Search results for: virus removal
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2282

Search results for: virus removal

1532 Adsorptive Desulfurization of Using Cu(I) – Y Zeolite via π-Complexation

Authors: Moshe Mello, Hilary Rutto, Tumisang Seodigeng, Itumeleng Kohitlhetse

Abstract:

The accelerating requirement to reach 0% sulfur content in liquid fuels demand researchers to seek efficient alternative technologies to challenge the predicament. In this current study, the adsorption capabilities of modified Cu(I)-Y zeolite were tested for the removal of organosulfur compounds (OSC) present in tire pyrolytic oil (TPO). The π-complexation-based adsorbent was obtained by ion exchanging Y-zeolite with Cu+ cation using liquid phase ion exchange (LPIE). Preparation of the adsorbent involved firstly ion exchange between Na-Y zeolite with a Cu(NO₃)₂ aqueous solution of 0.5M for 48 hours followed by reduction of Cu²⁺ to Cu+. Fixed-bed breakthrough studies for TPO in comparison with model diesel comprising of sulfur compounds such as thiophene, benzothiophenes (BT), and dibenzothiophenes (DBT) showed that modified Cu(I)-Y zeolite is an effective adsorbent for removal of OSC in liquid fuels. The effect of operating conditions such as adsorbent dosage and reaction time were studied to optimize the adsorptive desulfurization process. For model diesel fuel, the selectivity for adsorption of sulfur compounds followed the order DBT> BT> Thiophene. The Cu(I)-Y zeolite is fully regeneratable and this is achieved by a simple procedure of blowing the adsorbent with air at 350 °C, followed by reactivation at 450 °C in a rich helium surrounding.

Keywords: adsorption, desulfurization, TPO, zeolite

Procedia PDF Downloads 115
1531 Performance Evaluation and Dear Based Optimization on Machining Leather Specimens to Reduce Carbonization

Authors: Khaja Moiduddin, Tamer Khalaf, Muthuramalingam Thangaraj

Abstract:

Due to the variety of benefits over traditional cutting techniques, the usage of laser cutting technology has risen substantially in recent years. Hot wire machining can cut the leather in the required shape by controlling the wire by generating thermal energy. In the present study, an attempt has been made to investigate the effects of performance measures in the hot wire machining process on cutting leather specimens. Carbonization and material removal rates were considered as quality indicators. Burning leather during machining might cause carbon particles, reducing product quality. Minimizing the effect of carbon particles is crucial for assuring operator and environmental safety, health, and product quality. Hot wire machining can efficiently cut the specimens by controlling the current through it. Taguchi- DEAR-based optimization was also performed in the process, which resulted in a required Carbonization and material removal rate. Using the DEAR approach, the optimal parameters of the present study were found with 3.7% prediction error accuracy.

Keywords: cabronization, leather, MRR, current

Procedia PDF Downloads 64
1530 Modeling and Optimizing of Sinker Electric Discharge Machine Process Parameters on AISI 4140 Alloy Steel by Central Composite Rotatable Design Method

Authors: J. Satya Eswari, J. Sekhar Babub, Meena Murmu, Govardhan Bhat

Abstract:

Electrical Discharge Machining (EDM) is an unconventional manufacturing process based on removal of material from a part by means of a series of repeated electrical sparks created by electric pulse generators at short intervals between a electrode tool and the part to be machined emmersed in dielectric fluid. In this paper, a study will be performed on the influence of the factors of peak current, pulse on time, interval time and power supply voltage. The output responses measured were material removal rate (MRR) and surface roughness. Finally, the parameters were optimized for maximum MRR with the desired surface roughness. RSM involves establishing mathematical relations between the design variables and the resulting responses and optimizing the process conditions. RSM is not free from problems when it is applied to multi-factor and multi-response situations. Design of experiments (DOE) technique to select the optimum machining conditions for machining AISI 4140 using EDM. The purpose of this paper is to determine the optimal factors of the electro-discharge machining (EDM) process investigate feasibility of design of experiment techniques. The work pieces used were rectangular plates of AISI 4140 grade steel alloy. The study of optimized settings of key machining factors like pulse on time, gap voltage, flushing pressure, input current and duty cycle on the material removal, surface roughness is been carried out using central composite design. The objective is to maximize the Material removal rate (MRR). Central composite design data is used to develop second order polynomial models with interaction terms. The insignificant coefficients’ are eliminated with these models by using student t test and F test for the goodness of fit. CCD is first used to establish the determine the optimal factors of the electro-discharge machining (EDM) for maximizing the MRR. The responses are further treated through a objective function to establish the same set of key machining factors to satisfy the optimization problem of the electro-discharge machining (EDM) process. The results demonstrate the better performance of CCD data based RSM for optimizing the electro-discharge machining (EDM) process.

Keywords: electric discharge machining (EDM), modeling, optimization, CCRD

Procedia PDF Downloads 341
1529 Central Composite Design for the Optimization of Fenton Process Parameters in Treatment of Hydrocarbon Contaminated Soil using Nanoscale Zero-Valent Iron

Authors: Ali Gharaee, Mohammad Reza Khosravi Nikou, Bagher Anvaripour, Ali Asghar Mahjoobi

Abstract:

Soil contamination by petroleum hydrocarbon (PHC) is a major concern facing the oil and gas industry. Particularly, condensate liquids have been found to contaminate soil at gas production sites. The remediation of PHCs is a difficult challenge due to the complex interaction between contaminant and soil. A study has been conducted to enhance degradation of PHCs by Fenton oxidation and using Nanoscale Zero-Valent Iron as catalyst. The various operating conditions such as initial H2O2 concentration, nZVI dosage, reaction time, and initial contamination dose were investigated. Central composite design was employed to optimize and analyze the effect of operational parameters on the PHC removal efficiency. It was found that optimal molar ratio of H2O2/Fe0 was 58 with maximum TPH removal of 84% and 3hr reaction time and initial contaminant concentration was 15g oil /kg soil. Based on the results, combination of Nanoscale ZVI and Fenton has proved to be a promising remedy for contaminated soil.

