Search results for: Hydrogen atom
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1124

Search results for: Hydrogen atom

374 Benzoxaboralone: A Boronic Acid with High Oxidative Stability and Utility in Biological Contexts

Authors: Brian J. Graham, Ronald T. Raines

Abstract:

The presence of a nearly vacant p orbital on boron endows boronic acids with unique abilities as a catalyst and ligand. An organocatalytic process has been developed for the conversion of biomass-derived sugars to 5-hydroxymethylfurfural, which is a platform chemical. Specifically, 2-carboxyphenylboronic acid (2-CPBA) has been shown to be an optimal catalyst for this process, promoting the desired transformation in the absence of metals. The attributes of 2-CPBA as a catalyst led to additional investigations of its structure and reactivity. 2-CPBA was found to exist as a cyclized benzoxaborolone adduct rather than a free carboxylic acid. This cyclization has profound consequences for the oxidative stability of the boronic acid. Stereoelectronic effects within the oxaborolone ring destabilize the oxidation transition state by reducing electron donation from the cyclic oxygen to the developing p orbital on boron. That leads to a 10,000-fold increase in oxidative stability while maintaining the normal reactivity of boronic acids toward diols (e.g., carbohydrates) and nucleophiles in proteins while also presenting numerous hydrogen-bond accepting and donating groups. Thus, benzoxaborolones are useful in catalysis, chemical biology, medicinal chemistry, and allied fields.

Keywords: bioisosteres, boronic acid, catalysis, oxidative stability, pharmacophore, stereoelectronic effects

Procedia PDF Downloads 187
373 A Facile Synthesis Strategy of Saccharine/TiO₂ Composite Heterojunction Catalyst for Co₂RR

Authors: Jenaidullah Batur, Sebghatullah Mudaber

Abstract:

Currently, there is a list of catalysts that can reduce CO₂ to valuable chemicals and fuels, among them metal oxides such as TiO₂, known as promising photocatalysts to produce hydrogen and CO unless they are at an earlier age and still need to promote activity to able for produce fabricated values. Herein, in this work, we provided a novel, facile and eco-friendly synthesis strategy to synthesize more effective TiO₂-organic composite materials to selectively reduce CO₂ to CO. In this experiment, commercial nanocrystalline TiO₂ and saccharin with Li (LiBr, LiCl) were synthesized using the facile physical grinding in the motel pestle for 10 minutes, then added 10 mL of deionized water (18.2 megaohms) on the 300mg composite catalyst before samples moving for hydrothermal heating for 24 hours at 80 C in the oven. Compared with nanosized TiO₂, the new TiO₂-Sac-Li indeed displays a high CO generation rate of 70.83 μmol/g/h, which is 7 times higher than TiO₂, which shows enhancement in CO₂ reduction and an apparent improvement in charge carrier dynamic. The CO₂ reduction process at the gas-solid interface on TiO₂-Sac-Li composite semiconductors is investigated by functional calculations and several characterization methods. The results indicate that CO₂ can be easily activated by the TiO₂-Sac-Li atoms on the surface. This work innovatively investigates CO₂ reduction in novel composite materials and helps to broaden the applications of composite materials semiconductors.

Keywords: green chemistry, green synthesis, TiO₂, photocatalyst

Procedia PDF Downloads 82
372 Atmospheric Oxidation of Carbonyls: Insight to Mechanism, Kinetic and Thermodynamic Parameters

Authors: Olumayede Emmanuel Gbenga, Adeniyi Azeez Adebayo

Abstract:

Carbonyls are the first-generation products from tropospheric degradation reactions of volatile organic compounds (VOCs). This computational study examined the mechanism of removal of carbonyls from the atmosphere via hydroxyl radical. The kinetics of the reactions were computed from the activation energy (using enthalpy (ΔH**) and Gibbs free energy (ΔG**). The minimum energy path (MEP) analysis reveals that in all the molecules, the products have more stable energy than the reactants, which implies that the forward reaction is more thermodynamically favorable. The hydrogen abstraction of the aromatic aldehyde, especially without methyl substituents, is more kinetically favorable compared with the other aldehydes in the order of aromatic (without methyl or meta methyl) > alkene (short chain) > diene > long-chain aldehydes. The activation energy is much lower for the forward reaction than the backward, indicating that the forward reactions are more kinetically stable than their backward reaction. In terms of thermodynamic stability, the aromatic compounds are found to be less favorable in comparison to the aliphatic. The study concludes that the chemistry of the carbonyl bond of the aldehyde changed significantly from the reactants to the products.

