Search results for: dusty plasma
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1035

Search results for: dusty plasma

285 Physiological Roles of Relaxin on Prefertilizing Activities of Spermatozoa

Authors: A. G. Miah, U. Salma, K. Schellander

Abstract:

Relaxin was first described in 1926 by Frederick Hisaw. Previously it was considered as only the hormone of pregnant mammals due to its important roles in pregnancy and parturition. From the last decade, the physiological role of relaxin in male reproduction has been given experimental attention, and the results have made it clear that relaxin can no longer be considered strictly as only the hormone of female reproduction. The accessory glands (specially, the prostate glands) of the male reproductive system are the source of seminal relaxin, which is secreted into the seminal plasma and saturated with spermatozoa just after ejaculation. Several studies have reported that relaxin has important roles in improving motility in human sperm. Thereafter, the growing interest on relaxin has intensified efforts to investigate the role of relaxin in other sperm physiological phenomena like, capacitation, acrosome reaction, and their mediating factors associated with successful fertilization. Therefore, this review aims to provide up-to-date information about the physiological roles of relaxin in sperm motility, capacitation, acrosome reaction, and their mediating factors, such as, utilization of glucose, cholesterol efflux, Ca2+-influx, intracellular cAMP and protein tyrosine phosphorylation. Some studies have shown relaxin to increase the percentage of progressive motility and induce capacitation and acrosome reaction through increasing the utilization of glucose and mediating the cholesterol efflux, Ca2+-influx, intracellular cAMP and protein tyrosine phosphorylation. Thus, the review suggests that the supplementation of relaxin into the capacitating medium may contribute the possible beneficial roles in fresh and cryopreserved spermatozoal prefertilization events.

Keywords: relaxin, physiological roles, prefertilizing activities, spermatozoa

Procedia PDF Downloads 568
284 Thin Films of Glassy Carbon Prepared by Cluster Deposition

Authors: Hatem Diaf, Patrice Melinon, Antonio Pereira, Bernard Moine, Nicholas Blanchard, Florent Bourquard, Florence Garrelie, Christophe Donnet

Abstract:

Glassy carbon exhibits excellent biological compatibility with live tissues meaning it has high potential for applications in life science. Moreover, glassy carbon has interesting properties including 'high temperature resistance', hardness, low density, low electrical resistance, low friction, and low thermal resistance. The structure of glassy carbon has long been a subject of debate. It is now admitted that glassy carbon is 100% sp2. This term is a little bit confusing as long sp2 hybridization defined from quantum chemistry is related to both properties: threefold configuration and pi bonding (parallel pz orbitals). Using plasma laser deposition of carbon clusters combined with pulsed nano/femto laser annealing, we are able to synthesize thin films of glassy carbon of good quality (probed by G band/ D disorder band ratio in Raman spectroscopy) without thermal post annealing. A careful inspecting of Raman signal, plasmon losses and structure performed by HRTEM (High Resolution Transmission Electron Microscopy) reveals that both properties (threefold and pi orbitals) cannot coexist together. The structure of the films is compared to models including schwarzites based from negatively curved surfaces at the opposite of onions or fullerene-like structures with positively curved surfaces. This study shows that a huge collection of porous carbon named vitreous carbon with different structures can coexist.

Keywords: glassy carbon, cluster deposition, coating, electronic structure

Procedia PDF Downloads 319
283 Risk Assessment of Heavy Metals in River Sediments and Suspended Matter in Small Tributaries of Abandoned Mercury Mines in Wanshan, Guizhou

Authors: Guo-Hui Lu, Jing-Yi Cai, Ke-Yan Tan, Xiao-Cai Yin, Yu Zheng, Peng-Wei Shao, Yong-Liang Yang

Abstract:

Soil erosion around abandoned mines is one of the important geological agents for pollutant diffuses to the lower reaches of the local river basin system. River loading of pollutants is an important parameter for remediation of abandoned mines. In order to obtain information on pollutant transport and diffusion downstream in mining area, the small tributary system of the Xiaxi River in Wanshan District of Guizhou Province was selected as the research area. Sediment and suspended matter samples were collected and determined for Pb, As, Hg, Zn, Co, Cd, Cu, Ni, Cr, and Mn by inductively coupled plasma mass spectrometry (ICP-MS) and atomic fluorescence spectrometry (AFS) with the pretreatment of wet digestion. Discussions are made for pollution status and spatial distribution characteristics. The total Hg content in the sediments ranged from 0.45 to 16.0 g/g (dry weight) with an average of 5.79 g/g, which was ten times higher than the limit of Class II soil for mercury by the National Soil Environmental Quality Standard. The maximum occurred at the intersection of the Jin River and the Xiaxi River. The potential ecological hazard index (RI) was used to evaluate the ecological risk of heavy metals in the sediments. The average RI value for the whole study area suggests the high potential ecological risk level. High Cd potential ecological risk was found at individual sites.

Keywords: heavy metal, risk assessment, sediment, suspended matter, Wanshan mercury mine, small tributary system

Procedia PDF Downloads 129
282 Wear Resistance and Thermal Stability of Tungsten Boride Layers Deposited by Magnetron Sputtering

Authors: Justyna Chrzanowska, Jacek Hoffman, Dariusz Garbiec, Łukasz Kurpaska, Piotr Denis, Tomasz Moscicki, Zygmunt Szymanski

Abstract:

Tungsten and boron compounds belong to the group of superhard materials and its hardness could exceed 40 GPa. In this study, the properties of the tungsten boride (WB) layers deposited in magnetron sputtering process are investigated. The sputtering process occurred from specially prepared targets that were composed of boron and tungsten mixed in molar ratio of 2.5 or 4.5 and sintered in spark plasma sintering process. WB layers were deposited on silicon (100) and stainless steel 304 substrates at room temperature (RT) or in 570 °C. Layers deposited in RT and in elevated temperature varied considerably. Layers deposited in RT are amorphous and have low adhesion. In contrast, the layers deposited in 570 °C are crystalline and have good adhesion. All deposited layers have a hardness about 40 GPa. Moreover, the friction coefficient of crystalline layers is 0.22 and wear rate is about 0.67•10-6 mm3N-1m-1. After material characterization the WB layers were annealed in argon atmosphere in 1000 °C for 1 hour. On the basis of X-Ray Diffraction analysis, it has been noted that the crystalline layers are thermally stable and do not change their phase composition, whereas the amorphous layers change their phase composition. Moreover, after annealing, on the surface of WB layers some cracks were observed. It is probably connected with the differences of the thermal expansion between the layer and the substrate. Despite of the presence of cracks, the wear resistance of annealed layers is still higher than the wear resistance of uncoated substrate. The analysis of the structure and properties of tungsten boride layers lead to the discussion about the application area of this material.