Keywords: oil contaminated Soil, fenton oxidation, zero valent iron nano-particles

Procedia PDF Downloads 290
1528 Evaluation of Medicinal Plants, Catunaregam spinosa, Houttuynia cordata, and Rhapis excelsa from Malaysia for Antibacterial, Antifungal and Antiviral Properties

Authors: Yik Sin Chan, Bee Ling Chuah, Wei Quan Chan, Ri Jin Cheng, Yan Hang Oon, Kong Soo Khoo, Nam Weng Sit

Abstract:

Traditionally, medicinal plants have been used to treat different kinds of ailments including infectious diseases. They serve as a good source of lead compounds for the development of new and safer anti-infective agents. This study aimed to investigate the antimicrobial potential of the leaves of three medicinal plants, namely Catunaregam spinosa (Rubiaceae; Mountain pomegranate), Houttuynia cordata (Saururaceae; "fishy-smell herb") and Rhapis excelsa (Arecaceae; “broadleaf lady palm”). The leaves extracts were obtained by sequential extraction using hexane, chloroform, ethyl acetate, ethanol, methanol and water. The antibacterial and antifungal activities were assessed using a colorimetric broth microdilution method against a panel of human pathogenic bacteria (Gram-positive: Bacillus cereus and Staphylococcus aureus; Gram-negative: Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa) and fungi (yeasts: Candida albicans, Candida parapsilosis and Cryptococcus neoformans; Moulds: Aspergillus fumigatus and Trichophyton mentagrophytes) respectively; while antiviral activity was evaluated against the Chikungunya virus on monkey kidney epithelial (Vero) cells by neutral red uptake assay. All the plant extracts showed bacteriostatic activity, however, only 72% of the extracts (13/18) were found to have bactericidal activity. The lowest minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were given by the hexane extract of C. spinosa against S. aureus with the values of 0.16 and 0.31 mg/mL respectively. All the extracts also possessed fungistatic activity. Only the hexane, chloroform and ethyl acetate extracts of H. cordata exerted inhibitory activity against A. fumigatus, giving the lowest fungal susceptibility index of 16.7%. In contrast, only 61% of the extracts (11/18) showed fungicidal activity. The ethanol extract of R. excelsa exhibited the strongest fungicidal activity against C. albicans, C. parapsilosis and T. mentagrophytes with minimum fungicidal concentration (MFC) values of 0.04–0.08 mg/mL, in addition to its methanol extract against T. mentagrophytes (MFC=0.02 mg/mL). For anti-Chikungunya virus activity, only chloroform and ethyl acetate extracts of R. excelsa showed significant antiviral activity with 50% effective concentrations (EC50) of 29.9 and 78.1 g/mL respectively. Extracts of R. excelsa warrant further investigations into their active principles responsible for antifungal and antiviral properties.

Keywords: bactericidal, Chikungunya virus, extraction, fungicidal

Procedia PDF Downloads 403
1527 Improving Anchor Technology for Adapting the Weak Soil

Authors: Sang Hee Shin

Abstract:

The technical improving project is for using the domestic construction technology in the weak soil condition. The improved technology is applied directly under local construction site at OOO, OOO. Existing anchor technology was developed for the case of soft ground as N value 10 or less. In case of soft ground and heavy load, the attachment site per one strand is shortened due to the distributed interval so that the installation site is increased relatively and being economically infeasible. In addition, in case of high tensile load, adhesion phenomenon between wedge and block occurs. To solve these problems, it strengthens the function of the attached strands to treat a ‘bulbing’ on the strands. In the solution for minimizing the internal damage and strengthening the removal function, it induces lubricating action using the film and the attached film, and it makes the buffer structure using wedge lubricating structure and the spring. The technology is performed such as in-house testing and the field testing. The project can improve the reliability of the standardized quality technique. As a result, it intended to give the technical competitiveness.

Keywords: anchor, improving technology, removal anchor, soil reinforcement, weak soil

Procedia PDF Downloads 210
1526 Bioleaching of Metals Contained in Spent Catalysts by Acidithiobacillus thiooxidans DSM 26636

Authors: Andrea M. Rivas-Castillo, Marlenne Gómez-Ramirez, Isela Rodríguez-Pozos, Norma G. Rojas-Avelizapa

Abstract:

Spent catalysts are considered as hazardous residues of major concern, mainly due to the simultaneous presence of several metals in elevated concentrations. Although hydrometallurgical, pyrometallurgical and chelating agent methods are available to remove and recover some metals contained in spent catalysts; these procedures generate potentially hazardous wastes and the emission of harmful gases. Thus, biotechnological treatments are currently gaining importance to avoid the negative impacts of chemical technologies. To this end, diverse microorganisms have been used to assess the removal of metals from spent catalysts, comprising bacteria, archaea and fungi, whose resistance and metal uptake capabilities differ depending on the microorganism tested. Acidophilic sulfur oxidizing bacteria have been used to investigate the biotreatment and extraction of valuable metals from spent catalysts, namely Acidithiobacillus thiooxidans and Acidithiobacillus ferroxidans, as they present the ability to produce leaching agents such as sulfuric acid and sulfur oxidation intermediates. In the present work, the ability of A. thiooxidans DSM 26636 for the bioleaching of metals contained in five different spent catalysts was assessed by growing the culture in modified Starkey mineral medium (with elemental sulfur at 1%, w/v), and 1% (w/v) pulp density of each residue for up to 21 days at 30 °C and 150 rpm. Sulfur-oxidizing activity was periodically evaluated by determining sulfate concentration in the supernatants according to the NMX-k-436-1977 method. The production of sulfuric acid was assessed in the supernatants as well, by a titration procedure using NaOH 0.5 M with bromothymol blue as acid-base indicator, and by measuring pH using a digital potentiometer. On the other hand, Inductively Coupled Plasma - Optical Emission Spectrometry was used to analyze metal removal from the five different spent catalysts by A. thiooxidans DSM 26636. Results obtained show that, as could be expected, sulfuric acid production is directly related to the diminish of pH, and also to highest metal removal efficiencies. It was observed that Al and Fe are recurrently removed from refinery spent catalysts regardless of their origin and previous usage, although these removals may vary from 9.5 ± 2.2 to 439 ± 3.9 mg/kg for Al, and from 7.13 ± 0.31 to 368.4 ± 47.8 mg/kg for Fe, depending on the spent catalyst proven. Besides, bioleaching of metals like Mg, Ni, and Si was also obtained from automotive spent catalysts, which removals were of up to 66 ± 2.2, 6.2±0.07, and 100±2.4, respectively. Hence, the data presented here exhibit the potential of A. thiooxidans DSM 26636 for the simultaneous bioleaching of metals contained in spent catalysts from diverse provenance.

Keywords: bioleaching, metal removal, spent catalysts, Acidithiobacillus thiooxidans

Procedia PDF Downloads 140
1525 Flocculation on the Treatment of Olive Oil Mill Wastewater: Pre-Treatment

Authors: G. Hodaifa, J. A. Páez, C. Agabo, E. Ramos, J. C. Gutiérrez, A. Rosal

Abstract:

Currently, the continuous two-phase decanter process used for olive oil production is the more internationally widespread. The wastewaters generated from this industry (OMW) is a real environmental problem because of its high organic load. Among proposed treatments for these wastewaters, the advanced oxidation technologies (Fenton process, ozone, photoFenton, etc.) are the most favourable. The direct application of these processes is somewhat expensive. Therefore, the application of a previous stage based on a flocculation-sedimentation operation is of high importance. In this research five commercial flocculants (three cationic, and two anionic) have been used to achieve the separation of phases (liquid clarified-sludge). For each flocculant, different concentrations (0-1000 mg/L) have been studied. In these experiments, sludge volume formed over time and the final water quality were determined. The final removal percentages of total phenols (11.3-25.1%), COD (5.6-20.4%), total carbon (2.3-26.5%), total organic carbon (1.50-23.8%), total nitrogen (1.45-24.8%), and turbidity (27.9-61.4%) were obtained. Also, the variation on the electric conductivity reduction percentage (1-8%) was determined. Finally, the best flocculants with highest removal percentages have been determined (QG2001 and Flocudex CS49).

