Search results for: power distance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7990

Search results for: power distance

7240 Genetic Diversity Analysis in Ecological Populations of Persian Walnut

Authors: Masoud Sheidai, Fahimeh Koohdar, Hashem Sharifi

Abstract:

Juglans regia (L.) commonly known as Persian walnut of the genus Juglans L. (Juglandaceae) is one of the most important cultivated plant species due to its high-quality wood and edible nuts. The genetic diversity analysis is essential for conservation and management of tree species. Persian walnut is native from South-Eastern Europe to North-Western China through Tibet, Nepal, Northern India, Pakistan, and Iran. The species like Persian walnut, which has a wide range of geographical distribution, should harbor extensive genetic variability to adapt to environmental fluctuations they face. We aimed to study the population genetic structure of seven Persian walnut populations including three wild and four cultivated populations by using ISSR (Inter simple sequence repeats) and SRAP (Sequence related amplified polymorphism) molecular markers. We also aimed to compare the genetic variability revealed by ISSR neutral multilocus marker and rDNA ITS sequences. The studied populations differed in morphological features as the samples in each population were clustered together and were separate from the other populations. Three wild populations studied were placed close to each other. The mantel test after 5000 times permutation performed between geographical distance and morphological distance in Persian walnut populations produced significant correlation (r = 0.48, P = 0.002). Therefore, as the populations become farther apart, they become more divergent in morphological features. ISSR analysis produced 47 bands/ loci, while we obtained 15 SRAP bands. Gst and other differentiation statistics determined for these loci revealed that most of the ISSR and SRAP loci have very good discrimination power and can differentiate the studied populations. AMOVA performed for these loci produced a significant difference (< 0.05) supporting the above-said result. AMOVA produced significant genetic difference based on ISSR data among the studied populations (PhiPT = 0.52, P = 0.001). AMOVA revealed that 53% of the total variability is due to among population genetic difference, while 47% is due to within population genetic variability. The results showed that both multilocus molecular markers and ITS sequences can differentiate Persian walnut populations. The studied populations differed genetically and showed isolation by distance (IBD). ITS sequence based MP and Bayesian phylogenetic trees revealed that Iranian walnut cultivars form a distinct clade separated from the cultivars studied from elsewhere. Almost all clades obtained have high bootstrap value. The results indicated that a combination of multilpcus and sequencing molecular markers can be used in genetic differentiation of Persian walnut.

Keywords: genetic diversity, population, molecular markers, genetic difference

Procedia PDF Downloads 157
7239 Re-Imagining and De-Constructing the Global Security Architecture

Authors: Smita Singh

Abstract:

The paper develops a critical framework to the hegemonic discourses resorted to by the dominant powers in the global security architecture. Within this framework, security is viewed as a discourse through which identities and threats are represented and produced to legitimize the security concerns of few at the cost of others. International security have long been driven and dominated by power relations. Since the end of the Cold War, the global transformations have triggered contestations to the idea of security at both theoretical and practical level. These widening and deepening of the concept of security have challenged the existing power hierarchies at the theoretical level but not altered the substance and actors defining it. When discourses are introduced into security studies, several critical questions erupt: how has power shaped security policies of the globe through language? How does one understand the meanings and impact of those discourses? Who decides the agenda, rules, players and outliers of the security? Language as a symbolic system and form of power is fluid and not fixed. Over the years the dominant Western powers, led by the United States of America have employed various discursive practices such as humanitarian intervention, responsibility to protect, non proliferation, human rights, war on terror and so on to reorient the constitution of identities and interests and hence the policies that need to be adopted for its actualization. These power relations are illustrated in this paper through the narratives used in the nonproliferation regime. The hierarchical security dynamics is a manifestation of the global power relations driven by many factors including discourses.

Keywords: hegemonic discourse, global security, non-proliferation regime, power politics

Procedia PDF Downloads 313
7238 Advanced CoMP Scheme for LTE-based V2X System

Authors: Su-Hyun Jung, Young-Su Ryu, Yong-Jun Kim, Hyoung-Kyu Song

Abstract:

In this paper, a highly efficient coordinated multiple-point (CoMP) scheme for vehicular communication is proposed. The proposed scheme controls the transmit power and applies proper transmission scheme for the various situations. The proposed CoMP scheme provides comparable performance to the conventional dynamic cell selection (DCS) scheme. Moreover, this scheme provides improved power efficiency compared with the conventional joint transmission (JT) scheme. Simulation results show that the proposed scheme can achieve more enhanced performance with the high power efficiency and improve the cell capacity.

Keywords: CoMP, LTE-A, V2I, V2V, V2X.

