng, Norhayani Othman

Abstract:

Regenerated cellulose fiber is fabricated in the NaOH/urea aqueous solution. In this work, cellulose is dissolved in 7 .wt% NaOH/12 .wt% urea in the temperature of -12 °C to prepare regenerated cellulose. Thermal and structure properties of cellulose and regenerated cellulose was compared and investigated by Field Emission Scanning Electron Microscopy (FeSEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Thermogravimetric analysis (TGA), and Differential Scanning Calorimetry. Results of FeSEM revealed that the regenerated cellulose fibers showed a more circular shape with irregular size due to fiber agglomeration. FTIR showed the difference in between the structure of cellulose and the regenerated cellulose fibers. In this case, regenerated cellulose fibers have a cellulose II crystalline structure with lower degree of crystallinity. Regenerated cellulose exhibited better thermal stability than the cellulose.

Keywords: regenerated cellulose, cellulose, NaOH, urea

Procedia PDF Downloads 415
1526 Fiber Braggs Grating Sensor Based Instrumentation to Evaluate Postural Balance and Stability on an Unstable Platform

Authors: K. Chethana, A. S. Guru Prasad, H. N. Vikranth, H. Varun, S. N. Omkar, S. Asokan

Abstract:

This paper describes a novel application of Fiber Braggs Grating (FBG) sensors on an unstable platform to assess human postural stability and balance. The FBG sensor based Stability Analyzing Device (FBGSAD) developed demonstrates the applicability of FBG sensors in the measurement of plantar strain to assess the postural stability of subjects on unstable platforms during different stances in eyes open and eyes closed conditions on a rocker board. Comparing the Centre of Gravity (CG) variations measured on the lumbar vertebra of subjects using a commercial accelerometer along with FBGSAD validates the study. The results obtained depict qualitative similarities between the data recorded by both FBGSAD and accelerometer, illustrating the reliability and consistency of FBG sensors in biomechanical applications for both young and geriatric population. The developed FBGSAD simultaneously measures plantar strain distribution and postural stability and can serve as a tool/yardstick to mitigate space motion sickness, identify individuals who are susceptible to falls and to qualify subjects for balance and stability, which are important factors in the selection of certain unique professionals such as aircraft pilots, astronauts, cosmonauts etc.

Keywords: biomechanics, fiber bragg gratings, plantar strain measurement, postural stability analysis

Procedia PDF Downloads 567
1525 Effect of the Truss System to the Flexural Behavior of the External Reinforced Concrete Beams

Authors: Rudy Djamaluddin, Yasser Bachtiar, Rita Irmawati, Abd. Madjid Akkas, Rusdi Usman Latief

Abstract:

The aesthetic qualities and the versatility of reinforced concrete have made it a popular choice for many architects and structural engineers. Therefore, the exploration of natural materials such as gravels and sands as well as lime-stone for cement production is increasing to produce a concrete material. The exploration must affect to the environment. Therefore, the using of the concrete materials should be as efficient as possible. According to its natural behavior of the concrete material, it is strong in compression and weak in tension. Therefore the contribution of the tensile stresses of the concrete to the flexural capacity of the beams is neglected. However, removing of concrete on tension zone affects to the decreasing of flexural capacity. Introduce the strut action of truss structures may an alternative to solve the decreasing of flexural capacity. A series of specimens were prepared to clarify the effect of the truss structures in the concrete beams without concrete on the tension zone. Results indicated that the truss system is necessary for the external reinforced concrete beams. The truss system of concrete beam without concrete on tension zone (BR) could develop almost same capacity to the normal beam (BN). It can be observed also that specimens BR has lower number of cracks than specimen BN. This may be caused by the fact that there was no bonding effect on the tensile reinforcement on specimen BR to distribute the cracks.

Keywords: external reinforcement, truss, concrete beams, flexural behavior

Procedia PDF Downloads 427
1524 Vibration Control of a Flexible Structure Using MFC Actuator

Authors: Jinsiang Shaw, Jeng-Jie Huang

Abstract:

Active vibration control is good for low frequency excitation, with advantages of light weight and adaptability. This paper employs a macro-fiber composite (MFC) actuator for vibration suppression in a cantilevered beam due to its higher output force to reject the disturbance. A notch filter with an adaptive tuning algorithm, the leaky filtered-X least mean square algorithm (leaky FXLMS algorithm), is developed and applied to the system. Experimental results show that the controller and MFC actuator was very effective in attenuating the structural vibration. Furthermore, this notch filter controller was compared with the traditional skyhook controller. It was found that its performance was better, with over 88% vibration suppression near the first resonant frequency of the structure.

Keywords: macro-fiber composite, notch filter, skyhook controller, vibration suppression

Procedia PDF Downloads 449