Keywords: flocculants, flocculation, olive oil mill wastewater, water quality

Procedia PDF Downloads 539
1524 Evaluation of Negative Air Ions in Bioaerosol Removal: Indoor Concentration of Airborne Bacterial and Fungal in Residential Building in Qom City, Iran

Authors: Z. Asadgol, A. Nadali, H. Arfaeinia, M. Khalifeh Gholi, R. Fateh, M. Fahiminia

Abstract:

The present investigation was conducted to detect the type and concentrations of bacterial and fungal bioaerosols in one room (bedroom) of each selected residential building located in different regions of Qom during February 2015 (n=9) to July 2016 (n=11). Moreover, we evaluated the efficiency of negative air ions (NAIs) in bioaerosol reduction in indoor air in residential buildings. In the first step, the mean concentrations of bacterial and fungal in nine sampling sites evaluated in winter were 744 and 579 colony forming units (CFU)/m3, while these values were 1628.6 and 231 CFU/m3 in the 11 sampling sites evaluated in summer, respectively. The most predominant genera between bacterial and fungal in all sampling sites were detected as Micrococcus spp. and Staphylococcus spp. and also, Aspergillus spp. and Penicillium spp., respectively. The 95% and 45% of sampling sites have bacterial and fungal concentrations over the recommended levels, respectively. In the removal step, we achieved a reduction with a range of 38% to 93% for bacterial genera and 25% to 100% for fungal genera by using NAIs. The results suggested that NAI is a highly effective, simple and efficient technique in reducing the bacterial and fungal concentration in the indoor air of residential buildings.

Keywords: bacterial, fungal, negative air ions (NAIs), indoor air, Iran

Procedia PDF Downloads 404
1523 Energy Saving in Handling the Air-Conditioning Latent-Load Using a Liquid Desiccant Air Conditioner: Parametric Experimental Analysis

Authors: Mustafa Jaradat

Abstract:

Reasonable energy saving for dehumidification is feasible with the use of desiccants. Desiccants are able to lower the humidity content in the air irrespective of the dew point temperature. In this paper, a tube bundle liquid desiccant air conditioner was experimentally designed and evaluated using lithium chloride as a desiccant. Several experiments were conducted to evaluate the influence of the inlet parameters on the dehumidifier performance. The results show a reduction in the relative humidity in the range of 17 to 46%, and the change in the humidity ratio was between 1.5 to 4.7 g/kg, depending on the inlet conditions. A water removal rate in the range between 0.54 and 1.67 kg/h was observed. The effects of air relative humidity and the desiccant flow rate on the dehumidifier’s performance were investigated. It was found that the moisture removal rate remarkably increased with increasing desiccant flow rate and air inlet humidity ratio. The dehumidifier effectiveness increased sharply with increasing desiccant flow rate. Also, it was found that the dehumidifier effectiveness slightly decreased with air humidity ratio.

Keywords: air conditioning, dehumidification, desiccant, lithium chloride, tube bundle

Procedia PDF Downloads 144
1522 Comparative Evaluation of Kinetic Model of Chromium and Lead Uptake from Aqueous Solution by Activated Balanitesaegyptiaca Seeds

Authors: Mohammed Umar Manko

Abstract:

A series of batch experiments were conducted in order to investigate the feasibility of Balanitesaegyptiaca seeds based activated carbon as compared with industrial activated carbon for the removal of chromium and lead ions from aqueous solution by the adsorption process within 30 to 150 minutes contact time. The activated samples were prepared using zinc chloride and tetraoxophophate(VI) acid. The results obtained showed that the activated carbon of Balanitesaegyptiaca seeds studied had relatively high adsorption capacities for these heavy metal ions compared with industrial Activated Carbon. The percentage removal of Cr (VI) and lead (II) ions by the three activated carbon samples were 64%, 70% and 71%; 60%, 66% and 60% respectively. Adsorption equilibrium was established in 90 minutes for the heavy metal ions. The equilibrium data fitted the pseudo second order out of the pseudo first, pseudo second, Elovich ,Natarajan and Khalaf models tested. The investigation also showed that the adsorbents can effectively remove metal ions from similar wastewater and aqueous media.

Keywords: activated carbon, pseudo second order, chromium, lead, Elovich model

Procedia PDF Downloads 321
1521 Urogenital Myiasis in Pregnancy - A Rare Presentation

Authors: Madeleine Elder, Aye Htun

Abstract:

Background: Myiasis is the parasitic infestation of body tissues by fly larvae. It predominantly occurs in poor socioeconomic regions of tropical and subtropical countries where it is associated with poor hygiene and sanitation. Cutaneous and wound myiasis are the most common presentations whereas urogenital myiasis is rare, with few reported cases. Case: a 26-year-old primiparous woman with a low-risk pregnancy presented to the emergency department at 37+3-weeks’ gestation after passing a 2cm black larva during micturition, with 2 weeks of mild vulvar pruritus and dysuria. She had travelled to India 9-months prior. Examination of the external genitalia showed small white larvae over the vulva and anus and a mildly inflamed introitus. Speculum examination showed infiltration into the vagina and heavy white discharge. High vaginal swab reported Candida albicans. Urine microscopy reported bacteriuria with Enterobacter cloacae. Urine parasite examination showed myiasis caused by Clogmia albipunctata species of fly larvae from the family Psychodidae. Renal tract ultrasound and inflammatory markers were normal. Infectious diseases, urology and paediatric teams were consulted. The woman received treatment for her urinary tract infection (which was likely precipitated by bladder irritation from local parasite infestation) and vaginal candidiasis. She underwent daily physical removal of parasites with cleaning, speculum examination and removal, and hydration to promote bladder emptying. Due to the risk of neonatal exposure, aspiration pneumonitis and facial infestation, the woman was steroid covered and proceeded to have an elective caesarean section at 38+3-weeks’ gestation, with delivery of a healthy infant. She then proceeded to have a rigid cystoscopy and washout, which was unremarkable. Placenta histopathology revealed focal eosinophilia in keeping with the history of maternal parasites. Conclusion: Urogenital myiasis is very rare, especially in the developed world where it is seen in returned travellers. Treatment may include systemic therapy with ivermectin and physical removal of parasites. During pregnancy, physical removal is considered the safest treatment option, and discussion around the timing and mode of delivery should consider the risk of harm to the foetus.