Procedia PDF Downloads 577
7237 Assessing Available Power from a Renewable Energy Source in the Southern Hemisphere using Anisotropic Model

Authors: Asowata Osamede, Trudy Sutherland

Abstract:

The purpose of this paper is to assess the available power from a Renewable Energy Source (off-grid photovoltaic (PV) panel) in the Southern Hemisphere using anisotropic model. Direct solar radiation is the driving force in photovoltaics. In a basic PV panels in the Southern Hemisphere, Power conversion is eminent, and this is achieved by the PV cells converting solar energy into electrical energy. In this research, the results was determined for a 6 month period from September 2022 through February 2023. Preliminary results, which include Normal Probability plot, data analysis - R2 value, effective conversion-time per week and work-time per day, indicate a favorably comparison between the empirical results and the simulation results.

Keywords: power-conversion, mathematical model, PV panels, DC-DC converters, direct solar radiation

Procedia PDF Downloads 76
7236 First Principle Calculation of The Magnetic Properties of Mn-doped 6H-SiC

Authors: M. Al Azri, M. Elzain, K. Bouziane, S. M. Chérif

Abstract:

The electronic and magnetic properties of 6H-SiC with Mn impurities have been calculated using ab-initio calculations. Various configurations of Mn sites and Si and C vacancies were considered. The magnetic coupling between the two Mn atoms at substitutional and interstitials sites with and without vacancies is studied as a function of Mn atoms interatomic distance. It was found that the magnetic interaction energy decreases with increasing distance between the magnetic atoms. The energy levels appearing in the band gap due to vacancies and due to Mn impurities are determined. The calculated DOS’s are used to analyze the nature of the exchange interaction between the impurities. The band coupling model based on the p-d and d-d level repulsions between Mn and SiC has been used to describe the magnetism observed in each configuration. Furthermore, the impacts of applying U to Mn-d orbital on the magnetic moment have also been investigated. The results are used to understand the experimental data obtained on Mn- 6H-SiC (as-implanted and as –annealed) for various Mn concentration (CMn = 0.7%, 1.6%, 7%).

Keywords: ab-initio calculations, diluted magnetic semiconductors, magnetic properties, silicon carbide

Procedia PDF Downloads 282
7235 A Fast and Cost-Effective Method to Monitor Microplastics in Compost and Soiduration of Enterococcus Faecalis Penetration in Environmentally Exposed Root Canals Obturated With Lateral Condensation Technique

Authors: N. Thawornwisit, P. Pradoo, S. Nuypree, L. Jarukasetrporn, S. Jitpukdeebodintra

Abstract:

Objective: The aim of this study was to evaluate the duration of the Enterococcus faecalis (E. faecalis) penetration into the gap between root canal wall and filling material at a 3 to 6 mm distance from the cementoenamel junction (CEJ) in the dislodged temporary filling, in vitro. Material and methods: Thirty-four single root canal mandibular premolars were divided into two experimental groups (N = 15) and one negative control (N = 4). Root canals were prepared and obturated with gutta-percha using lateral condensation technique, X-ray checked, and sterilized. Leakages were set up using the modified bacterial leakage model, and E. faecalis was used as a microbial marker. Leakages were evaluated at 3 and 7 days by culturing gutta-percha and dentine drilled from a 3-6 mm distance from CEJ. Broth turbidity was recorded and compared. Result: All four negative control and the 3-day experimental group showed no broth turbidity. For the 7-day experimental group, there was 33.3% leakage. Conclusion: Penetration of E. faecalis into the gap between root canal wall and filling material at a 3 to 6 mm distance from CEJ in the dislodged temporary filling were not found at three days. However, at seven days of exposure, bacteria could penetrate into the interface of the root canal and filling materials.

Keywords: coronal leakage, bacterial leakage model, enterococcus faecalis

Procedia PDF Downloads 87
7234 Cable Diameter Effect on the Contact Temperature of Power Automotive Connector

Authors: Amine Beloufa, Mohamed Amirat

Abstract:

In the electric vehicle, high power leads to high current; automotive power connector should resist to this high current in order to avoid a serious damage caused by the increase of contact temperature. The purpose of this paper is to analyze experimentally and numerically the effect of the cable diameter variation on the decrease of contact temperature. For this reason, a finite element model was developed to calculate the numerical contact temperature for several cable diameters and several electrical high currents. Also, experimental tests were established in order to validate this numerical model. Results show that the influence of cable diameter on the contact temperature is never neglected.

Keywords: contact temperature, experimental test, finite element, power automotive connector

Procedia PDF Downloads 254
7233 Posts by Influencers Promoting Water Saving: The Impact of Distance and the Perception of Effectiveness on Behavior

Authors: Sancho-Esper Franco, Rodríguez Sánchez Carla, Sánchez Carolina, Orús-Sanclemente Carlos

Abstract:

Water scarcity is a reality that affects many regions of the world and is aggravated by climate change and population growth. Saving water has become an urgent need to ensure the sustainability of the planet and the survival of many communities, where youth and social networks play a key role in promoting responsible practices and adopting habits that contribute to environmental preservation. This study analyzes the persuasion capacity of messages designed to promote pro-environmental behaviors among youth. Specifically, it studies how the efficacy (effectiveness) of the response (personal response efficacy/effectiveness) and the perception of distance from the source of the message influence the water-saving behavior of the audience. To do so, two communication frameworks are combined. First, the Construal Level Theory, which is based on the concept of "psychological distance", that is, people, objects or events can be perceived as psychologically near or far, and this subjective distance (i.e., social, temporal, or spatial) determines their attitudes, emotions, and actions. This perceived distance can be social, temporal, or spatial. This research focuses on studying the spatial distance and social distance generated by cultural differences between influencers and their audience to understand how cultural distance can influence the persuasiveness of a message. Research on the effects of psychological distance between influencers-followers in the pro-environmental field is very limited, being relevant because people could learn specific behaviors suggested by opinion leaders such as influencers in social networks. Second, different approaches to behavioral change suggest that the perceived efficacy of a behavior can explain individual pro-environmental actions. People will be more likely to adopt a new behavior if they perceive that they are capable of performing it (efficacy belief) and that their behavior will effectively contribute to solving that problem (personal response efficacy). It is also important to study the different actors (social and individual) that are perceived as responsible for addressing environmental problems. Specifically, we analyze to what extent the belief individual’s water-saving actions are effective in solving the problem can influence water-saving behavior since this individual effectiveness increases people's sense of obligation and responsibility with the problem. However, in this regard, empirical evidence presents mixed results. Our study addresses the call for experimental studies manipulating different subtypes of response effectiveness to generate robust causal evidence. Based on all the above, this research analyzes whether cultural distance (local vs. international influencer) and the perception of effectiveness of behavior (personal response efficacy) (personal/individual vs. collective) affect the actual behavior and the intention to conserve water of social network users. An experiment of 2 (local influencer vs. international influencer) x 2 (effectiveness of individual vs. collective response) is designed and estimated. The results show that a message from a local influencer appealing to individual responsibility exerts greater influence on intention and actual water-saving behavior, given the cultural closeness between influencer-follower, and the appeal to individual responsibility increases the feeling of obligation to participate in pro-environmental actions. These results offer important implications for social marketing campaigns that seek to promote water conservation.

Keywords: social marketing, influencer, message framing, experiment, personal response efficacy, water saving

Procedia PDF Downloads 55
7232 Comprehensive Analysis of Power Allocation Algorithms for OFDM Based Communication Systems

Authors: Rakesh Dubey, Vaishali Bahl, Dalveer Kaur

Abstract:

The spiralling urge for high rate data transmission over wireless mediums needs intelligent use of electromagnetic resources considering restrictions like power ingestion, spectrum competence, robustness against multipath propagation and implementation intricacy. Orthogonal frequency division multiplexing (OFDM) is a capable technique for next generation wireless communication systems. For such high rate data transfers there is requirement of proper allocation of resources like power and capacity amongst the sub channels. This paper illustrates various available methods of allocating power and the capacity requirement with the constraint of Shannon limit.

Keywords: Additive White Gaussian Noise, Multi-Carrier Modulation, Orthogonal Frequency Division Multiplexing (OFDM), Signal to Noise Ratio (SNR), Water Filling

Procedia PDF Downloads 544
7231 Iris Feature Extraction and Recognition Based on Two-Dimensional Gabor Wavelength Transform

Authors: Bamidele Samson Alobalorun, Ifedotun Roseline Idowu

Abstract:

Biometrics technologies apply the human body parts for their unique and reliable identification based on physiological traits. The iris recognition system is a biometric–based method for identification. The human iris has some discriminating characteristics which provide efficiency to the method. In order to achieve this efficiency, there is a need for feature extraction of the distinct features from the human iris in order to generate accurate authentication of persons. In this study, an approach for an iris recognition system using 2D Gabor for feature extraction is applied to iris templates. The 2D Gabor filter formulated the patterns that were used for training and equally sent to the hamming distance matching technique for recognition. A comparison of results is presented using two iris image subjects of different matching indices of 1,2,3,4,5 filter based on the CASIA iris image database. By comparing the two subject results, the actual computational time of the developed models, which is measured in terms of training and average testing time in processing the hamming distance classifier, is found with best recognition accuracy of 96.11% after capturing the iris localization or segmentation using the Daughman’s Integro-differential, the normalization is confined to the Daugman’s rubber sheet model.

Keywords: Daugman rubber sheet, feature extraction, Hamming distance, iris recognition system, 2D Gabor wavelet transform

Procedia PDF Downloads 61
7230 The Influence of Disturbances Generated by Arc Furnaces on the Power Quality

Authors: Z. Olczykowski

Abstract:

The paper presents the impact of work on the electric arc furnace. Arc equipment is one of the largest receivers powered by the power system. Electric arc disturbances arising during melting process occurring in these furnaces are the cause of an abrupt change of the passive power of furnaces. Currents drawn by these devices undergo an abrupt change, which in turn cause voltage fluctuations and light flicker. The quantitative evaluation of the voltage fluctuations is now the basic criterion of assessment of an influence of unquiet receiver on the supplying net. The paper presents the method of determination of range of voltage fluctuations and light flicker at parallel operation of arc devices. The results of measurements of voltage fluctuations and light flicker indicators recorded in power supply networks of steelworks were presented, with different number of parallel arc devices. Measurements of energy quality parameters were aimed at verifying the proposed method in practice. It was also analyzed changes in other parameters of electricity: the content of higher harmonics, asymmetry, voltage dips.