Keywords: hard coatings, hard materials, magnetron sputtering, mechanical properties, tungsten boride

Procedia PDF Downloads 288
281 Electrochemical Modification of Boron Doped Carbon Nanowall Electrodes for Biosensing Purposes

Authors: M. Kowalski, M. Brodowski, K. Dziabowska, E. Czaczyk, W. Bialobrzeska, N. Malinowska, S. Zoledowska, R. Bogdanowicz, D. Nidzworski

Abstract:

Boron-doped-carbon nanowall (BCNW) electrodes are recently in much interest among scientists. BCNWs are good candidates for biosensor purposes as they possess interesting electrochemical characteristics like a wide potential range and the low difference between redox peaks. Moreover, from technical parameters, they are mechanically resistant and very tough. The production process of the microwave plasma-enhanced chemical vapor deposition (MPECVD) allows boron to build into the structure of the diamond being formed. The effect is the formation of flat, long structures with sharp ends. The potential of these electrodes was checked in the biosensing field. The procedure of simple carbon electrodes modification by antibodies was adopted to BCNW for specific antigen recognition. Surface protein D deriving from H. influenzae pathogenic bacteria was chosen as a target analyte. The electrode was first modified with the aminobenzoic acid diazonium salt by electrografting (electrochemical reduction), next anti-protein D antibodies were linked via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) chemistry, and free sites were blocked by BSA. Cyclic voltammetry measurements confirmed the proper electrode modification. Electrochemical impedance spectroscopy records indicated protein detection. The sensor was proven to detect protein D in femtograms. This work was supported by the National Centre for Research and Development (NCBR) TECHMATSTRATEG 1/347324/12/NCBR/ 2017.

Keywords: anti-protein D antibodies, boron-doped carbon nanowall, impedance spectroscopy, Haemophilus influenzae.

Procedia PDF Downloads 173
280 Cell-Based and Exosome Treatments for Hair Restoration

Authors: Armin Khaghani Boroujeni, Leila Dehghani, Parham Talebi Boroujeni, Sahar Rostamian, Ali Asilian

Abstract:

Background: Hair loss is a common complaint observed in both genders. Androgenetic alopecia is known pattern for hair loss. To assess new regenerative strategies (PRP, A-SC-BT, conditioned media, exosome-based treatments) compared to conventional therapies for hair loss or hair regeneration, an updated review was undertaken. To address this issue, we carried out this systematic review to comprehensively evaluate the efficacy of cell-based therapies on hair loss. Methods: The available online databases, including ISI Web of Science, Scopus, and PubMed, were searched systematically up to February 2022. The quality assessment of included studies was done using the Cochrane Collaboration's tool. Results: As a result, a total of 90 studies involving 2345 participants were included in the present study. The enrolled studies were conducted between 2010 and 2022. The subjects’ mean age ranged from 19 to 55.11 years old. Approaches using platelet rich plasma (PRP) provide a beneficial impact on hair regrowth. However, other cell-based therapies, including stem cell transplant, stem cell-derived conditioned medium, and stem cell-derived exosomes, revealed conflicting evidence. Conclusion: However, cell-based therapies for hair loss are still in their infancy, and more robust clinical studies are needed to better evaluate their mechanisms of action, efficacy, safety, benefits, and limitations. In this review, we provide the resources to the latest clinical studies and a more detailed description of the latest clinical studies concerning cell-based therapies in hair loss.

Keywords: cell-based therapy, exosome, hair restoration, systematic review

Procedia PDF Downloads 75
279 Efficacy and Safety of Probiotic Treatment in Patients with Liver Cirrhosis: A Systematic Review and Meta-Analysis

Authors: Samir Malhotra, Rajan K. Khandotra, Rakesh K. Dhiman, Neelam Chadha

Abstract:

There is paucity of data about safety and efficacy of probiotic treatment on patient outcomes in cirrhosis. Specifically, it is important to know whether probiotics can improve mortality, hepatic encephalopathy (HE), number of hospitalizations, ammonia levels, quality of life, and adverse events. Probiotics may improve outcomes in patients with acute or chronic HE. However, it is also important to know whether probiotics can prevent development of HE, even in situations where patients do not have acute HE at the time of administration. It is also important to know if probiotics are useful as primary prophylaxis of HE. We aimed to conduct an updated systematic review and meta-analysis to evaluate the safety and efficacy of probiotics in patients with cirrhosis. We searched PubMed, Cochrane library, Embase, Scopus, SCI, Google Scholar, conference proceedings, and references of included studies till June 2017 to identify randomised clinical trials comparing probiotics with other treatments in cirrhotics. Data was analyzed using MedCalc. Probiotics had no effect on mortality but significantly reduced HE (14 trials, 1073 patients, OR 0.371; 95% CI 0.282 to 0.489). There was not enough data to conduct a meta-analysis on outcomes like hospitalizations and quality of life. The effect on plasma ammonia levels was not significant (SMD -0.429; 95%CI -1.034 – 0.177). There was no difference in adverse events. To conclude, although the included studies had a high risk of bias, the available evidence does suggest a beneficial effect on HE. Larger studies with longer periods of follow-up are needed to determine if probiotics can reduce all-cause mortality.

Keywords: cirrhosis, hepatic encephalopathy, meta-analysis, probiotic

Procedia PDF Downloads 201
278 Microfluidic Impedimetric Biochip and Related Methods for Measurement Chip Manufacture and Counting Cells

Authors: Amina Farooq, Nauman Zafar Butt

Abstract:

This paper is about methods and tools for counting particles of interest, such as cells. A microfluidic system with interconnected electronics on a flexible substrate, inlet-outlet ports and interface schemes, sensitive and selective detection of cells specificity, and processing of cell counting at polymer interfaces in a microscale biosensor for use in the detection of target biological and non-biological cells. The development of fluidic channels, planar fluidic contact ports, integrated metal electrodes on a flexible substrate for impedance measurements, and a surface modification plasma treatment as an intermediate bonding layer are all part of the fabrication process. Magnetron DC sputtering is used to deposit a double metal layer (Ti/Pt) over the polypropylene film. Using a photoresist layer, specified and etched zones are established. Small fluid volumes, a reduced detection region, and electrical impedance measurements over a range of frequencies for cell counts improve detection sensitivity and specificity. The procedure involves continuous flow of fluid samples that contain particles of interest through the microfluidic channels, counting all types of particles in a portion of the sample using the electrical differential counter to generate a bipolar pulse for each passing cell—calculating the total number of particles of interest originally in the fluid sample by using MATLAB program and signal processing. It's indeed potential to develop a robust and economical kit for cell counting in whole-blood samples using these methods and similar devices.