Keywords: urogenital myiasis, parasitic infection, infection in pregnancy, returned traveller

Procedia PDF Downloads 127
1520 Screening of Different Native Genotypes of Broadleaf Mustard against Different Diseases

Authors: Nisha Thapa, Ram Prasad Mainali, Prakriti Chand

Abstract:

Broadleaf mustard is a commercialized leafy vegetable of Nepal. However, its utilization is hindered in terms of production and productivity due to the high intensity of insects, pests, and diseases causing great loss. The plant protection part of the crop’s disease and damage intensity has not been studied much from research perspectives in Nepal. The research aimed to evaluate broadleaf mustard genotypes for resistance against different diseases. A total of 35 native genotypes of broadleaf mustard were screened at weekly intervals by scoring the plants for ten weeks. Five different diseases, such as Rhizoctonia root rot, Alternaria blight, black rot, turnip mosaic virus disease, and white rust, were reported from the broad leaf mustard genotypes. Out of 35 genotypes, 23 genotypes were found with very high Rhizoctonia Root Rot severity, whereas 8 genotypes showed very high Alternaria blight severity. Likewise, 3 genotypes were found with high Black rot severity, and 1 genotype was found with very high Turnip mosaic virus disease incidence. Similarly, 2 genotypes were found to have very high White rust severity. Among the disease of national importance, Rhizoctonia root rot was found to be the most severe disease with the greatest loss. Broadleaf mustard genotypes like Rato Rayo, CO 1002, and CO 11007 showed average to the high level of field resistance; therefore, these genotypes should be used, conserved, and stored in a mustard improvement program as the disease resistance quality or susceptibility of these genotypes can be helpful for seed producing farmers, companies and other stakeholders through varietal improvement and developmental works that further aids in sustainable disease management of the vegetable.

Keywords: genotype, disease resistance, Rhizoctonia root rot severity, varietal improvement

Procedia PDF Downloads 80
1519 Reinforced Concrete Box Girder Bridge Hinge Replacement and Horizontal and Vertical Earthquake Restrainers

Authors: Kumars ZandParsa, Quynh Nguyen, Hadi Moradi

Abstract:

There are old cast-in-place concrete box girder bridges in California with inter-span hinges that are designed based on old earthquake codes. Hinge removal is part of the bridges’ earthquake retrofitting project, and hinges were removed and replaced with modified hinges per new earthquake codes. The span that has a hinge is divided into short and long cantilevers in which the short cantilever supports the long cantilever. In the recent bridge hinge replacement, the length of the short and long cantilevers were 20ft and 80ft, respectively. The seat in the new design is wider than the old design, and the horizontal and vertical movements of the deck at the hinge location must be computed to check if restraints are needed. In this paper, besides considering the conventional reinforced concrete box girder bridges, the hinge removal operations, along with the response spectrum analysis based on the El Centro 1940 earthquake, will be presented to verify if vertical and horizontal restrainers are needed.

Keywords: hinge replacement, restrainers, vertical earthquake, response spectrum analysis

Procedia PDF Downloads 581
1518 Removal of Heavy Metals by Ultrafiltration Assisted with Chitosan or Carboxy-Methyl Cellulose

Authors: Boukary Lam, Sebastien Deon, Patrick Fievet, Nadia Crini, Gregorio Crini

Abstract:

Treatment of heavy metal-contaminated industrial wastewater has become a major challenge over the last decades. Conventional processes for the treatment of metal-containing effluents do not always simultaneously satisfy both legislative and economic criteria. In this context, coupling of processes can then be a promising alternative to the conventional approaches used by industry. The polymer-assisted ultrafiltration (PAUF) process is one of these coupling processes. Its principle is based on a sequence of steps with reaction (e.g., complexation) between metal ions and a polymer and a step involving the rejection of the formed species by means of a UF membrane. Unlike free ions, which can cross the UF membrane due to their small size, the polymer/ion species, the size of which is larger than pore size, are rejected. The PAUF process was deeply investigated herein in the case of removal of nickel ions by adding chitosan and carboxymethyl cellulose (CMC). Experiments were conducted with synthetic solutions containing 1 to 100 ppm of nickel ions with or without the presence of NaCl (0.05 to 0.2 M), and an industrial discharge water (containing several metal ions) with and without polymer. Chitosan with a molecular weight of 1.8×105 g mol⁻¹ and a degree of acetylation close to 15% was used. CMC with a degree of substitution of 0.7 and a molecular weight of 9×105 g mol⁻¹ was employed. Filtration experiments were performed under cross-flow conditions with a filtration cell equipped with a polyamide thin film composite flat-sheet membrane (3.5 kDa). Without the step of polymer addition, it was found that nickel rejection decreases from 80 to 0% with increasing metal ion concentration and salt concentration. This behavior agrees qualitatively with the Donnan exclusion principle: the increase in the electrolyte concentration screens the electrostatic interaction between ions and the membrane fixed the charge, which decreases their rejection. It was shown that addition of a sufficient amount of polymer (greater than 10⁻² M of monomer unit) can offset this decrease and allow good metal removal. However, the permeation flux was found to be somewhat reduced due to the increase in osmotic pressure and viscosity. It was also highlighted that the increase in pH (from 3 to 9) has a strong influence on removal performances: the higher pH value, the better removal performance. The two polymers have shown similar performance enhancement at natural pH. However, chitosan has proved more efficient in slightly basic conditions (above its pKa) whereas CMC has demonstrated very weak rejection performances when pH is below its pKa. In terms of metal rejection, chitosan is thus probably the better option for basic or strongly acid (pH < 4) conditions. Nevertheless, CMC should probably be preferred to chitosan in natural conditions (5 < pH < 8) since its impact on the permeation flux is less significant. Finally, ultrafiltration of an industrial discharge water has shown that the increase in metal ion rejection induced by the polymer addition is very low due to the competing phenomenon between the various ions present in the complex mixture.

Keywords: carboxymethyl cellulose, chitosan, heavy metals, nickel ion, polymer-assisted ultrafiltration

Procedia PDF Downloads 163
1517 Upflow Anaerobic Sludge Blanket Reactor Followed by Dissolved Air Flotation Treating Municipal Sewage

Authors: Priscila Ribeiro dos Santos, Luiz Antonio Daniel

Abstract:

Inadequate access to clean water and sanitation has become one of the most widespread problems affecting people throughout the developing world, leading to an unceasing need for low-cost and sustainable wastewater treatment systems. The UASB technology has been widely employed as a suitable and economical option for the treatment of sewage in developing countries, which involves low initial investment, low energy requirements, low operation and maintenance costs, high loading capacity, short hydraulic retention times, long solids retention times and low sludge production. Whereas dissolved air flotation process is a good option for the post-treatment of anaerobic effluents, being capable of producing high quality effluents in terms of total suspended solids, chemical oxygen demand, phosphorus, and even pathogens. This work presents an evaluation and monitoring, over a period of 6 months, of one compact full-scale system with this configuration, UASB reactors followed by dissolved air flotation units (DAF), operating in Brazil. It was verified as a successful treatment system, and an issue of relevance since dissolved air flotation process treating UASB reactor effluents is not widely encompassed in the literature. The study covered the removal and behavior of several variables, such as turbidity, total suspend solids (TSS), chemical oxygen demand (COD), Escherichia coli, total coliforms and Clostridium perfringens. The physicochemical variables were analyzed according to the protocols established by the Standard Methods for Examination of Water and Wastewater. For microbiological variables, such as Escherichia coli and total coliforms, it was used the “pour plate” technique with Chromocult Coliform Agar (Merk Cat. No.1.10426) serving as the culture medium, while the microorganism Clostridium perfringens was analyzed through the filtering membrane technique, with the Ágar m-CP (Oxoid Ltda, England) serving as the culture medium. Approximately 74% of total COD was removed in the UASB reactor, and the complementary removal done during the flotation process resulted in 88% of COD removal from the raw sewage, thus the initial concentration of COD of 729 mg.L-1 decreased to 87 mg.L-1. Whereas, in terms of particulate COD, the overall removal efficiency for the whole system was about 94%, decreasing from 375 mg.L-1 in raw sewage to 29 mg.L-1 in final effluent. The UASB reactor removed on average 77% of the TSS from raw sewage. While the dissolved air flotation process did not work as expected, removing only 30% of TSS from the anaerobic effluent. The final effluent presented an average concentration of 38 mg.L-1 of TSS. The turbidity was significantly reduced, leading to an overall efficiency removal of 80% and a final turbidity of 28 NTU.The treated effluent still presented a high concentration of fecal pollution indicators (E. coli, total coliforms, and Clostridium perfringens), showing that the system did not present a good performance in removing pathogens. Clostridium perfringens was the organism which suffered the higher removal by the treatment system. The results can be considered satisfactory for the physicochemical variables, taking into account the simplicity of the system, besides that, it is necessary a post-treatment to improve the microbiological quality of the final effluent.

Keywords: dissolved air flotation, municipal sewage, UASB reactor, treatment

Procedia PDF Downloads 331
1516 A Comparative Analysis of the Performances of Four Different In-Ground Lagoons Anaerobic Digesters in the Treatment of Palm Oil Mill Effluent (POME)

Authors: Mohd Amran, Chan Yi Jing, Chong Chien Hwa

Abstract:

Production of biogas from POME requires anaerobic digestion (AD), thus, anaerobic digester performance in biogas plants is crucial. As POME from different sources have varying characteristics due to different process flows in mills, there is no ideal treatment parameters for POME. Hence, different treatment plants alter different parameters in anaerobic digestion to achieve desired biogas production levels and to meet POME waste discharge limits. The objective of this study is to evaluate the performance of mesophilic anaerobic digestion in four different biogas plants in Malaysia. Aspects of POME pre-treatment efficiency, analysis of treated POME and AD’s bottom sludge characteristics, including several parameters like chemical oxygen demand (COD), biological oxygen demand (BOD), total solid (TS) removal in the effluent, pH and temperature changes, total biogas produced, the composition of biogas including methane (CH₄), carbon dioxide (CO₂), hydrogen sulfide (H₂S) and oxygen (O₂) were investigated. The effect of organic loading rate (OLR) and hydraulic retention time (HRT) on anaerobic digester performance is also evaluated. In pre-treatment, it is observed that BGP B has the lowest average outlet temperature of 40.41°C. All BGP shows a high-temperature fluctuation (36 to 49 0C) and good pH readings (minimum 6.7), leaving the pre-treatment facility before entering the AD.COD removal of POME is considered good, with an average of 78% and maximum removal of 85%. BGP C has the lowest average COD and TS content in treated POME, 13,313 mg/L, and 12,048 mg/L, respectively. However, it is observed that the treated POME leaving all ADs, still contains high-quality organic substances (COD between 12,000 to 19,000 mg/L) that might be able to digest further to produce more biogas. The biogas produced in all four BGPs varies due to different COD loads. BGP B has the highest amount of biogas produced, 378,874.7 Nm³/month, while BGP D has the lowest biogas production of 272,378.5 Nm³/month. Furthermore, the composition of biogas produced in all plants is well within literature values (CH4 between 55 to 65% and CO₂ between 32 to 36%).

Keywords: palm oil mill effluent, in-ground lagoon anaerobic digester, anaerobic digestion, biogas

Procedia PDF Downloads 102
1515 Development of an Aerosol Protection Capsule for Patients with COVID-19

Authors: Isomar Lima da Silva, Aristeu Jonatas Leite de Oliveira, Roberto Maia Augusto

Abstract:

Biological isolation capsules are equipment commonly used in the control and prevention of infectious diseases in the hospital environment. This type of equipment, combined with pre-established medical protocols, contributes significantly to the containment of highly transmissible pathogens such as COVID-19. Due to its hermetic isolation, it allows more excellent patient safety, protecting companions and the health team. In this context, this work presents the development, testing, and validation of a medical capsule to treat patients affected by COVID-19. To this end, requirements such as low cost and easy handling were considered to meet the demand of people infected with the virus in remote locations in the Amazon region and/or where there are no ICU beds and mechanical ventilators for orotracheal intubation. Conceived and developed in a partnership between SAMEL Planos de Saúde and Instituto Conecthus, the device entitled "Vanessa Capsule" was designed to be used together with the NIV protocol (non-invasive ventilation), has an automatic exhaust system and filters performing the CO2 exchange, in addition to having BiPaps ventilatory support equipment (mechanical fans) in the Cabin Kit. The results show that the degree of effectiveness in protecting against infection by aerosols, with the protection cabin, is satisfactory, implying the consideration of the Vanessa capsule as an auxiliary method to be evaluated by the health team. It should also be noted that the medical observation of the evaluated patients found that the treatment against the COVID-19 virus started earlier with non-invasive mechanical ventilation reduces the patient's suffering and contributes positively to their recovery, in association with isolation through the Vanessa capsule.

Keywords: COVID-19, mechanical ventilators, medical capsule, non-invasive ventilation

Procedia PDF Downloads 84
1514 Comparison of Non-Organic (Suspended and Solved) Solids Removal with and without Sediments in Treatment of an Industrial Wastewater with and without Ozonation

Authors: Amir Hajiali, Gevorg P. Pirumyan

Abstract:

In this research, removal of Non-Organic Suspended Solids and Non-Organic Solved Solids with and without sediment in treatment of an industrial wastewater system before and after ozonation was studied and compared. The most hazardous part of these substances is monomers of chlorophenolic combinations which in biological reactors in a liquid phase could be absorbed much easier and with a high velocity. These monomers and particularly monomers with high molecular weights are seen a lot in such wastewater treatment systems. After the treatment, the measured non-organic solved and suspended solids contents in the cyclic ozonation-biotreatment system compared to the non-organic solved and suspended solids values in the treatment method without ozonation. Sedimentation was the other factor which was considered in this experiment.The solids removals were measured with and without sediments. The comparison revealed that the remarkable efficiency of the cyclic ozonation-biotreatment system in removing the non-organic solids both with and without sediments is extremely considerable. Results of the experiments showed that ozone can be dramatically effective for solving most organic materials in activated sludge in such a wastewater or for making them mineral. Moreover, bio dissolubility increase related to the solved materials was reported.