Keywords: atmospheric carbonyls, oxidation, mechanism, kinetic, thermodynamic

Procedia PDF Downloads 48
371 Passive Heat Exchanger for Proton Exchange Membrane Fuel Cell Cooling

Authors: Ivan Tolj

Abstract:

Water produced during electrochemical reaction in Proton Exchange Membrane (PEM) fuel cell can be used for internal humidification of reactant gases; hydrogen and air. On such a way it is possible to eliminate expensive external humidifiers and simplify fuel cell balance-of-plant (BoP). When fuel cell operates at constant temperature (usually between 60 °C and 80 °C) relatively cold and dry ambient air heats up quickly upon entering channels which cause further drop in relative humidity (below 20%). Low relative humidity of reactant gases dries up polymer membrane and decrease its proton conductivity which results in fuel cell performance drop. It is possible to maintain such temperature profile throughout fuel cell cathode channel which will result in close to 100 % RH. In order to achieve this, passive heat exchanger was designed using commercial CFD software (ANSYS Fluent). Such passive heat exchanger (with variable surface area) is suitable for small scale PEM fuel cells. In this study, passive heat exchanger for single PEM fuel cell segment (with 20 x 1 cm active area) was developed. Results show close to 100 % RH of air throughout cathode channel with increased fuel cell performance (mainly improved polarization curve) and improved durability.

Keywords: PEM fuel cell, passive heat exchange, relative humidity, thermal management

Procedia PDF Downloads 274
370 Molecular Dynamics Simulation of Irradiation-Induced Damage Cascades in Graphite

Authors: Rong Li, Brian D. Wirth, Bing Liu

Abstract:

Graphite is the matrix, and structural material in the high temperature gas-cooled reactor exhibits an irradiation response. It is of significant importance to analyze the defect production and evaluate the role of graphite under irradiation. A vast experimental literature exists for graphite on the dimensional change, mechanical properties, and thermal behavior. However, simulations have not been applied to the atomistic perspective. Remarkably few molecular dynamics simulations have been performed to study the irradiation response in graphite. In this paper, irradiation-induced damage cascades in graphite were investigated with molecular dynamics simulation. Statistical results of the graphite defects were obtained by sampling a wide energy range (1–30 KeV) and 10 different runs for every cascade simulation with different random number generator seeds to the velocity scaling thermostat function. The chemical bonding in carbon was described using the adaptive intermolecular reactive empirical bond-order potential (AIREBO) potential coupled with the standard Ziegler–Biersack–Littmack (ZBL) potential to describe close-range pair interactions. This study focused on analyzing the number of defects, the final cascade morphology and the distribution of defect clusters in space, the length-scale cascade properties such as the cascade length and the range of primary knock-on atom (PKA), and graphite mechanical properties’ variation. It can be concluded that the number of surviving Frenkel pairs increased remarkably with the increasing initial PKA energy but did not exhibit a thermal spike at slightly lower energies in this paper. The PKA range and cascade length approximately linearly with energy which indicated that increasing the PKA initial energy will come at expensive computation cost such as 30KeV in this study. The cascade morphology and the distribution of defect clusters in space mainly related to the PKA energy meanwhile the temperature effect was relatively negligible. The simulations are in agreement with known experimental results and the Kinchin-Pease model, which can help to understand the graphite damage cascades and lifetime span under irradiation and provide a direction to the designs of these kinds of structural materials in the future reactors.