Keywords: impedance, biochip, cell counting, microfluidics

Procedia PDF Downloads 160
277 Adaptive Strategies of European Sea Bass (Dicentrarchus labrax) to Ocean Acidification and Salinity Stress

Authors: Nitin Pipralia, Amit Kmar Sinha, Gudrun de Boeck

Abstract:

Atmospheric carbon dioxide (CO2) concentrations have been increasing since the beginning of the industrial revolution due to combustion of fossils fuel and many anthropogenic means. As the number of scenarios assembled by the International Panel on Climate Change (IPCC) predict a rise of pCO2 from today’s 380 μatm to approximately 900 μatm until the year 2100 and a further rise of up to 1900 μatm by the year 2300. A rise in pCO2 results in more dissolution in ocean surface water which lead to cange in water pH, This phenomena of decrease in ocean pH due to increase on pCO2 is ocean acidification is considered a potential threat to the marine ecosystems and expected to affect fish as well as calcerious organisms. The situation may get worste when the stress of salinity adds on, due to migratory movement of fishes, where fish moves to different salinity region for various specific activities likes spawning and other. Therefore, to understand the interactive impact of these whole range of two important environmental abiotic stresses (viz. pCO2 ranging from 380 μatm, 900 μatm and 1900 μatm, along with salinity gradients of 32ppt, 10 ppt and 2.5ppt) on the ecophysiologal performance of fish, we investigated various biological adaptive response in European sea bass (Dicentrarchus labrax), a model estuarine teleost. Overall, we hypothesize that effect of ocean acidification would be exacerbate with shift in ambient salinity. Oxygen consumption, ammonia metabolism, iono-osmoregulation, energy budget, ion-regulatory enzymes, hormones and pH amendments in plasma were assayed as the potential indices of compensatory responses.

Keywords: ocean acidification, sea bass, pH climate change, salinity

Procedia PDF Downloads 226
276 Effect of a Single Injection of hCG on Testosterone Concentration in Male Alpacas

Authors: A. ElZawam, D. McLean, A. Tibary

Abstract:

In alpaca, age at puberty is variable and the factors regulating the pattern of puberty and sexual maturation are a subject of controversy. Plasma testosterone level is often used as an indicator of sexual maturity. Our hypothesis is that hCG treatment will cause an increase in testosterone level that is correlated with animal age. The specific aim was to investigate the testicular tissue response to a single hCG injection by monitoring the serum testosterone concentration. Eighty four (n=84) males ranging in age from 6 to 60 months were used. Alpacas were grouped based on their ages into 15 groups. Each group had three to five male animals. Blood samples were collected from the jugular vein before treatment with hCG and 2 hours after intravenous administration of 3000 IU of hCG (Chorulon®). The serum was harvested and stored at -20ºC until the analysis. The effect of age on basal testosterone level and response to hCG treatment was evaluated by Analysis of Variance. As a result, basal serum testosterone concentrations were very low (<0.1ng/ml) until 9 months of age. Although basal serum testosterone concentrations increased steadily with age there was a significant variation amongst males within the same age group. Administration of 3000 IU of hCG, resulted in an average increase of 50% (P<0.05) in serum testosterone concentration after 2 hours. The percentage increase in serum testosterone in response to hCG stimulation varied from 51 to 81%. There was no correlation between the degree of response and age. However, the response to hCG injection presented two modes of increase depending on the age of animals. The first mode occurred at ages 9 to 14 months and the second mode was observed between 22 and 36 months. In conclusion, our results suggest that testicular growth and sensitivity to LH stimulation may be bimodal in the male alpaca with a rapid increase in growth and sensitivity between 9 and 14 months of age and a second phase of increased responsiveness after 21 months of ages.

Keywords: alpaca, testosterone, hCG, animal science

Procedia PDF Downloads 570
275 Multiple Negative-Differential Resistance Regions Based on AlN/GaN Resonant Tunneling Structures by the Vertical Growth of Molecular Beam Epitaxy

Authors: Yao Jiajia, Wu Guanlin, LIU Fang, Xue Junshuai, Zhang Jincheng, Hao Yue

Abstract:

Resonant tunneling diodes (RTDs) based on GaN have been extensively studied. However, no results of multiple logic states achieved by RTDs were reported by the methods of epitaxy in the GaN materials. In this paper, the multiple negative-differential resistance regions by combining two discrete double-barrier RTDs in series have been first demonstrated. Plasma-assisted molecular beam epitaxy (PA-MBE) was used to grow structures consisting of two vertical RTDs. The substrate was a GaN-on-sapphire template. Each resonant tunneling structure was composed of a double barrier of AlN and a single well of GaN with undoped 4-nm space layers of GaN on each side. The AlN barriers were 1.5 nm thick, and the GaN well was 2 nm thick. The resonant tunneling structures were separated from each other by 30-nm thick n+ GaN layers. The bottom and top layers of the structures, grown neighboring to the spacer layers that consist of 200-nm-thick n+ GaN. These devices with two tunneling structures exhibited uniform peaks and valleys current and also had two negative differential resistance NDR regions equally spaced in bias voltage. The current-voltage (I-V) characteristics of resonant tunneling structures with diameters of 1 and 2 μm were analyzed in this study. These structures exhibit three stable operating points, which are investigated in detail. This research demonstrates that using molecular beam epitaxy MBE to vertically grow multiple resonant tunneling structures is a promising method for achieving multiple negative differential resistance regions and stable logic states. These findings have significant implications for the development of digital circuits capable of multi-value logic, which can be achieved with a small number of devices.

Keywords: GaN, AlN, RTDs, MBE, logic state

Procedia PDF Downloads 92
274 Study of Fork Marks on Sapphire Wafers in Plasma Enhanced Chemical Vapor Deposition Tool

Authors: Qiao Pei Wen, Ng Seng Lee, Sae Tae Veera, Chiu Ah Fong, Loke Weng Onn

Abstract:

Thin film thickness uniformity is crucial to get consistent film etch rate and device yield across the wafer. In the capacitive-coupled parallel plate PECVD system; the film thickness uniformity can be affected by many factors such as the heater temperature uniformity, the spacing between top and bottom electrode, RF power, pressure, gas flows and etc. In this paper, we studied how the PECVD SiN film thickness uniformity is affected by the substrate electrical conductivity and the RF power coupling efficiency. PECVD SiN film was deposited on 150-mm sapphire wafers in 200-mm Lam Sequel tool, fork marks were observed on the wafers. On the fork marks area SiN film thickness is thinner than that on the non-fork area. The forks are the wafer handler inside the process chamber to move the wafers from one station to another. The sapphire wafers and the ceramic forks both are insulator. The high resistivity of the sapphire wafers and the forks inhibits the RF power coupling efficiency during PECVD deposition, thereby reducing the deposition rate. Comparing between the high frequency and low frequency RF power (HFRF and LFRF respectively), the LFRF power coupling effect on the sapphire wafers is more dominant than the HFRF power on the film thickness. This paper demonstrated that the SiN thickness uniformity on sapphire wafers can be improved by depositing a thin TiW layer on the wafer before the SiN deposition. The TiW layer can be on the wafer surface, bottom or any layer before SiN deposition.