Keywords: non-organic solids, ozonation, sediment, wastewater treatment

Procedia PDF Downloads 187
1513 Gas Separation by Water-Swollen Membrane

Authors: Lenka Morávková, Zuzana Sedláková, Jiří Vejražka, Věra Jandová, Pavel Izák

Abstract:

The need to minimize the costs of biogas upgrading leads to a continuous search for new and more effective membrane materials. The improvement of biogas combustion efficiency is connected with polar gases removal from a feed stream. One of the possibilities is the use of water–swollen polyamide layer of thin film composite reverse osmosis membrane for simultaneous carbon dioxide and hydrogen sulphide removal. Transport properties and basic characteristics of a thin film composite membrane were compared in the term of appropriate water-swollen membrane choice for biogas upgrading. SEM analysis showed that the surface of the best performing composites changed significantly upon swelling by water. The surface changes were found to be a proof that the selective skin polyamide layer was swollen well. Further, the presence of a sufficient number of associative centers, namely amido groups, inside the upper layer of the hydrophilic thin composite membrane can play an important role in the polar gas separation from a non-polar gas. The next key factor is a high porosity of the membrane support.

Keywords: biogas upgrading, carbon dioxide separation, hydrogen sulphide separation, water-swollen membrane

Procedia PDF Downloads 341
1512 Oncolytic H-1 Parvovirus Entry in Cancer Cells through Clathrin-Mediated Endocytosis

Authors: T. Ferreira, A. Kulkarni, C. Bretscher, K. Richter, M. Ehrlich, A. Marchini

Abstract:

H-1 protoparvovirus (H-1PV) is a virus with inherent oncolytic and oncosuppressive activities while remaining non-pathogenic in humans. H-1PV was the first oncolytic parvovirus to undergo clinical testing. Results from trials in patients with glioblastoma or pancreatic carcinoma showed an excellent safety profile and first signs of efficacy. H-1PV infection is vastly dependent on cellular factors, from cell attachment and entry to viral replication and egress. Hence, we believe that the characterisation of the parvovirus life cycle would ultimately help further improve H-1PV clinical outcome. In the present study, we explored the entry pathway of H-1PV in cervical HeLa and glioma NCH125 cancer cell lines. Electron and confocal microscopy showed viral particles associated with clathrin-coated pits and vesicles, providing the first evidence that H-1PV cell entry occurs through clathrin-mediated endocytosis. Accordingly, we observed that by blocking clathrin-mediated endocytosis with hypertonic sucrose, chlorpromazine, or pitstop 2, H-1PV transduction was markedly decreased. Accordingly, siRNA-mediated knockdown of AP2M1, which retains a crucial role in clathrin-mediated endocytosis, verified the reliance of H-1PV on this route to enter HeLa and NCH125 cancer cells. By contrast, we found no evidence of viral entry through caveolae-mediated endocytosis. Indeed, pre-treatment of cells with nystatin or methyl-β-cyclodextrin, both inhibitors of caveolae-mediated endocytosis, did not affect viral transduction levels. Unexpectedly, siRNA-mediated knockdown of caveolin-1, the main driver of caveolae-mediated endocytosis, increased H-1PV transduction, suggesting caveolin-1 is a negative modulator of H-1PV infection. We also show that H-1PV entry is dependent on dynamin, a protein responsible for mediating the scission of vesicle neck and promoting further internalisation. Furthermore, since dynamin inhibition almost completely abolished H-1PV infection, makes it unlikely that H-1PV uses macropinocytosis as an alternative pathway to enter cells. After viral internalisation, H-1PV passes through early to late endosomes as observed by confocal microscopy. Inside these endocytic compartments, the acidic environment proved to be crucial for a productive infection. Inhibition of acidification of pH dramatically reduced H-1PV transduction. Besides, a fraction of H-1PV particles was observed inside LAMP1-positive lysosomes, most likely following a non-infectious route. To the author's best knowledge, this is the first study to characterise the cell entry pathways of H-1PV. Along these lines, this work will further contribute to understand H-1PV oncolytic properties as well as to improve its clinical potential in cancer virotherapy.

Keywords: clathrin-mediated endocytosis, H-1 parvovirus, oncolytic virus, virus entry

Procedia PDF Downloads 155
1511 Role of Tyrosine-Phosphorylated STAT3 in Liver Regeneration: Survival, DNA Synthesis, Inflammatory Reaction and Liver Mass Recovery

Authors: JiYoung Park, SueGoo Rhee, HyunAe Woo

Abstract:

In liver regeneration, quiescent hepatocytes need to be primed to fully respond to growth factors such as hepatocyte growth factor. To understand the priming process, it is necessary to analyze patterns of gene expression that occur during liver regeneration after partial hepatectomy (PHx). Recently, tyrosine phosphorylation of signal transducer and activator of transcription 3 (pYSTAT3) has been shown to play an important role in initiating liver regeneration. In order to evaluate the role of pYSTAT3 on liver regeneration after PHx, we used an intrabody which can selectively inhibit pYSTAT3. In our previous studies, an intrabody had been shown that it bound specifically to the pYSTAT3. Adenovirus-mediated expression of the intrabody in HepG2 cells, as well as mouse liver, blocked both accumulation of pYSTAT3 in the nucleus and downstream target of pYSTAT3. In this study, PHx was performed on intrabody-expressing mice and the expression levels of liver regeneration-related genes were analyzed. We also measured liver/body weight ratios and the related cellular signaling pathways were analyzed. Acute phase response genes were reduced in an intrabody-expressing mice during liver regeneration than in control virus-injected mice. However, the time course of liver mass restoration in intrabody-expressing mice was similar to that observed in control virus-injected mice. We also observed that the expression levels of anti-apoptotic genes, such as Bcl2 and Bcl-xL were decreased in intrabody-expressing mice whereas the expression of cell cycle-related genes such as cyclin D1, and c-myc was increased. Liver regeneration after PHx was partially impaired by the selective inhibition of pYSTAT3 with a phosphorylation site-specific intrabody and these results indicated that pYSTAT3 might have limited role in liver mass recovery.

Keywords: STAT3, pYSTAT3, liver regeneration, intrabody

Procedia PDF Downloads 312
1510 Comprehensive Evaluation of Oral and Maxillofacial Radiology in "COVID-19"

Authors: Sahar Heidary, Ramin Ghasemi Shayan

Abstract:

The recent coronavirus disease 2019 (COVID-19) occurrence has carried considerabletrials to the world health system, comprising the training of dental and maxillofacial radiology (DMFR). DMFR will keep avital role in healthcare throughout this disaster. Severe acute breathing disease coronavirus 2 (SARS-CoV-2), the virus producing the current coronavirus disease 2019 (COVID-19) pandemic, is not only extremely contagious but can make solemn consequences in susceptible persons comprising dental patients and dental health care personnel (DHCPs). Reactions to COVID-19 have been available by the Cores for Infection Switch and Inhibition and the American Dental Association, but a more detailed answer is necessary for the harmless preparation of oral and maxillofacial radiology. Our goal is to evaluation the existing information just how the illness threatens patients and DHCPs and how to define which patients are possible to be SARS-CoV-2 infected; study how the usage of private shielding utensils and contamination control measures based on recent top observes, and knowledge can decrease the danger of virus spread in radiologic trials; and scrutinize how intraoral radiography, with its actually superior danger of scattering the infection, might be changed by extraoralradiographic methods for definite diagnostic jobs. In the pandemic, teleradiology has been extensively recycled for diagnostic determinations of COVID-19 patients, for discussions with radiologists in crisis cases, or managing of distance among radiology clinics. Dentists can have the digital radiographic images of their emergency patients through online service area also by electronic message or messaging applications to view in their smart phones, laptops, or other electronic devices.