Keywords: graphite damage cascade, molecular dynamics, cascade morphology, cascade distribution

Procedia PDF Downloads 153
369 Impact of Gases Derived from Sargassum Algae Biodegradation on Copper Atmospheric Corrosion

Authors: M. Said Ahmed, M. Lebrini, J. Pellé, S. Rioual, B. Lescop, C. Roos

Abstract:

The corrosion behavior of copper exposed in a marine atmosphere polluted and unpolluted by gases, mainly hydrogen sulphide (H2S), from the decomposition of Sargassum algae was studied using the mass loss method and electrochemical measurements. MEB/EDX and XRD were also used for the observation of morphology and surface analysis. To study the impact of this on copper corrosion, four sites more or less impacted by Sargassum algae strandings were selected. The samples were exposed for up to six months. The mass loss results showed that the average corrosion rate of copper was 528 µm/year for the site most affected by Sargassum algae and 9.4 µm/year for the least impacted site after three months of exposure, implying that the presence of Sargassum algae caused an important copper degradation. The morphological structures and properties of the corrosion products obtained at the impacted and non-impacted sites differed significantly. In the absence of Sargassum algae, we obtained mainly Cu2O and Cu2Cl(OH)3. Whereas in the atmosphere with Sargassum algae, CuS product is the main corrosion product obtained. Electrochemical analyses showed that the protection offered by the corrosion product layer was more important and improved with time for the non-impacted sites, whereas on the impacted sites, this protection deteriorated.

Keywords: atmospheric-corrosion, sargassum algae, copper, electrochemical techniques, SEM/EDX and XRD

Procedia PDF Downloads 116
368 Role of Organic Wastewater Constituents in Iron Redox Cycling for Ferric Sludge Reuse in the Fenton-Based Treatment

Authors: J. Bolobajev, M. Trapido, A. Goi

Abstract:

The practical application of the Fenton-based treatment method for organic compounds-contaminated water purification is limited mainly because of the large amount of ferric sludge formed during the treatment, where ferrous iron (Fe(II)) is used as the activator of the hydrogen peroxide oxidation processes. Reuse of ferric sludge collected from clarifiers to substitute Fe(II) salts allows reducing the total cost of Fenton-type treatment technologies and minimizing the accumulation of hazardous ferric waste. Dissolution of ferric iron (Fe(III)) from the sludge to liquid phase at acidic pH and autocatalytic transformation of Fe(III) to Fe(II) by phenolic compounds (tannic acid, lignin, phenol, catechol, pyrogallol and hydroquinone) added or present as water/wastewater constituents were found to be essentially involved in the Fenton-based oxidation mechanism. Observed enhanced formation of highly reactive species, hydroxyl radicals, resulted in a substantial organic contaminant degradation increase. Sludge reuse at acidic pH and in the presence of ferric iron reductants is a novel strategy in the Fenton-based treatment application for organic compounds-contaminated water purification.

Keywords: ferric sludge recycling, ferric iron reductant, water treatment, organic pollutant

Procedia PDF Downloads 288
367 Control of Pipeline Gas Quality to Extend Gas Turbine Life

Authors: Peter J. H. Carnell, Panayiotis Theophanous

Abstract:

Natural gas due to its cleaner combustion characteristics is expected to be the most widely used fuel in the move towards less polluting and renewable energy sources. Thus, the developed world is supplied by a complex network of gas pipelines and natural gas is becoming a major source of fuel. Natural gas delivered directly from the well will differ in composition from gas derived from LNG or produced by anaerobic digestion processes. Each will also have specific contaminants and properties although gas from all sources is likely to enter the distribution system and be blended to provide the desired characteristics such as Higher Heating Value and Wobbe No. The absence of a standard gas composition poses problems when the gas is used as a chemical feedstock, in specialised furnaces or on gas turbines. The chemical industry has suffered in the past as a result of variable gas composition. Transition metal catalysts used in ammonia, methanol and hydrogen plants were easily poisoned by sulphur, chlorides and mercury reducing both activity and catalyst expected lives from years to months. These plants now concentrate on purification and conditioning of the natural gas feed using fixed bed technologies, allowing them to run for several years and having transformed their operations. Similar technologies can be applied to the power industry reducing maintenance requirements and extending the operating life of gas turbines.