Keywords: power quality, arc furnaces, propagation of voltage fluctuations, disturbances

Procedia PDF Downloads 132
7229 Electromagnetic Assessment of Submarine Power Cable Degradation Using Finite Element Method and Sensitivity Analysis

Authors: N. Boutra, N. Ravot, J. Benoit, O. Picon

Abstract:

Submarine power cables used for offshore wind farms electric energy distribution and transmission are subject to numerous threats. Some of the risks are associated with transport, installation and operating in harsh marine environment. This paper describes the feasibility of an electromagnetic low frequency sensing technique for submarine power cable failure prediction. The impact of a structural damage shape and material variability on the induced electric field is evaluated. The analysis is performed by modeling the cable using the finite element method, we use sensitivity analysis in order to identify the main damage characteristics affecting electric field variation. Lastly, we discuss the results obtained.

Keywords: electromagnetism, finite element method, sensitivity analysis, submarine power cables

Procedia PDF Downloads 348
7228 Compensation for Victims of Crime and Abuse of Power in Nigeria

Authors: Kolawole Oyekan Jamiu

Abstract:

In Nigerian criminal law, a victim of an offence plays little or no role in the prosecution of an offender. The state concentrates only on imposing punishment on the offender while the victims of crime and abuse of power by security agencies are abandoned without any compensation either from the State or the offender. It has been stated that the victim of crime is the forgotten man in our criminal justice system. He sets the criminal law in motion but then goes into oblivion. Our present criminal law does not recognise the right of the victim to take part in the prosecution of the case or his right to compensation. The victim is merely a witness in a state versus case. This paper examines the meaning of the phrase ‘the victims of crime and abuse of power’. It needs to be noted that there is no definition of these two categories of victims in any statute in Nigeria. The paper also considers the United Nations General Assembly Declaration of Basic Principle of Justice for Victims and abuse of power. This declaration was adopted by the United Nations General Assembly on the 25th of November 1985. The declaration contains copious provisions on compensation for the victims of crime and abuse of power. Unfortunately, the declaration is not, in itself a legally binding instrument and has been given little or no attention since the coming into effect in1985. This paper examines the role of the judiciary in ensuring that victims of crime and abuse of power in Nigeria are compensated. While some Judges found it difficult to award damages to victims of abuse of power others have given some landmark rulings and awarded substantial damages. The criminal justice ( victim’s remedies) Bill shall also be examined. The Bill comprises of 74 sections and it spelt out the procedures for compensating the victims of crime and abuse of power in Nigeria. Finally, the paper also examines the practicability of awarding damages to victims of crime whether the offender is convicted or not and in addition, the possibility of granting all equitable remedies available in civil cases to victims of crime and abuse of power so that the victims will be restored to the earlier position before the crime.

Keywords: compensation, damages, restitution, victims

Procedia PDF Downloads 711
7227 A Deep Learning Approach to Real Time and Robust Vehicular Traffic Prediction

Authors: Bikis Muhammed, Sehra Sedigh Sarvestani, Ali R. Hurson, Lasanthi Gamage

Abstract:

Vehicular traffic events have overly complex spatial correlations and temporal interdependencies and are also influenced by environmental events such as weather conditions. To capture these spatial and temporal interdependencies and make more realistic vehicular traffic predictions, graph neural networks (GNN) based traffic prediction models have been extensively utilized due to their capability of capturing non-Euclidean spatial correlation very effectively. However, most of the already existing GNN-based traffic prediction models have some limitations during learning complex and dynamic spatial and temporal patterns due to the following missing factors. First, most GNN-based traffic prediction models have used static distance or sometimes haversine distance mechanisms between spatially separated traffic observations to estimate spatial correlation. Secondly, most GNN-based traffic prediction models have not incorporated environmental events that have a major impact on the normal traffic states. Finally, most of the GNN-based models did not use an attention mechanism to focus on only important traffic observations. The objective of this paper is to study and make real-time vehicular traffic predictions while incorporating the effect of weather conditions. To fill the previously mentioned gaps, our prediction model uses a real-time driving distance between sensors to build a distance matrix or spatial adjacency matrix and capture spatial correlation. In addition, our prediction model considers the effect of six types of weather conditions and has an attention mechanism in both spatial and temporal data aggregation. Our prediction model efficiently captures the spatial and temporal correlation between traffic events, and it relies on the graph attention network (GAT) and Bidirectional bidirectional long short-term memory (Bi-LSTM) plus attention layers and is called GAT-BILSTMA.