Keywords: PECVD SiN deposition, sapphire wafer, substrate electrical conductivity, RF power coupling, high frequency RF power, low frequency RF power, film deposition rate, thickness uniformity

Procedia PDF Downloads 376
273 Obesity, Metabolic Syndrome and Related Risk Behaviors Among Thai Medical Students of Thammasat University

Authors: Patcharapa Thaweekul, Paskorn Sritipsukho

Abstract:

Background: During the training period of the 6-year medical curriculum, medical students seem to have many risk behaviors of developing obesity. This study aims to demonstrate the prevalence and risk behavior of obesity and related metabolic disorders among the final-year medical students of Thammasat University as well as the change in nutritional status during studying program. Methods: 123 participants were asked to complete the self-report questionnaires. Weight, height, waist circumference and blood pressure were obtained. Blood samples were drawn for total cholesterol, high-density lipoprotein, low-density lipoprotein, triglycerides and plasma glucose. Body weight and height of the medical students in the first year were obtained from the medical report at the entry. Results: The prevalence of overweight and obesity at the entry to medical school was 22.0% and increased to 30.1% in the final year. Two obese students (5.4%) was diagnosed as metabolic syndrome. During 6-year curriculum, the BMI gained in male medical students were more significant as compared to female students (1.76±1.74 and 0.43±1.82 kg/m2, respectively; p <.001). The current BMI is significantly correlated with the BMI at entry. Serum LDL-C in the overweight/obese students was significantly higher as compared to the normal weight and underweight group. Sleep deprivation was a significantly frequent behavior in the overweight/obese students. Conclusion: Medical students, as having high-risk behaviors, should be assessed for the nutritional status and metabolic parameters. Medical schools should promote the healthy behaviors to increase the healthy eating and exercise habits and reduced the risk behaviors among them.

Keywords: medical students, metabolic syndrome, obesity, risk behaviors

Procedia PDF Downloads 260
272 Next Generation Sequencing Analysis of Circulating MiRNAs in Rheumatoid Arthritis and Osteoarthritis

Authors: Khalda Amr, Noha Eltaweel, Sherif Ismail, Hala Raslan

Abstract:

Introduction: Osteoarthritis is the most common form of arthritis that involves the wearing away of the cartilage that caps the bones in the joints. While rheumatoid arthritis is an autoimmune disease in which the immune system attacks the joints, beginning with the lining of joints. In this study, we aimed to study the top deregulated miRNAs that might be the cause of pathogenesis in both diseases. Methods: Eight cases were recruited in this study: 4 rheumatoid arthritis (RA), 2 osteoarthritis (OA) patients, as well as 2 healthy controls. Total RNA was isolated from plasma to be subjected to miRNA profiling by NGS. Sequencing libraries were constructed and generated using the NEBNextR UltraTM small RNA Sample Prep Kit for Illumina R (NEB, USA), according to the manufacturer’s instructions. The quality of samples were checked using fastqc and multiQC. Results were compared RA vs Controls and OA vs. Controls. Target gene prediction and functional annotation of the deregulated miRNAs were done using Mienturnet. The top deregulated miRNAs in each disease were selected for further validation using qRT-PCR. Results: The average number of sequencing reads per sample exceeded 2.2 million, of which approximately 57% were mapped to the human reference genome. The top DEMs in RA vs controls were miR-6724-5p, miR-1469, miR-194-3p (up), miR-1468-5p, miR-486-3p (down). In comparison, the top DEMs in OA vs controls were miR-1908-3p, miR-122b-3p, miR-3960 (up), miR-1468-5p, miR-15b-3p (down). The functional enrichment of the selected top deregulated miRNAs revealed the highly enriched KEGG pathways and GO terms. Six of the deregulated miRNAs (miR-15b, -128, -194, -328, -542 and -3180) had multiple target genes in the RA pathway, so they are more likely to affect the RA pathogenesis. Conclusion: Six of our studied deregulated miRNAs (miR-15b, -128, -194, -328, -542 and -3180) might be highly involved in the disease pathogenesis. Further functional studies are crucial to assess their functions and actual target genes.

Keywords: next generation sequencing, mirnas, rheumatoid arthritis, osteoarthritis

Procedia PDF Downloads 96
271 Human Metabolism of the Drug Candidate PBTZ169

Authors: Vadim Makarov, Stewart T.Cole

Abstract:

PBTZ169 is novel drug candidate with high efficacy in animals models, and its combination treatment of PBTZ169 with BDQ and pyrazinamide was shown to be more efficacious than the standard treatment for tuberculosis in a mouse model. The target of PBTZ169 is famous DprE1, an essential enzyme in cell wall biosynthesis. The crystal structure of the DprE1-PBTZ169 complex reveals formation of a semimercaptal adduct with Cys387 in the active site and explains the irreversible inactivation of the enzyme. Furthermore, this drug candidate demonstrated during preclinical research ‘drug like’ properties what made it an attractive drug candidate to treat tuberculosis in humans. During first clinical trials several cohorts of the healthy volunteers were treated by the single doses of PBTZ169 as well as two weeks repeated treatment was chosen for two maximal doses. As expected PBTZ169 was well tolerated, and no significant toxicity effects were observed during the trials. The study of the metabolism shown that human metabolism of PBTZ169 is very different from microbial or animals compound transformation. So main pathway of microbial, mice and less rats metabolism connected with reduction processes, but human metabolism mainly connected with oxidation processes. Due to this difference we observed several metabolites of PBTZ169 in humans with antitubercular activity, and now we can conclude that animal antituberculosis activity of PBTZ169 is a result not only activity of the drug itself, but it is a result of the sum activity of the drug and its metabolites. Direct antimicrobial plasma activity was studied, and such activity was observed for 24 hours after human treatment for some doses. This data gets high chance for good efficacy of PBTZ169 in human for treatment TB infection. Second phase of clinical trials was started summer of 2017 and continues to the present day. Available data will be presented.

Keywords: clinical trials, DprE1, PBTZ169, metabolism

Procedia PDF Downloads 166
270 Toxicological Interactions of Silver Nanoparticles and Non-Essential Metals in Human Hepatocarcinoma Cell Line

Authors: Renata Rank Miranda, Arandi Ginane Bezerra, Ciro Alberto Oliveira Ribeiro, Marco AntôNio Ferreira Randi, Carmen Lúcia Voigt, Lilian Skytte, Kaare Lund Rasmussen, Francisco Filipak Neto, Frank Kjeldsen

Abstract:

Synergetic and antagonistic effects of drugs are well-known concerns in pharmacological assessments of dose and toxicity. Similar approach should be used in assessing cellular uptake and cytotoxicity of nanoparticles. Since nanoparticles are released into the aquatic environment they may interact with existing xenobiotics. Here we used biochemical assays and quantitative proteomics to assess the cytotoxicity of silver nanoparticles (AgNP) when human hepatoma HepG2 cells were co-exposed to 2 nm AgNP together with either Cd2+ or Hg2+ ions. Time-course experiments (2h, 4h, and 24h) were conducted to assess the first response to the exposure studies. The general trend was that a synergetic toxicological response was observed in cells exposed to both AgNP and Cd2+ or Hg2+, with AgNP and Cd2+ being more toxic. This was observed by a significant increase in the ROS and superoxide level of >35% in the case of AgNP+Cd2+ compared to the sum of responses of AgNP and Cd2+, individually. Metabolic activity and viability also dropped more for AgNP+Cd2+ (>10%) than for AgNP and Cd2+ combined. We used inductively coupled plasma mass spectrometry to investigate if AgNP facilitates larger influx of toxic metal ions into HepG2 cells. Only Hg2+ ions was found to be more efficiently engulfed as the concentration of Hg2+ was found 2.8 times larger compared to exposure experiments with only Hg2+. This effect was not observed for Cd2+. We now continue with deep proteomics studies to obtain wider details on the mechanism of the toxicity related to AgNP, Cd2+, and AgNP+Cd2+, respectively.