Keywords: radiology, dental, oral, COVID-19, infection

Procedia PDF Downloads 172
1509 'Disability' and Suffering: The Case of Workers Affected by Repetitive Strain Injury/Work Related Musculoskeletal Disorder in a Removal from Work Situation in Santos, São Paulo, Brazil

Authors: Maria Do Carmo Baracho De Alencar, Marciene Campos Fialho, Maria Do Carmo Vitório Ramos

Abstract:

The subjects affected by Repetitive Strain Injury/Work Related Musculoskeletal Disorder (RSI/WRMSD) face an everyday life marked by pain, feelings of worthlessness and incapacity caused by the disease, and aggravated often because of discrimination society. Aim: To investigate the experiences and feelings of workers affected by RSI/WRMSD in removal from work situations and to understand the repercussions on mental health. Methods: Clinical records of workers were consulted, opened from July 1, 2014, to July 1, 2015, at the Reference Center for Worker's Health, in Santos city-SP. Selection of workers affected by RSI /WRMSD and who had experienced the removal from work situation due to the disease, and invitation to participate in the study. Semi-structured and individual interviews were carried out based on a pre-elaborated script, and for thematic content analysis. Results: Of a total of 502 medical records, 157 were selected, and of these, 18 workers participated in the interviews, both gender, most of them with low education level, aged between 35 and 56 years, and from different professions. Diseases affected several physical body regions and some workers had more than one body region affected by chronic pain. In the testimonies emerged the psychic suffering by the process of illness at work, fear of dismissal, invisibility of pain, in medical expertise attendance, by the incapacity to perform tasks that were easily achievable, with feelings of uselessness, revolt, and injustice, among others. Conclusion: The workers need to be readapted to new life situations, and the study promotes reflections on the need for more interdisciplinary actions and of the Psychology to the workers affected by RSI/ WRMSD.

Keywords: repetitive strain injury, cumulative trauma disorder, absence from work, mental health, occupational health

Procedia PDF Downloads 159
1508 The Role of Community Beliefs and Practices on the Spread of Ebola in Uganda, September 2022

Authors: Helen Nelly Naiga, Jane Frances Zalwango, Saudah N. Kizito, Brian Agaba, Brenda N Simbwa, Maria Goretti Zalwango, Richard Migisha, Benon Kwesiga, Daniel Kadobera, Alex Ario Riolexus, Sarah Paige, Julie R. Harris

Abstract:

Background: Traditional community beliefs and practices can facilitate the spread of Ebola virus during outbreaks. On September 20, 2022, Uganda declared a Sudan Virus Disease (SVD) outbreak after a case was confirmed in Mubende District. During September–November 2022, the outbreak spread to eight additional districts. We investigated the role of community beliefs and practices in the spread of SUDV in Uganda in 2022. Methods: A qualitative study was conducted in Mubende, Kassanda, and Kyegegwa districts in February 2023. We conducted nine focus group discussions (FGDs) and six key informant interviews (KIIs). FGDs included SVD survivors, household members of SVD patients, traditional healers, religious leaders, and community leaders. Key informants included community, political, and religious leaders, traditional healers, and health workers. We asked about community beliefs and practices to understand if and how they contributed to the spread of SUDV. Interviews were recorded, translated, transcribed, and analyzed thematically. Results: Frequently-reported themes included beliefs that the community deaths, later found to be due to SVD, were the result of witchcraft or poisoning. Key informants reported that SVD patients frequently first consulted traditional healers or spiritual leaders before seeking formal healthcare, and noted that traditional healers treated patients with signs and symptoms of SVD without protective measures. Additional themes included religious leaders conducting laying-on-of-hands prayers for SVD patients and symptomatic contacts, SVD patients and their symptomatic contacts hiding in friends’ homes, and exhumation of SVD patients originally buried in safe and dignified burials, to enable traditional burials. Conclusion: Multiple community beliefs and practices likely promoted SVD outbreak spread during the 2022 outbreak in Uganda. Engaging traditional and spiritual healers early during similar outbreaks through risk communication and community engagement efforts could facilitate outbreak control. Targeted community messaging, including clear biological explanations for clusters of deaths and information on the dangers of exhuming bodies of SVD patients, could similarly facilitate improved control in future outbreaks in Uganda.

Keywords: Ebola, Sudan virus, outbreak, beliefs, traditional

Procedia PDF Downloads 55
1507 Sludge Marvel (Densification): The Ultimate Solution For Doing More With Less Effort!

Authors: Raj Chavan

Abstract:

At present, the United States is home to more than 14,000 Water Resource Recovery Facilities (WRRFs), of which approximately 35% have implemented nutrient limits of some kind. These WRRFs contribute 10 to 15% of the total nutrient burden to surface rivers in the United States and account for approximately 1% of total power demand and 2% of total greenhouse gas emissions (GHG). There are several factors that have influenced the development of densification technologies in the direction of more compact and energy-efficient nutrient removal processes. Prior to surface water discharge, existing facilities that necessitate capacity expansion or biomass densification for greater treatability within the same footprint are being subjected to stricter nutrient removal requirements. Densification of activated sludge as a method for nutrient removal and process intensification at WRRFs has garnered considerable attention in recent times. The biological processes take place within the aerobic sediment granules, which form the basis of the technology. The possibility of generating granular sludge through continuous (or conventional) activated sludge processes (CAS) or densification of biomass through the transfer of activated sludge flocs to a denser biomass aggregate as an exceptionally efficient intensification technique has generated considerable interest. This presentation aims to furnish attendees with a foundational comprehension of densification through the illustration of practical concerns and insights. The subsequent subjects will be deliberated upon. What are some potential techniques for producing and preserving densified granules? What processes are responsible for the densification of biological flocs? How do physical selectors contribute to the process of biological flocs becoming denser? What viable strategies exist for the management of densified biological flocs, and which design parameters of physical selection influence the retention of densified biological flocs? determining operational solutions for floc and granule customization in order to meet capacity and performance objectives? The answers to these pivotal questions will be derived from existing full-scale treatment facilities, bench-scale and pilot-scale investigations, and existing literature data. By the conclusion of the presentation, the audience will possess a fundamental comprehension of the densification concept and its significance in attaining effective effluent treatment. Additionally, case studies pertaining to the design and operation of densification procedures will be incorporated into the presentation.