Keywords: deep learning, real time prediction, GAT, Bi-LSTM, attention

Procedia PDF Downloads 66
7226 Effect of the Distance Between the Cold Surface and the Hot Surface on the Production of a Simple Solar Still

Authors: Hiba Akrout, Khaoula Hidouri, Béchir Chaouachi, Romdhane Ben Slama

Abstract:

A simple solar distiller has been constructed in order to desalt water via the solar distillation process. An experimental study has been conducted in June. The aim of this work is to study the effect of the distance between the cold condensing surface and the hot steam generation surface in order to optimize the geometric characteristics of a simple solar still. To do this, we have developed a mathematical model based on thermal and mass equations system. Subsequently, the equations system resolution has been made through a program developed on MATLAB software, which allowed us to evaluate the production of this system as a function of the distance separating the two surfaces. In addition, this model allowed us to determine the evolution of the humid air temperature inside the solar still as well as the humidity ratio profile all over the day. Simulations results show that the solar distiller production, as well as the humid air temperature, are proportional to the global solar radiation. It was also found that the air humidity ratio inside the solar still has a similar evolution of that of solar radiation. Moreover, the solar distiller average height augmentation, for constant water depth, induces the diminution of the production. However, increasing the water depth for a fixed average height of solar distiller reduces the production.

Keywords: distillation, solar energy, heat transfer, mass transfer, average height

Procedia PDF Downloads 137
7225 Optimal Selection of Replenishment Policies Using Distance Based Approach

Authors: Amit Gupta, Deepak Juneja, Sorabh Gupta

Abstract:

This paper presents a model based on distance based approach (DBA) method employed for evaluation, selection, and ranking of replenishment policies for a single location inventory, which hitherto not developed in the literature. This work recognizes the significance of the selection problem, identifies the selection criteria, the relative importance of selection criteria for this research problem. The developed model is capable of comparing any number of alternate inventory policies for various selection criteria where cardinal values are assigned as a rating to alternate inventory polices for selection criteria and weights of selection criteria. The illustrated example demonstrates the model and presents the result in terms of ranking of replenishment policies.

Keywords: DBA, ranking, replenishment policies, selection criteria

Procedia PDF Downloads 150
7224 Evaluation of PV Orientation Effect on Mismatch between Consumption Load and PV Power Profiles

Authors: Iyad M. Muslih, Yehya Abdellatif, Sara Qutishat

Abstract:

Renewable energy and in particular solar photovoltaic energy is emerging as a reasonable power generation source. The intermittent and unpredictable nature of solar energy can represent a serious challenge to the utility grids, specifically at relatively high penetration. To minimize the impact of PV power systems on the grid, self-consumption is encouraged. Self-consumption can be improved by matching the PV power generation with the electrical load consumption profile. This study will focus in studying different load profiles and comparing them to typical solar PV power generation at the selected sites with the purpose of analyzing the mismatch in consumption load profile for different users; residential, commercial, and industrial versus the solar photovoltaic output generation. The PV array orientation can be adjusted to reduce the mismatch effects. The orientation shift produces a corresponding shift in the energy production curve. This shift has a little effect on the mismatch for residential loads due to the fact the peak load occurs at night due to lighting loads. This minor gain does not justify the power production loss associated with the orientation shift. The orientation shift for both commercial and industrial cases lead to valuable decrease in the mismatch effects. Such a design is worth considering for reducing grid penetration. Furthermore, the proposed orientation shift yielded better results during the summer time due to the extended daylight hours.

Keywords: grid impact, HOMER, power mismatch, solar PV energy

Procedia PDF Downloads 600
7223 Security Over OFDM Fading Channels with Friendly Jammer

Authors: Munnujahan Ara

Abstract:

In this paper, we investigate the effect of friendly jamming power allocation strategies on the achievable average secrecy rate over a bank of parallel fading wiretap channels. We investigate the achievable average secrecy rate in parallel fading wiretap channels subject to Rayleigh and Rician fading. The achievable average secrecy rate, due to the presence of a line-of-sight component in the jammer channel is also evaluated. Moreover, we study the detrimental effect of correlation across the parallel sub-channels, and evaluate the corresponding decrease in the achievable average secrecy rate for the various fading configurations. We also investigate the tradeoff between the transmission power and the jamming power for a fixed total power budget. Our results, which are applicable to current orthogonal frequency division multiplexing (OFDM) communications systems, shed further light on the achievable average secrecy rates over a bank of parallel fading channels in the presence of friendly jammers.

Keywords: fading parallel channels, wire-tap channel, OFDM, secrecy capacity, power allocation

Procedia PDF Downloads 494
7222 Optimal Capacitor Placement in Distribution Using Cuckoo Optimization Algorithm

Authors: Ali Ravangard, S. Mohammadi

Abstract:

Shunt Capacitors have several uses in the electric power systems. They are utilized as sources of reactive power by connecting them in line-to-neutral. Electric utilities have also connected capacitors in series with long lines in order to reduce its impedance. This is particularly common in the transmission level, where the lines have length in several hundreds of kilometers. However, this post will generally discuss shunt capacitors. In distribution systems, shunt capacitors are used to reduce power losses, to improve voltage profile, and to increase the maximum flow through cables and transformers. This paper presents a new method to determine the optimal locations and economical sizing of fixed and/or switched shunt capacitors with a view to power losses reduction and voltage stability enhancement. For solving the problem, a new enhanced cuckoo optimization algorithm is presented.The proposed method is tested on distribution test system and the results show that the algorithm suitable for practical implementation on real systems with any size.