Keywords: gas composition, gas conditioning, gas turbines, power generation, purification

Procedia PDF Downloads 285
366 Depolymerization of Lignin in Sugarcane Bagasse by Hydrothermal Liquefaction to Optimize Catechol Formation

Authors: Nirmala Deenadayalu, Kwanele B. Mazibuko, Lethiwe D. Mthembu

Abstract:

Sugarcane bagasse is the residue obtained after the extraction of sugar from the sugarcane. The main aim of this work was to produce catechol from sugarcane bagasse. The optimization of catechol production was investigated using a Box-Behnken design of experiments. The sugarcane bagasse was heated in a Parr reactor at a set temperature. The reactions were carried out at different temperatures (100-250) °C, catalyst loading (1% -10% KOH (m/v)) and reaction times (60 – 240 min) at 17 bar pressure. The solid and liquid fractions were then separated by vacuum filtration. The liquid fraction was analyzed for catechol using high-pressure liquid chromatography (HPLC) and characterized for the functional groups using Fourier transform infrared spectroscopy (FTIR). The optimized condition for catechol production was 175 oC, 240 min, and 10 % KOH with a catechol yield of 79.11 ppm. Since the maximum time was 240 min and 10 % KOH, a further series of experiments were conducted at 175 oC, 260 min, and 20 % KOH and yielded 2.46 ppm catechol, which was a large reduction in catechol produced. The HPLC peak for catechol was obtained at 2.5 min for the standards and the samples. The FTIR peak at 1750 cm⁻¹ was due to the C=C vibration band of the aromatic ring in the catechol present for both the standard and the samples. The peak at 3325 cm⁻¹ was due to the hydrogen-bonded phenolic OH vibration bands for the catechol. The ANOVA analysis was also performed on the set of experimental data to obtain the factors that most affected the amount of catechol produced.

Keywords: catechol, sugarcane bagasse, lignin, hydrothermal liquefaction

Procedia PDF Downloads 95
365 Field Deployment of Corrosion Inhibitor Developed for Sour Oil and Gas Carbon Steel Pipelines

Authors: Jeremy Moloney

Abstract:

A major oil and gas operator in western Canada producing approximately 50,000 BOE per day of sour fluids was experiencing increased water production along with decreased oil production over several years. The higher water volumes being produced meant an increase in the operator’s incumbent corrosion inhibitor (CI) chemical requirements but with reduced oil production revenues. Thus, a cost-effective corrosion inhibitor solution was sought to deliver enhanced corrosion mitigation of the carbon steel pipeline infrastructure but at reduced chemical injection dose rates. This paper presents the laboratory work conducted on the development of a corrosion inhibitor under the operator’s simulated sour operating conditions and then subsequent field testing of the product. The new CI not only provided extremely good levels of general and localized corrosion inhibition and outperformed the incumbent CI under the laboratory test conditions but did so at vastly lower concentrations. In turn, the novel CI product facilitated field chemical injection rates to be optimized and reduced by 40% compared with the incumbent whilst maintaining superior corrosion protection resulting in significant cost savings and associated sustainability benefits for the operator.

Keywords: carbon steel, sour gas, hydrogen sulphide, localized corrosion, pitting, corrosion inhibitor

Procedia PDF Downloads 83
364 Effect of Enzymatic Modification on the Crystallinity of Cellulose Pulps

Authors: J. Janicki, M. Rom, C. Slusarczyk, J. Fabia, M. Siika-aho, K. Marjamaa, K. Kruus, K. Langfelder, C. Steel, M. Paloheimo, T. Puranen, S. Mäkinen, D. Wawro

Abstract:

The cellulose is one of the most abundant polymers in the world, however, its application in the high-end value products such as films or fibres, it triggered by the cellulose properties. The noticeable presence of hydrogen bonding reflected with partially crystalline structure makes the cellulose insoluble in common solvents and not meltable. The existing technologies, such as viscose process, suffer from environmental and economical problems, because of the risk of harmful chemicals liberation during the spinning process. The enzymatic modification of cellulose with endoglucanase makes it directly alkali soluble in NaOH solution, giving the opportunities for film and fibers formation. As the effect of enzymatic treatment, there are observed changes in crystalline structure and accompanying changes of the affinity of cellulose to water, demonstrated by water retention value. The objective of the project ELMO - Novel carbohydrate modifying enzymes for fibre modification is is to develop new enzyme products for modification of dissolving grade pulps. The aim is to increase the reactivity of dissolving grade pulps and remove residual hemicellulose. The scientific aim of this paper is to present the effect of enzymatic treatment on the crystallinity and affinity to water of cellulose pulps modified with enzymes.

Keywords: cellulose, crystallinity, WAXS, enzyme

Procedia PDF Downloads 234
363 Anti-Inflammatory Effect of Carvedilol 1% Ointment in Topical Application to the Animal Model

Authors: Berina Pilipović, Saša Pilipović, Maja Pašić-Kulenović

Abstract:

Inflammation is the body's response to impaired homeostasis caused by infection, injury or trauma resulting in systemic and local effects. Inflammation causes the body's response to injury and is characterized by a series of events including inflammatory response, response to pain receptors and the recovery process. Inflammation can be acute and chronic. The inflammatory response is described in three different phases. Free radical is an atom or molecule that has the unpaired electron and is therefore generally very reactive chemical species. Biologically important example of reaction with free radicals is called Lipid peroxidation (LP). Lipid peroxidation reactions occur in biological membranes, and if at the outset is not stopped with the action of antioxidants, it will bring damage to the membrane, which results in partial or complete loss of their physiological functions. Calcium antagonists and beta-adrenergic receptor antagonists are known drugs, and for many years and widely used in the treatment of cardiovascular diseases. Some of these compounds also show antioxidant activity. The mechanism of antioxidant activities of calcium antagonists and beta-blockers is unknown, since their structure varies widely. This research investigated the possible local anti-inflammatory activity of ointments containing 1% carvedilol in the white petrolatum USP. Ear inflammation was induced by 3% croton oil acetone solution, in quantity of 10 µl on both mouse ears. Albino Swiss mouse (n = 8) are treated with 2.5 mg/ear ointment, and control group was treated on the same way as previous with hydrocortisone 1% ointment (2.5 mg/ear). The other ear of the same animal was used as control one. Ointments were administered once per day, on the left ear. After treatment, ears were observed for three days. After three days, we measured mass (mg) of 6 mm ear punch of treated and controlled ears. The results of testing anti-inflammatory effects of ointments with carvedilol in the mouse ear model show stronger observed effect than ointment with 1% hydrocortisone in the same basis. Identical results were confirmed by the difference between the mass of 6 mm ears punch. The results were also confirmed by histological examination. Ointments with carvedilol showed significant reduction of the inflammation process caused by croton oil on the mouse inflammation model.

Keywords: antioxidant, carvedilol, inflammation, mouse ear

Procedia PDF Downloads 232
362 Electrochemical Reduction of Carbon-dioxide Using Metal Nano-particles Supported on Nano-Materials

Authors: Mulatu Kassie Birhanu

Abstract:

Electrochemical reduction of CO₂ is an emerging and current issue for its conversion in to valuable product upon minimization of its atmospheric level for contribution of maintaining within the range of permissible limit. Among plenty of electro-catalysts gold and copper are efficient and effective catalysts, which are synthesized and applicable for this research work. The two metal catalysts were prepared in inert environment with different compositions through co-reduction process from their corresponding precursors and then by adding multi-walled carbon nano-tube as a supporter and enhanced the conductivity. The catalytic performance of CO₂ reduction for each composition was performed and resulted an outstanding catalytic activity with generation of high current density (70 mA/cm² at 0.91V vs. RHE) and relatively small onset potential. The catalytic performance, compositions, morphologies, structure and geometric arrangements were evaluated by electrochemical analysis (LSV, impedance, chronoamperometry & tafel plot), EDS, SEM and XAS respectively. The composite metals showed better selectivity of products and faradaic efficiencies due to the synergetic effects of the combined nano-particles in addition to the impact of grain size in reduction of CO₂. Carbon monoxide, hydrogen, formate and ethanol are the reduction products, which are detected and quantifiable by chromatographic techniques considering their physical state of each product.