Keywords: nanotoxicology, silver nanoparticles, proteomics, human cell line

Procedia PDF Downloads 348
269 Determination of Optimum Conditions for the Leaching of Oxidized Copper Ores with Ammonium Nitrate

Authors: Javier Paul Montalvo Andia, Adriana Larrea Valdivia, Adolfo Pillihuaman Zambrano

Abstract:

The most common lixiviant in the leaching process of copper minerals is H₂SO₄, however, the current situation requires more environmentally friendly reagents and in certain situations that have a lower consumption due to the presence of undesirable gangue as muscovite or kaolinite that can make the process unfeasible. The present work studied the leaching of an oxidized copper mineral in an aqueous solution of ammonium nitrate, in order to obtain the optimum leaching conditions of the copper contained in the malachite mineral from Peru. The copper ore studied comes from a deposit in southern Peru and was characterized by X-ray diffractometer, inductively coupled-plasma emission spectrometer (ICP-OES) and atomic absorption spectrophotometry (AAS). The experiments were developed in batch reactor of 600 mL where the parameters as; temperature, pH, ammonium nitrate concentration, particle size and stirring speed were controlled according to experimental planning. The sample solution was analyzed for copper by atomic absorption spectrophotometry (AAS). A simulation in the HSC Chemistry 6.0 program showed that the predominance of the copper compounds of a Cu-H₂O aqueous system is altered by the presence in the system of ammonium complexes, the compound being thermodynamically more stable Cu(NH3)₄²⁺, which predominates in pH ranges from 8.5 to 10 at a temperature of 25 °C. The optimum conditions for copper leaching of the malachite mineral were a stirring speed of 600 rpm, an ammonium nitrate concentration of 4M, a particle diameter of 53 um and temperature of 62 °C. These results showed that the leaching of copper increases with increasing concentration of the ammonium solution, increasing the stirring rate, increasing the temperature and decreasing the particle diameter. Finally, the recovery of copper in optimum conditions was above 80%.

Keywords: ammonium nitrate, malachite, copper oxide, leaching

Procedia PDF Downloads 189
268 Comparative Study of Calcium Content on in vitro Biological and Antibacterial Properties of Silicon-Based Bioglass

Authors: Morteza Elsa, Amirhossein Moghanian

Abstract:

The major aim of this study was to evaluate the effect of CaO content on in vitro hydroxyapatite formation, MC3T3 cells cytotoxicity and proliferation as well as antibacterial efficiency of sol-gel derived SiO2–CaO–P2O5 ternary system. For this purpose, first two grades of bioactive glass (BG); BG-58s (mol%: 60%SiO2–36%CaO–4%P2O5) and BG-68s (mol%: 70%SiO2–26%CaO–4%P2O5)) were synthesized by sol-gel method. Second, the effect of CaO content in their composition on in vitro bioactivity was investigated by soaking the BG-58s and BG-68s powders in simulated body fluid (SBF) for time periods up to 14 days and followed by characterization inductively coupled plasma atomic emission spectrometry (ICP-AES), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. Additionally, live/dead staining, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and alkaline phosphatase (ALP) activity assays were conducted respectively, as qualitatively and quantitatively assess for cell viability, proliferation and differentiations of MC3T3 cells in presence of 58s and 68s BGs. Results showed that BG-58s with higher CaO content showed higher in vitro bioactivity with respect to BG-68s. Moreover, the dissolution rate was inversely proportional to oxygen density of the BG. Live/dead assay revealed that both 58s and 68s increased the mean number live cells which were in good accordance with MTT assay. Furthermore, BG-58s showed more potential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) bacteria. Taken together, BG-58s with enhanced MC3T3 cells proliferation and ALP activity, acceptable bioactivity and significant high antibacterial effect against MRSA bacteria is suggested as a suitable candidate in order to further functionalizing for delivery of therapeutic ions and growth factors in bone tissue engineering.

Keywords: antibacterial, bioactive glass, hydroxyapatite, proliferation, sol-gel processes

Procedia PDF Downloads 147
267 Molecular Mechanism on Inflammation and Antioxidant Role of Pterocarpus Marsupiumin in Experimental Hyperglycaemia

Authors: Leelavinothan Pari , Ayyasamy Rathinam

Abstract:

Diabetes mellitus (DM) is a major and growing public health problem throughout the world. Pterocarpus marsupium (Roxb.) (Family: Fabaceae) is widely used as a traditional medicine to treat various diseases including diabetes. However, the molecular mechanism of Pterocarpus marsupium has not been investigated so far. Two fractions (2.5% and 5%) of extract from the medicinal plant, Pterocarpus marsupium (PME) were conducted in a dose dependent manner in streptozotocin (45 mg/kg b.w.) induced type 2 diabetic rats. Each fraction of PME was administered to diabetic rats intragastrically at a dose of 50, 100 and 200 mg/kg b.w for 45 days. The effective dose 200 mg/kg b.w of 5% fraction was more pronounced in reducing the levels of blood glucose (95.65 mg/dL) and glycosylated hemoglobin (HbA1c) (0.41 mg/g Hb), and increasing the plasma insulin (16.20 µU/mL) level. Moreover, PME (200 mg/kg b.w) significantly ameliorated lipid peroxidation products (thiobarbituric reactive substances, lipid hydroperoxides) enzymatic (superoxide dismutase, catalase and glutathione peroxidase) and non-enzymatic antioxidants (Vitamin C, Vitamin E and reduced glutathione) levels. The altered activities of the key enzymes of lipid metabolism along with the lipid profile in diabetic rats were significantly reverted to near normal levels by the administration of PME 5% 200 mg/kg b.w fraction. PME (200 mg/kg b.w) has the ability to reduce the inflammatory cytokines, such as TNF-α, IL-6 mRNA, as well as protein expression and apoptotic marker, such as caspase-3 enzyme in diabetic hepatic tissue. The above biochemical findings were also supported by histological studies such as improvement in pancreas and liver. Pterocarpus marsupium could effectively reduce the hyperglycemia, oxidative-stress, inflammation and hyperlipedimea in diabetic rats; hence it could be a useful drug in the management of diabetes without any side effects.