Keywords: capacitor placement, power losses, voltage stability, radial distribution systems

Procedia PDF Downloads 372
7221 Students’ Perspectives on Learning Science Education amidst COVID-19

Authors: Rajan Ghimire

Abstract:

One of the diseases caused by the coronavirus shook the whole world. This situation challenged the education system across the world and compelled educators to shift to an online mode of teaching. Many academic institutions that were persistent to keep their traditional pedagogical approach were also forced to change their teaching methods. This study aims to assess science education students' experiences and perceptions of this global issue, especially on the science teaching and learning process. The study is based on qualitative research and through in-depth interviews with respondents and data is analyzed. Online distance teaching and learning processes meet the requirements of students who cannot or prefer not to participate in conventional classroom settings. But there are some challenges for the students and teachers in the science teaching learning process. This study recommends some points to all stakeholders.

Keywords: electronic devices, internet, online and distance learning, science education, educational policy

Procedia PDF Downloads 43
7220 H∞ Fuzzy Integral Power Control for DFIG Wind Energy System

Authors: N. Chayaopas, W. Assawinchaichote

Abstract:

In order to maximize energy capturing from wind energy, controlling the doubly fed induction generator to have optimal power from the wind, generator speed and output electrical power control in wind energy system have a great importance due to the nonlinear behavior of wind velocities. In this paper purposes the design of a control scheme is developed for power control of wind energy system via H∞ fuzzy integral controller. Firstly, the nonlinear system is represented in term of a TS fuzzy control design via linear matrix inequality approach to find the optimal controller to have an H∞ performance are derived. The proposed control method extract the maximum energy from the wind and overcome the nonlinearity and disturbances problems of wind energy system which give good tracking performance and high efficiency power output of the DFIG.

Keywords: doubly fed induction generator, H-infinity fuzzy integral control, linear matrix inequality, wind energy system

Procedia PDF Downloads 342
7219 Response of Full-Scale Room Building Against Blast Loading

Authors: Eid Badshah, Amjad Naseer, Muhammad Ashraf

Abstract:

In this paper full-scale brick masonry room along with the veranda of a typical school building was subjected to eight successive blast tests with increasing charge weights ranging from 0.5kg to 16.02kg at 3.66m fixed stand-off distance. Pressure-time histories were obtained by data acquisition system from pressure sensors, installed on different points of room as well as veranda columns. The resulting damage pattern of different locations was observed during each test. Weak zones of masonry room were identified. Scaled distances for different damage levels in masonry room were experimentally obtained. The results provided a basis for determining the response of masonry room building against blast loading in a specific threat scenario.

Keywords: peak pressure, composition-B, TNT, pressure sensor, scaled distance, masonry

Procedia PDF Downloads 119
7218 On the Added Value of Probabilistic Forecasts Applied to the Optimal Scheduling of a PV Power Plant with Batteries in French Guiana

Authors: Rafael Alvarenga, Hubert Herbaux, Laurent Linguet

Abstract:

The uncertainty concerning the power production of intermittent renewable energy is one of the main barriers to the integration of such assets into the power grid. Efforts have thus been made to develop methods to quantify this uncertainty, allowing producers to ensure more reliable and profitable engagements related to their future power delivery. Even though a diversity of probabilistic approaches was proposed in the literature giving promising results, the added value of adopting such methods for scheduling intermittent power plants is still unclear. In this study, the profits obtained by a decision-making model used to optimally schedule an existing PV power plant connected to batteries are compared when the model is fed with deterministic and probabilistic forecasts generated with two of the most recent methods proposed in the literature. Moreover, deterministic forecasts with different accuracy levels were used in the experiments, testing the utility and the capability of probabilistic methods of modeling the progressively increasing uncertainty. Even though probabilistic approaches are unquestionably developed in the recent literature, the results obtained through a study case show that deterministic forecasts still provide the best performance if accurate, ensuring a gain of 14% on final profits compared to the average performance of probabilistic models conditioned to the same forecasts. When the accuracy of deterministic forecasts progressively decreases, probabilistic approaches start to become competitive options until they completely outperform deterministic forecasts when these are very inaccurate, generating 73% more profits in the case considered compared to the deterministic approach.