Keywords: carbondioxide, faradaic efficiency, electrocatalyst, current density

Procedia PDF Downloads 54
361 Theoretical and Experimental Electrostatic Parameters Determination of 4-Methyl-N-[(5- Nitrothiophen-2-Ylmethylidene)] Aniline Compound

Authors: N. Boukabcha, Y. Megrouss, N. Benhalima, S. Yahiaoui, A. Chouaih, F. Hamzaoui

Abstract:

We present the electron density analysis of organic compound 4-methyl-N-[(5- nitrothiophen-2-ylmethylidene)] aniline with chemical formula C12H10N2O2S. Indeed, determining the electrostatic properties of nonlinear optical organic compounds requires knowledge of the distribution of the electron density with high precision. On the other hand, a structural analysis is performed. Two methods are used to obtain the structure, X-ray diffraction and theoretical calculation with density functional theory (DFT). The electron density study is performed using the Mopro program1503 based on the multipolar model of Hansen and Coppens. Electron density analysis allows determination of the value and orientation of the dipole moment. The net atomic charges, electrostatic potential and the molecular dipole moment have been determined in order to understand the nature of inter- and intramolecular charge transfer. The study reveals the nature of intermolecular interactions including charge transfer and hydrogen bonds in the title compound. Crystallographic data: monoclinic system - space group P21 / n. Celle parameters: a = 4.7606 (4) Å, b = 22.415 (2) Å, c = 10.7008 (15) Å, β = 92.566 (13) 0, V = 1140.7 (2) Å3, Z = 4, R = 0.0034 for 2693 observed reflections.

Keywords: electron density, dipole moment, electrostatic potential, DFT, Mopro

Procedia PDF Downloads 312
360 Pharmacophore-Based Modeling of a Series of Human Glutaminyl Cyclase Inhibitors to Identify Lead Molecules by Virtual Screening, Molecular Docking and Molecular Dynamics Simulation Study

Authors: Ankur Chaudhuri, Sibani Sen Chakraborty

Abstract:

In human, glutaminyl cyclase activity is highly abundant in neuronal and secretory tissues and is preferentially restricted to hypothalamus and pituitary. The N-terminal modification of β-amyloids (Aβs) peptides by the generation of a pyro-glutamyl (pGlu) modified Aβs (pE-Aβs) is an important process in the initiation of the formation of neurotoxic plaques in Alzheimer’s disease (AD). This process is catalyzed by glutaminyl cyclase (QC). The expression of QC is characteristically up-regulated in the early stage of AD, and the hallmark of the inhibition of QC is the prevention of the formation of pE-Aβs and plaques. A computer-aided drug design (CADD) process was employed to give an idea for the designing of potentially active compounds to understand the inhibitory potency against human glutaminyl cyclase (QC). This work elaborates the ligand-based and structure-based pharmacophore exploration of glutaminyl cyclase (QC) by using the known inhibitors. Three dimensional (3D) quantitative structure-activity relationship (QSAR) methods were applied to 154 compounds with known IC50 values. All the inhibitors were divided into two sets, training-set, and test-sets. Generally, training-set was used to build the quantitative pharmacophore model based on the principle of structural diversity, whereas the test-set was employed to evaluate the predictive ability of the pharmacophore hypotheses. A chemical feature-based pharmacophore model was generated from the known 92 training-set compounds by HypoGen module implemented in Discovery Studio 2017 R2 software package. The best hypothesis was selected (Hypo1) based upon the highest correlation coefficient (0.8906), lowest total cost (463.72), and the lowest root mean square deviation (2.24Å) values. The highest correlation coefficient value indicates greater predictive activity of the hypothesis, whereas the lower root mean square deviation signifies a small deviation of experimental activity from the predicted one. The best pharmacophore model (Hypo1) of the candidate inhibitors predicted comprised four features: two hydrogen bond acceptor, one hydrogen bond donor, and one hydrophobic feature. The Hypo1 was validated by several parameters such as test set activity prediction, cost analysis, Fischer's randomization test, leave-one-out method, and heat map of ligand profiler. The predicted features were then used for virtual screening of potential compounds from NCI, ASINEX, Maybridge and Chembridge databases. More than seven million compounds were used for this purpose. The hit compounds were filtered by drug-likeness and pharmacokinetics properties. The selective hits were docked to the high-resolution three-dimensional structure of the target protein glutaminyl cyclase (PDB ID: 2AFU/2AFW) to filter these hits further. To validate the molecular docking results, the most active compound from the dataset was selected as a reference molecule. From the density functional theory (DFT) study, ten molecules were selected based on their highest HOMO (highest occupied molecular orbitals) energy and the lowest bandgap values. Molecular dynamics simulations with explicit solvation systems of the final ten hit compounds revealed that a large number of non-covalent interactions were formed with the binding site of the human glutaminyl cyclase. It was suggested that the hit compounds reported in this study could help in future designing of potent inhibitors as leads against human glutaminyl cyclase.