Keywords: diabetes mellitus, streptozotocin, Pterocarpus marsupium, lipid peroxidation, Antioxidants, inflammatory cytokines

Procedia PDF Downloads 376
266 Comparative Study on the Effect of Substitution of Li and Mg Instead of Ca on Structural and Biological Behaviors of Silicate Bioactive Glass

Authors: Alireza Arab, Morteza Elsa, Amirhossein Moghanian

Abstract:

In this study, experiments were carried out to achieve a promising multifunctional and modified silicate based bioactive glass (BG). The main aim of the study was investigating the effect of lithium (Li) and magnesium (Mg) substitution, on in vitro bioactivity of substituted-58S BG. Moreover, it is noteworthy to state that modified BGs were synthesized in 60SiO2–(36-x)CaO–4P2O5–(x)Li2O and 60SiO2–(36-x)CaO–4P2O5–(x)MgO (where x = 0, 5, 10 mol.%) quaternary systems, by sol-gel method. Their performance was investigated through different aspects such as biocompatibility, antibacterial activity as well as their effect on alkaline phosphatase (ALP) activity, and proliferation of MC3T3 cells. The antibacterial efficiency was evaluated against methicillin-resistant Staphylococcus aureus bacteria. To do so, CaO was substituted with Li2O and MgO up to 10 mol % in 58S-BGs and then samples were immersed in simulated body fluid up to 14 days and then, characterized by X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectrometry, and scanning electron microscopy. Results indicated that this modification led to a retarding effect on in vitro hydroxyapatite (HA) formation due to the lower supersaturation degree for nucleation of HA compared with 58s-BG. Meanwhile, magnesium revealed further pronounced effect. The 3-(4,5 dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) and ALP analysis illustrated that substitutions of both Li2O and MgO, up to 5 mol %, had increasing effect on biocompatibility and stimulating proliferation of the pre-osteoblast MC3T3 cells in comparison to the control specimen. Regarding to bactericidal efficiency, the substitution of either Li or Mg for Ca in the 58s BG composition led to statistically significant difference in antibacterial behaviors of substituted-BGs. Meanwhile, the sample containing 5 mol % CaO/Li2O substitution (BG-5L) was selected as a multifunctional biomaterial in bone repair/regeneration due to the improved biocompatibility, enhanced ALP activity and antibacterial efficiency among all of the synthesized L-BGs and M-BGs.

Keywords: alkaline, alkaline earth, bioactivity, biomedical applications, sol-gel processes

Procedia PDF Downloads 108
265 Brain Derived Neurotrophic Factor (BDNF) Down Regulation in Peritoneal Carcinomatosis Patients

Authors: Awan A. Zaima, Tanvieer Ayesha, Mirshahi Shahsoltan, Pocard Marc, Mirshahi Massoud

Abstract:

Brain-derived neurotrophic factor (BDNF) is described as a factor helping to support the survival of existing neurons by involving the growth and differentiation of new neurons and synapses. Cancer diagnosis impacts the mental health, and in consequences, depression arise eventually hinders recovery and disrupts the quality of life and surviving chances of patients. The focus of this study is to hint upon a prospective biomarker as a promising diagnostic tool for an early indicator/predictor of depression prevalence in cancer patients for better care and treatment options. The study aims to analyze peripheral biomarkers from neuro immune axis (BDNF, IL21 as a NK cell activator) using co-relation approach. Samples were obtained from random non cancer candidates and advanced peritoneum carcinomatosis patients with 25% pseudomyxoma, 21% Colon cancer,19% stomach cancer, 10% ovarian cancer, 8% appendices cancer, and 10% other area of peritoneum cancer patients. Both groups of the study were categorized by gender and age, with a range of 18 to 86 years old. Biomarkers were analyzed in collected plasma by performing multiplex sandwich ELISA system. Data were subjected to statistical analysis for the assessment of the correlation. Our results demonstrate that BNDF and IL 21 down regulated significantly in patient groupas compared to non-cancer candidates (ratio of patients/normalis 2.57 for BNDF and 1.32 for IL21). This preliminary investigation suggested that the neuro immune biomarkers are down regulated in carcinomatosis patients and can be associated with cancer expansion and cancer genesis. Further studies on larger cohort are necessary to validate this hypothesis.

Keywords: biomarkers, depression, peritoneum carcinoma, BNDF, IL21

Procedia PDF Downloads 116
264 Effect of 8 Weeks of Intervention on Physical Fitness, Hepatokines, and Insulin Resistance in Obese Subjects

Authors: Adela Penesova, Zofia Radikova, Boris Bajer, Andrea Havranova, Miroslav Vlcek

Abstract:

Background: The aim of our study was to compare the effect of intensified lifestyle intervention on insulin resistance (HOMA-IR), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and Fibroblast growth factor (FGF) 21 after 8 weeks of lifestyle intervention. Methods: A group of 43 obese patients (13M/30F; 43.0±12.4 years; BMI (body mass index) 31.2±6.3 kg/m2 participated in a weight loss interventional program (NCT02325804) following an 8-week hypocaloric diet (-30% energy expenditure) and physical activity 150 minutes/week. Insulin sensitivity was evaluated according to the homeostasis model assessment of insulin resistance (HOMA-IR) and insulin sensitivity indices according to Matsuda and Cederholm were calculated (ISImat and ISIced). Plasma ALT, AST, Fetuin-A, FGF 21, and physical fitness were measured. Results: The average reduction of body weight was 6.8±4.9 kg (0-15 kg; p=0.0006), accompanied with a significant reduction of body fat amount of fat mass (p=0.03), and waist circumference (p=0.02). Insulin sensitivity has been improved (IR HOMA 2.71±3.90 vs 1.24±0.83; p=0.01; ISIMat 6.64±4.38 vs 8.93±5.36 p ≤ 0.001). Total, LDL cholesterol, and triglycerides decreased (p=0.05, p=0.04, p=0.04, respectively). Physical fitness significantly improved after intervention (as measure VO2 max (maximal oxygen uptake) (p ≤ 0.001). ALT decreased significantly (0.44±0.26 vs post 0.33±0.18 ukat/l, p=0.004); however, AST not (pre 0.40±0.15 vs 0.35±0.09 ukat/l, p=0.07). Hepatokine Fetuin-A significantly decreased after intervention (43.1±10.8 vs 32.6±8.6 ng/ml, p < 0.001); however, FGF 21 levels tended to decrease (146±152 vs 132±164 pg/ml, p=0.07). Conclusion: 8-weeks of diet and physical activity intervention program in obese otherwise healthy subjects led to an improvement of insulin resistance parameters and liver marker profiles, as well as increased physical fitness. This study was supported by grants APVV 15-0228; VEGA 2/0161/16.

Keywords: obesity, diet, exercice, insulin sensitivity

Procedia PDF Downloads 201
263 Effect of Probiotic Feeding on Weight Gain, Blood Biochemical and Hematological Indices of Crossbred Dairy Goat Kids

Authors: Claire B. Salvedia, Enrico P. Supangco, Francisco B. Eligado, Renato Sa Vega, Antonio A. Rayos

Abstract:

The study was conducted to evaluate the effect of probiotic feeding on weight gain, blood biochemical and hematological indices of crossbred dairy goat kids. Sixteen (16) crossbred Anglo-Nubian x Saanen dairy goat kids, 3 to 4 months old, ranging from 19 to 23kg were randomly assigned into four treatments fed with 5x109 cfu/ml probiotic supplements; Treatment 1 – control; Treatment 2 – lactic acid bacteria (L. plantarum BS and P. acidilactici 3G3); treatment 3 – S. cerevisiae 2030; Treatment 4 – multi-strain probiotics (L. plantarum BS, P. acidilactici 3G3, and S.cerevisiae 2030). Feed ration provided daily for each of the experimental animals were composed of 1kg mixed concentrate feed ((Leucaena leucocephala dried leaves and pollard), and 4 kg fresh Pennisetum purpureum and Gliciridia sepium leaves (50:50). The experimental feeding trial lasted for 9 weeks. Result revealed that treatments fed with probiotics had significantly (P≤0.05) higher weight gain compared to the control. Significant effect on plasma urea nitrogen (PUN) and triglyceride were noted during 30th and 60th day of probiotic feeding. White blood cell counts were significantly affected by probiotic feeding during the 60th day. Concentrations of glucose and cholesterol remained unchanged throughout the experimental period. The findings suggests, under the condition of the experiment, that live probiotic feeding could have a significant role in improving weight gain and metabolism of crossbred dairy goat kids.