Keywords: PV power forecasting, uncertainty quantification, optimal scheduling, power systems

Procedia PDF Downloads 76
7217 Comparative Study of IC and Perturb and Observe Method of MPPT Algorithm for Grid Connected PV Module

Authors: Arvind Kumar, Manoj Kumar, Dattatraya H. Nagaraj, Amanpreet Singh, Jayanthi Prattapati

Abstract:

The purpose of this paper is to study and compare two maximum power point tracking (MPPT) algorithms in a photovoltaic simulation system and also show a simulation study of maximum power point tracking (MPPT) for photovoltaic systems using perturb and observe algorithm and Incremental conductance algorithm. Maximum power point tracking (MPPT) plays an important role in photovoltaic systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize the array efficiency and minimize the overall system cost. Since the maximum power point (MPP) varies, based on the irradiation and cell temperature, appropriate algorithms must be utilized to track the (MPP) and maintain the operation of the system in it. MATLAB/Simulink is used to establish a model of photovoltaic system with (MPPT) function. This system is developed by combining the models established of solar PV module and DC-DC Boost converter. The system is simulated under different climate conditions. Simulation results show that the photovoltaic simulation system can track the maximum power point accurately.

Keywords: incremental conductance algorithm, perturb and observe algorithm, photovoltaic system, simulation results

Procedia PDF Downloads 549
7216 A Computational Cost-Effective Clustering Algorithm in Multidimensional Space Using the Manhattan Metric: Application to the Global Terrorism Database

Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami

Abstract:

The increasing amount of collected data has limited the performance of the current analyzing algorithms. Thus, developing new cost-effective algorithms in terms of complexity, scalability, and accuracy raised significant interests. In this paper, a modified effective k-means based algorithm is developed and experimented. The new algorithm aims to reduce the computational load without significantly affecting the quality of the clusterings. The algorithm uses the City Block distance and a new stop criterion to guarantee the convergence. Conducted experiments on a real data set show its high performance when compared with the original k-means version.

Keywords: pattern recognition, global terrorism database, Manhattan distance, k-means clustering, terrorism data analysis

Procedia PDF Downloads 380
7215 Modelling and Simulation of Natural Gas-Fired Power Plant Integrated to a CO2 Capture Plant

Authors: Ebuwa Osagie, Chet Biliyok, Yeung Hoi

Abstract:

Regeneration energy requirement and ways to reduce it is the main aim of most CO2 capture researches currently being performed and thus, post-combustion carbon capture (PCC) option is identified to be the most suitable for the natural gas-fired power plants. From current research and development (R&D) activities worldwide, two main areas are being examined in order to reduce the regeneration energy requirement of amine-based PCC, namely: (a) development of new solvents with better overall performance than 30wt% monoethanolamine (MEA) aqueous solution, which is considered as the base-line solvent for solvent-based PCC, (b) Integration of the PCC Plant to the power plant. In scaling-up a PCC pilot plant to the size required for a commercial-scale natural gas-fired power plant, process modelling and simulation is very essential. In this work, an integrated process made up of a 482MWe natural gas-fired power plant, an MEA-based PCC plant which is developed and validated has been modelled and simulated. The PCC plant has four absorber columns and a single stripper column, the modelling and simulation was performed with Aspen Plus® V8.4. The gas turbine, the heat recovery steam generator and the steam cycle were modelled based on a 2010 US DOE report, while the MEA-based PCC plant was modelled as a rate-based process. The scaling of the amine plant was performed using a rate based calculation in preference to the equilibrium based approach for 90% CO2 capture. The power plant was integrated to the PCC plant in three ways: (i) flue gas stream from the power plant which is divided equally into four stream and each stream is fed into one of the four absorbers in the PCC plant. (ii) Steam draw-off from the IP/LP cross-over pipe in the steam cycle of the power plant used to regenerate solvent in the reboiler. (iii) Condensate returns from the reboiler to the power plant. The integration of a PCC plant to the NGCC plant resulted in a reduction of the power plant output by 73.56 MWe and the net efficiency of the integrated system is reduced by 7.3 % point efficiency. A secondary aim of this study is the parametric studies which have been performed to assess the impacts of natural gas on the overall performance of the integrated process and this is achieved through investigation of the capture efficiencies.

Keywords: natural gas-fired, power plant, MEA, CO2 capture, modelling, simulation

Procedia PDF Downloads 440
7214 A Ku/K Band Power Amplifier for Wireless Communication and Radar Systems

Authors: Meng-Jie Hsiao, Cam Nguyen

Abstract:

Wide-band devices in Ku band (12-18 GHz) and K band (18-27 GHz) have received significant attention for high-data-rate communications and high-resolution sensing. Especially, devices operating around 24 GHz is attractive due to the 24-GHz unlicensed applications. One of the most important components in RF systems is power amplifier (PA). Various PAs have been developed in the Ku and K bands on GaAs, InP, and silicon (Si) processes. Although the PAs using GaAs or InP process could have better power handling and efficiency than those realized on Si, it is very hard to integrate the entire system on the same substrate for GaAs or InP. Si, on the other hand, facilitates single-chip systems. Hence, good PAs on Si substrate are desirable. Especially, Si-based PA having good linearity is necessary for next generation communication protocols implemented on Si. We report a 16.5 to 25.5 GHz Si-based PA having flat saturated power of 19.5 ± 1.5 dBm, output 1-dB power compression (OP1dB) of 16.5 ± 1.5 dBm, and 15-23 % power added efficiency (PAE). The PA consists of a drive amplifier, two main amplifiers, and lump-element Wilkinson power divider and combiner designed and fabricated in TowerJazz 0.18µm SiGe BiCMOS process having unity power gain frequency (fMAX) of more than 250 GHz. The PA is realized as a cascode amplifier implementing both heterojunction bipolar transistor (HBT) and n-channel metal–oxide–semiconductor field-effect transistor (NMOS) devices for gain, frequency response, and linearity consideration. Particularly, a body-floating technique is utilized for the NMOS devices to improve the voltage swing and eliminate parasitic capacitances. The developed PA has measured flat gain of 20 ± 1.5 dB across 16.5-25.5 GHz. At 24 GHz, the saturated power, OP1dB, and maximum PAE are 20.8 dBm, 18.1 dBm, and 23%, respectively. Its high performance makes it attractive for use in Ku/K-band, especially 24 GHz, communication and radar systems. This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Keywords: power amplifiers, amplifiers, communication systems, radar systems

Procedia PDF Downloads 102
7213 An Efficient Tool for Mitigating Voltage Unbalance with Reactive Power Control of Distributed Grid-Connected Photovoltaic Systems

Authors: Malinwo Estone Ayikpa

Abstract:

With the rapid increase of grid-connected PV systems over the last decades, genuine challenges have arisen for engineers and professionals of energy field in the planning and operation of existing distribution networks with the integration of new generation sources. However, the conventional distribution network, in its design was not expected to receive other generation outside the main power supply. The tools generally used to analyze the networks become inefficient and cannot take into account all the constraints related to the operation of grid-connected PV systems. Some of these constraints are voltage control difficulty, reverse power flow, and especially voltage unbalance which could be due to the poor distribution of single-phase PV systems in the network. In order to analyze the impact of the connection of small and large number of PV systems to the distribution networks, this paper presents an efficient optimization tool that minimizes voltage unbalance in three-phase distribution networks with active and reactive power injections from the allocation of single-phase and three-phase PV plants. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. Good reduction of voltage unbalance can be achieved by reactive power control of the PV systems. The presented tool is based on the three-phase current injection method and the PV systems are modeled via an equivalent circuit. The primal-dual interior point method is used to obtain the optimal operating points for the systems.

Keywords: Photovoltaic system, Primal-dual interior point method, Three-phase optimal power flow, Voltage unbalance

Procedia PDF Downloads 328
7212 The Response of LCC to DC System Faults and HVDC Re-Establishment

Authors: Mesbah Tarek, Kelaiaia Samia, Chiheb Sofien, Kelaiaia Mounia Samira, Labar Hocine

Abstract:

As every power systems short circuit failure can occur for HVDC at the DC link. So, the power devices should be protected against over heath produced by this over-current. This can be achieved through the power switchers or fast breaker. After short circuit the system is unable to restart, only after a time delay, because of the potential distribution along the DC link line. An appropriate fast and safety control is proposed and tested successfully. The detailed development and discussion of these faults is presented in this paper.

Keywords: HVDC, DC link, switchers, short circuit, faults

Procedia PDF Downloads 569
7211 Potential Opportunity and Challenge of Developing Organic Rankine Cycle Geothermal Power Plant in China Based on an Energy-Economic Model

Authors: Jiachen Wang, Dongxu Ji

Abstract:

Geothermal power generation is a mature technology with zero carbon emission and stable power output, which could play a vital role as an optimum substitution of base load technology in China’s future decarbonization society. However, the development of geothermal power plants in China is stagnated for a decade due to the underestimation of geothermal energy and insufficient favoring policy. Lack of understanding of the potential value of base-load technology and environmental benefits is the critical reason for disappointed policy support. This paper proposed a different energy-economic model to uncover the potential benefit of developing a geothermal power plant in Puer, including the value of base-load power generation, and environmental and economic benefits. Optimization of the Organic Rankine Cycle (ORC) for maximum power output and minimum Levelized cost of electricity was first conducted. This process aimed at finding the optimum working fluid, turbine inlet pressure, pinch point temperature difference and superheat degrees. Then the optimal ORC model was sent to the energy-economic model to simulate the potential economic and environmental benefits. Impact of geothermal power plants based on the scenarios of implementing carbon trade market, the direct subsidy per electricity generation and nothing was tested. In addition, a requirement of geothermal reservoirs, including geothermal temperature and mass flow rate for a competitive power generation technology with other renewables, was listed. The result indicated that the ORC power plant has a significant economic and environmental benefit over other renewable power generation technologies when implementing carbon trading market and subsidy support. At the same time, developers must locate the geothermal reservoirs with minimum temperature and mass flow rate of 130 degrees and 50 m/s to guarantee a profitable project under nothing scenarios.

Keywords: geothermal power generation, optimization, energy model, thermodynamics

Procedia PDF Downloads 62