Keywords: densification, intensification, nutrient removal, granular sludge

Procedia PDF Downloads 74
1506 Effect of Eddy Irrigant Activation on Cleanliness of the Root Canal Wall during Pulpectomy of Primary Teeth

Authors: Rasha Sharaf, Nehal Sharaf

Abstract:

Pulpectomy of primary teeth aims to remove the necrotic pulp tissue from the infected root canal and clean the root canal walls from any remnant of pulp tissue. Different irrigant activation systems have been recently used, and one of these devices is the Eddy which helps in removal of smear layer and improves the intimate contact between the filling material and the root canal wall. Aim: To evaluate the efficacy of Eddy in cleanliness of the root canal during pulpectomy of primary teeth. Materials and methods: 45 freshly extracted primary anterior teeth were divided into 3 equal groups, in the 1st group sodium hypochlorite only was used during pulpectomy, in the 2nd group irrigation using sodium hypochlorite with file agitation was performed and in the 3rd group sodium hypochlorite was used with Eddy for irrigant activation. All samples were sectioned longitudinally and scanned using scanning electron microscope to evaluate the cleanliness of the root canals. Results: It was found that Eddy showed high efficacy in removal of smear layer during pulpectomy of primary teeth.

Keywords: Eddy, irrigant activation, irrigation, pulpectomy

Procedia PDF Downloads 152
1505 Treatment of Pharmaceutical Industrial Effluent by Catalytic Ozonation in a Semi-Batch Reactor: Kinetics, Mass Transfer and Improved Biodegradability Studies

Authors: Sameena Malik, Ghosh Prakash, Sandeep Mudliar, Vishal Waindeskar, Atul Vaidya

Abstract:

In this study, the biodegradability enhancement along with COD color and toxicity removal of pharmaceutical effluent by O₃, O₃/Fe²⁺, O₃/nZVI processes has been evaluated. The nZVI particles were synthesized and characterized by XRD and SEM analysis. Kinetic model was reasonably developed to select the ozone doses to be applied based on the ozonation kinetic and mass transfer coefficient values. Nano catalytic ozonation process (O₃/nZVI) effectively enhanced the biodegradability (BI=BOD₅/COD) of pharmaceutical effluent up to 0.63 from 0.18 of control with a COD, color and toxicity removal of 62.3%, 93%, and 75% respectively compared to O₃, O₃/Fe²⁺ pretreatment processes. From the GC-MS analysis, 8 foremost organic compounds were predominantly detected in the pharmaceutical effluent. The disappearance of the corresponding GC-MS spectral peaks during catalyzed ozonation process indicated the degradation of the effluent. The changes in the FTIR spectra confirms the transformation/destruction of the organic compounds present in the effluent to new compounds. Subsequent aerobic biodegradation of pretreated effluent resulted in biodegradation rate enhancement by 5.31, 2.97, and 1.22 times for O₃, O₃/Fe²⁺ and O₃/nZVI processes respectively.

Keywords: iron nanoparticles, pharmaceutical effluent, ozonation, kinetics, mass transfer

Procedia PDF Downloads 270
1504 Removal of Nickel and Zinc Ions from Aqueous Solution by Graphene Oxide and Graphene Oxide Functionalized Glycine

Authors: M. Rajabi, O. Moradi

Abstract:

In this study, removal of Nickel and Zinc by graphene oxide and functionalized graphene oxide–gelaycin surfaces was examined. Amino group was added to surface of graphene oxide to produced functionalized graphene oxide–gelaycin. Effect of contact time and initial concentration of Ni (II) and Zn(II) ions were studied. Results showed that with increase of initial concentration of Ni (II) and Zn(II) adsorption capacity was increased. After 50 min has not a large change at adsorption capacity therefore, 50 min was selected as optimaze time. Scanning electron microscope (SEM) and fourier transform infrared (FT-IR) spectroscopy spectra used for the analysis confirmed the successful fictionalization of the Graphene oxide surface. Adsorption experiments of Ni (II) and Zn(II) ions graphene oxide and functionalized graphene oxide–gelaycin surfaces fixed at 298 K and pH=6. The Pseudo Firs-order and the Pseudo Second-order (types I, II, III and IV) kinetic models were tested for adsorption process and results showed that the kinetic parameters best fits with to type (I) of pseudo-second-order model because presented low X2 values and also high R2 values.

Keywords: graphene oxide, gelaycin, nickel, zinc, adsorption, kinetic, graphene oxide, gelaycin, nickel, zinc, adsorption, kinetic

Procedia PDF Downloads 308
1503 Axillary Evaluation with Targeted Axillary Dissection Using Ultrasound-Visible Clips after Neoadjuvant Chemotherapy for Patients with Node-Positive Breast Cancer

Authors: Naomi Sakamoto, Eisuke Fukuma, Mika Nashimoto, Yoshitomo Koshida

Abstract:

Background: Selective localization of the metastatic lymph node with clip and removal of clipped nodes with sentinel lymph node (SLN), known as targeted axillary dissection (TAD), reduced false-negative rates (FNR) of SLN biopsy (SLNB) after neoadjuvant chemotherapy (NAC). For the patients who achieved nodal pathologic complete response (pCR), accurate staging of axilla by TAD lead to omit axillary lymph node dissection (ALND), decreasing postoperative arm morbidity without a negative effect on overall survival. This study aimed to investigate the ultrasound (US) identification rate and success removal rate of two kinds of ultrasound-visible clips placed in metastatic lymph nodes during TAD procedure. Methods: This prospective study was conducted using patients with clinically T1-3, N1, 2, M0 breast cancer undergoing NAC followed by surgery. A US-visible clip was placed in the suspicious lymph node under US guidance before neoadjuvant chemotherapy. Before surgery, US examination was performed to evaluate the detection rate of clipped node. During the surgery, the clipped node was removed using several localization techniques, including hook-wire localization, dye-injection, or fluorescence technique, followed by a dual-technique SLNB and resection of palpable nodes if present. For the fluorescence technique, after injection of 0.1-0.2 mL of indocyanine green dye (ICG) into the clipped node, ICG fluorescent imaging was performed using the Photodynamic Eye infrared camera (Hamamatsu Photonics k. k., Shizuoka, Japan). For the dye injection method, 0.1-0.2 mL of pyoktanin blue dye was injected into the clipped node. Results: A total of 29 patients were enrolled. Hydromark™ breast biopsy site markers (Hydromark, T3 shape; Devicor Medical Japan, Tokyo, Japan) was used in 15patients, whereas a UltraCor™ Twirl™ breast marker (Twirl; C.R. Bard, Inc, NJ, USA) was placed in 14 patients. US identified the clipped node marked with the UltraCore Twirl in 100% (14/14) and with the Hydromark in 93.3% (14/15, p = ns). Success removal of clipped node marked with the UltraCore Twirl was achieved in 100% (14/14), whereas the node marked with the Hydromark was removed in 80% (12/15) (p = ns). Conclusions: The ultrasound identification rate differed between the two types of ultrasound-visible clips, which also affected the success removal rate of clipped nodes. Labelling the positive node with a US-highly-visible clip allowed successful TAD.

Keywords: breast cancer, neoadjuvant chemotherapy, targeted axillary dissection, breast tissue marker, clip

Procedia PDF Downloads 66