Keywords: probiotics, weight gain, blood biochemical indices, crossbred dairy goat kids

Procedia PDF Downloads 491
262 Level of Reactive Oxygen Species and Inflammatory Cytokines in Rheumatoid Arthritis Patients: Correlation with Disease Severity

Authors: Somaiya Mateen, Shagufta Moin, Mohammad Owais, Abdul Khan, Atif Zafar

Abstract:

In rheumatoid arthritis (RA), impaired oxidative metabolism and imbalance between pro-and anti-inflammatory cytokines are responsible for causing inflammation and the degradation of cartilage and bone. The present study was done to evaluate the level and hence the role of reactive oxygen species (ROS) and inflammatory cytokines in the pathogenesis of RA. The present study was performed in the blood of 80 RA patients and 55 age and sex-matched healthy controls. The level of ROS (in 5% hematocrit) and the plasma level of pro-inflammatory cytokines [TNF-α, interleukin-6 (IL-6), IL-22] and anti-inflammatory cytokines (IL-4 and IL-5) were monitored in healthy subjects and RA patients. For evaluating the role of rheumatoid factor (RF) in the pathogenesis of RA, patients were sub-divided on the basis of presence or absence of RF. Reactive species and inflammatory cytokines were correlated with disease activity measure-Disease Activity Score for 28 joints (DAS28). The level of ROS, TNF-α, IL-6 and IL-22 were found to be significantly higher in RA patients as compared to the healthy controls, with the increase being more significant in patients positive for rheumatoid factor and those having high disease severity. On the other hand, a significant decrease in the level of IL-4 and IL-10 were observed in RA patients compared with healthy controls, with the decrease being more prominent in severe cases of RA. Higher ROS (indicative of impaired anti-oxidant defence system) and pro-inflammatory cytokines level in RA patients may lead to the damage of biomolecules which in turn contributes to tissue damage and hence to the development of more severe RA. The imbalance between pro-and anti-inflammatory cytokines may lead to the development of multi-system immune complications. ROS and inflammatory cytokines may also serve as a potential biomarker for assessing the disease severity.

Keywords: rheumatoid arthritis, reactive oxygen species, pro-inflammatory cytokines, anti-inflammatory cytokines

Procedia PDF Downloads 318
261 The Prodomain-Bound Form of Bone Morphogenetic Protein 10 is Biologically Active on Endothelial Cells

Authors: Austin Jiang, Richard M. Salmon, Nicholas W. Morrell, Wei Li

Abstract:

BMP10 is highly expressed in the developing heart and plays essential roles in cardiogenesis. BMP10 deletion in mice results in embryonic lethality due to impaired cardiac development. In adults, BMP10 expression is restricted to the right atrium, though ventricular hypertrophy is accompanied by increased BMP10 expression in a rat hypertension model. However, reports of BMP10 activity in the circulation are inconclusive. In particular it is not known whether in vivo secreted BMP10 is active or whether additional factors are required to achieve its bioactivity. It has been shown that high-affinity binding of the BMP10 prodomain to the mature ligand inhibits BMP10 signaling activity in C2C12 cells, and it was proposed that prodomain-bound BMP10 (pBMP10) complex is latent. In this study, we demonstrated that the BMP10 prodomain did not inhibit BMP10 signaling activity in multiple endothelial cells, and that recombinant human pBMP10 complex, expressed in mammalian cells and purified under native conditions, was fully active. In addition, both BMP10 in human plasma and BMP10 secreted from the mouse right atrium were fully active. Finally, we confirmed that active BMP10 secreted from mouse right atrium was in the prodomain-bound form. Our data suggest that circulating BMP10 in adults is fully active and that the reported vascular quiescence function of BMP10 in vivo is due to the direct activity of pBMP10 and does not require an additional activation step. Moreover, being an active ligand, recombinant pBMP10 may have therapeutic potential as an endothelial-selective BMP ligand, in conditions characterized by loss of BMP9/10 signaling.

Keywords: bone morphogenetic protein 10 (BMP10), endothelial cell, signal transduction, transforming growth factor beta (TGF-B)

Procedia PDF Downloads 273
260 Oxidosqualene Cyclase: A Novel Inhibitor

Authors: Devadrita Dey Sarkar

Abstract:

Oxidosqualene cyclase is a membrane bound enzyme in which helps in the formation of steroid scaffold in higher organisms. In a highly selective cyclization reaction oxidosqualene cyclase forms LANOSTEROL with seven chiral centres starting from the linear substrate 2,3-oxidosqualene. In humans OSC in cholesterol biosynthesis it represents a target for the discovery of novel anticholesteraemic drugs that could complement the widely used statins. The enzyme oxidosqualene: lanosterol cyclase (OSC) represents a novel target for the treatment of hypercholesterolemia. OSC catalyzes the cyclization of the linear 2,3-monoepoxysqualene to lanosterol, the initial four-ringed sterol intermediate in the cholesterol biosynthetic pathway. OSC also catalyzes the formation of 24(S), 25-epoxycholesterol, a ligand activator of the liver X receptor. Inhibition of OSC reduces cholesterol biosynthesis and selectively enhances 24(S),25-epoxycholesterol synthesis. Through this dual mechanism, OSC inhibition decreases plasma levels of low-density lipoprotein (LDL)-cholesterol and prevents cholesterol deposition within macrophages. The recent crystallization of OSC identifies the mechanism of action for this complex enzyme, setting the stage for the design of OSC inhibitors with improved pharmacological properties for cholesterol lowering and treatment of atherosclerosis. While studying and designing the inhibitor of oxidosqulene cyclase, I worked on the pdb id of 1w6k which was the most worked on pdb id and I used several methods, techniques and softwares to identify and validate the top most molecules which could be acting as an inhibitor for oxidosqualene cyclase. Thus, by partial blockage of this enzyme, both an inhibition of lanosterol and subsequently cholesterol formation as well as a concomitant effect on HMG-CoA reductase can be achieved. Both effects complement each other and lead to an effective control of cholesterol biosynthesis. It is therefore concluded that 2,3-oxidosqualene cyclase plays a crucial role in the regulation of intracellular cholesterol homeostasis. 2,3-Oxidosqualene cyclase inhibitors offer an attractive approach for novel lipid-lowering agents.

Keywords: anticholesteraemic, crystallization, statins, homeostasis

Procedia PDF Downloads 351
259 Assessing the Suitability of South African Waste Foundry Sand as an Additive in Clay Masonry Products

Authors: Nthabiseng Portia Mahumapelo, Andre van Niekerk, Ndabenhle Sosibo, Nirdesh Singh

Abstract:

The foundry industry generates large quantities of solid waste in the form of waste foundry sand. The ever-increasing quantities of this type of industrial waste put pressure on land-filling space and its proper management has become a global concern. The South African foundry industry is not different when it comes to this solid waste generation. Utilizing the foundry waste sand in other applications has become an attractive avenue to deal with this waste stream. In the present paper, an evaluation was done on the suitability of foundry waste sand as an additive in clay masonry products. Purchased clay was added to the foundry waste sand sample in a 50/50 ratio. The mixture was named FC sample. The FC sample was mixed with water in a pan mixer until the mixture was consistent and suitable for extrusion. The FC sample was extruded and cut into briquettes. Water absorption, shrinkage and modulus of rupture tests were conducted on the resultant briquettes. Foundry waste sand and FC samples were respectively characterized mineralogically using X-Ray Diffraction, and the major and trace elements were determined using Inductively Coupled Plasma Optical Emission Spectroscopy. Adding purchased clay to the foundry waste sand positively influenced the workability of the test sample. Another positive characteristic was the low linear shrinkage, which indicated that products manufactured from the FC sample would not be susceptible to cracking. The water absorption values were acceptable and the unfired and fired strength values of the briquette’s samples were acceptable. In conclusion, tests showed that foundry waste sand can be used as an additive in masonry clay bricks, provided it is blended with good quality clay.

Keywords: foundry waste sand, masonry clay bricks, modulus of rupture, shrinkage

Procedia PDF Downloads 230
258 Sustainable Approach to Fabricate Titanium Nitride Film on Steel Substrate by Using Automotive Plastics Waste

Authors: Songyan Yin, Ravindra Rajarao, Veena Sahajwalla

Abstract:

Automotive plastics waste (widely known as auto-fluff or ASR) is a complicated mixture of various plastics incorporated with a wide range of additives and fillers like titanium dioxide, magnesium oxide, and silicon dioxide. Automotive plastics waste is difficult to recycle and its landfilling poses the significant threat to the environment. In this study, a sustainable technology to fabricate protective nanoscale TiN thin film on a steel substrate surface by using automotive waste plastics as titanium and carbon resources is suggested. When heated automotive plastics waste with steel at elevated temperature in a nitrogen atmosphere, titanium dioxide contented in ASR undergo carbothermal reduction and nitridation reactions on the surface of the steel substrate forming a nanoscale thin film of titanium nitride on the steel surface. The synthesis of TiN film on steel substrate under this technology was confirmed by X-ray photoelectron spectrometer, high resolution X-ray diffraction, field emission scanning electron microscope, a high resolution transmission electron microscope fitted with energy dispersive X-ray spectroscopy, and inductively coupled plasma mass spectrometry techniques. This sustainably fabricated TiN film was verified of dense, well crystallized and could provide good oxidation resistance to the steel substrate. This sustainable fabrication technology is maneuverable, reproducible and of great economic and environmental benefit. It not only reduces the fabrication cost of TiN coating on steel surface, but also provides a sustainable environmental solution to recycling automotive plastics waste. Moreover, high value copper droplets and char residues were also extracted from this unique fabrication process.

Keywords: automotive plastics waste, carbonthermal reduction and nitirdation, sustainable, TiN film

Procedia PDF Downloads 392
257 Role of Selenium and Vitamin E in Occupational Exposure to Heavy Metals (Mercury, Lead and Cadmium): Impact of Working in Lamp Factory

Authors: Tarek Elnimr, Rabab El-kelany

Abstract:

Heavy metals are environmental contaminants that may pose long-term health risks. Unfortunately, the consequent implementation of preventive measures was generally delayed, causing important negative effects to the exposed populations. The objective of this study was to determine whether co-consumption of nutritional supplements as selenium and vitamin E would treat the hazardous effects of exposure to mercury, lead and cadmium. 108 workers (60 males and 48 females) were the subject of this study, their ages ranged from 19-63 years, (M = 29.5±10.12). They were working in lamp factory for an average of 0.5-40 years (M= 5.3±8.8). Twenty control subjects matched for age and gender were used for comparison. All workers were subjected to neuropsychiatric evaluation. General Health Questionnaire (GHQ-28) revealed that 44.4% were complaining of anxiety, 52.7% of depression, 41.6% of social dysfunction and 22.2% of somatic symptoms. Cognitive tests revealed that long-term memory was not affected significantly when compared with controls, while short term memory and perceptual ability were affected significantly. Blood metal levels were measured by Inductively Coupled Plasma – optical emission spectrometry(ICP-OES), and revealed that the mean blood mercury, lead and cadmium concentrations before treatment were 1.6 mg/l, 0.39 mg/l and 1.7 µg/l, while they decreased significantly after treatment to 1.2 mg/l, 0.29 mg/l and 1.3 µg/l respectively. Anti-oxidative enzymes (paraoxonase and catalase) and lipid peroxidation product (malondialdehyde) were measured before and after treatment with selenium and vitamin E, and showed significant improvement. It could be concluded that co-consumption of selenium and vitamin E produces significant decrease in mercury, lead and cadmium levels in blood.

Keywords: mercury, lead, cadmium, neuropsychiatric impairment, selenium, vitamin E

Procedia PDF Downloads 345
256 Assessment of Soil Contamination on the Content of Macro and Microelements and the Quality of Grass Pea Seeds (Lathyrus sativus L.)

Authors: Violina R. Angelova

Abstract:

Comparative research has been conducted to allow us to determine the content of macro and microelements in the vegetative and reproductive organs of grass pea and the quality of grass pea seeds, as well as to identify the possibility of grass pea growth on soils contaminated by heavy metals. The experiment was conducted on an agricultural field subjected to contamination from the Non-Ferrous-Metal Works (MFMW) near Plovdiv, Bulgaria. The experimental plots were situated at different distances of 0.5 km and 8 km, respectively, from the source of pollution. On reaching commercial ripeness the grass pea plants were gathered. The composition of the macro and microelements in plant materials (roots, stems, leaves, seeds), and the dry matter content, sugars, proteins, fats and ash contained in the grass pea seeds were determined. Translocation factors (TF) and bioaccumulation factor (BCF) were also determined. The quantitative measurements were carried out through inductively-coupled plasma (ICP). The grass pea plant can successfully be grown on soils contaminated by heavy metals. Soil pollution with heavy metals does not affect the quality of the grass pea seeds. The seeds of the grass pea contain significant amounts of nutrients (K, P, Cu, Fe Mn, Zn) and protein (23.18-29.54%). The distribution of heavy metals in the organs of the grass pea has a selective character, which reduces in the following order: leaves > roots > stems > seeds. BCF and TF values were greater than one suggesting efficient accumulation in the above ground parts of grass pea plant. Grass pea is a plant that is tolerant to heavy metals and can be referred to the accumulator plants. The results provide valuable information about the chemical and nutritional composition of the seeds of the grass pea grown on contaminated soils in Bulgaria. The high content of macro and microelements and the low concentrations of toxic elements in the grass pea grown in contaminated soil make it possible to use the seeds of the grass pea as animal feed.

Keywords: Lathyrus sativus L, macroelements, microelements, quality

Procedia PDF Downloads 144