Keywords: glutaminyl cyclase, hit lead, pharmacophore model, simulation

Procedia PDF Downloads 130
359 Implementation of Green Deal Policies and Targets in Energy System Optimization Models: The TEMOA-Europe Case

Authors: Daniele Lerede, Gianvito Colucci, Matteo Nicoli, Laura Savoldi

Abstract:

The European Green Deal is the first internationally agreed set of measures to contrast climate change and environmental degradation. Besides the main target of reducing emissions by at least 55% by 2030, it sets the target of accompanying European countries through an energy transition to make the European Union into a modern, resource-efficient, and competitive net-zero emissions economy by 2050, decoupling growth from the use of resources and ensuring a fair adaptation of all social categories to the transformation process. While the general purpose to allow the realization of the purposes of the Green Deal already dates back to 2019, strategies and policies keep being developed coping with recent circumstances and achievements. However, general long-term measures like the Circular Economy Action Plan, the proposals to shift from fossil natural gas to renewable and low-carbon gases, in particular biomethane and hydrogen, and to end the sale of gasoline and diesel cars by 2035, will all have significant effects on energy supply and demand evolution across the next decades. The interactions between energy supply and demand over long-term time frames are usually assessed via energy system models to derive useful insights for policymaking and to address technological choices and research and development. TEMOA-Europe is a newly developed energy system optimization model instance based on the minimization of the total cost of the system under analysis, adopting a technologically integrated, detailed, and explicit formulation and considering the evolution of the system in partial equilibrium in competitive markets with perfect foresight. TEMOA-Europe is developed on the TEMOA platform, an open-source modeling framework totally implemented in Python, therefore ensuring third-party verification even on large and complex models. TEMOA-Europe is based on a single-region representation of the European Union and EFTA countries on a time scale between 2005 and 2100, relying on a set of assumptions for socio-economic developments based on projections by the International Energy Outlook and a large technological dataset including 7 sectors: the upstream and power sectors for the production of all energy commodities and the end-use sectors, including industry, transport, residential, commercial and agriculture. TEMOA-Europe also includes an updated hydrogen module considering its production, storage, transportation, and utilization. Besides, it can rely on a wide set of innovative technologies, ranging from nuclear fusion and electricity plants equipped with CCS in the power sector to electrolysis-based steel production processes and steel in the industrial sector – with a techno-economic characterization based on public literature – to produce insightful energy scenarios and especially to cope with the very long analyzed time scale. The aim of this work is to examine in detail the scheme of measures and policies for the realization of the purposes of the Green Deal and to transform them into a set of constraints and new socio-economic development pathways. Based on them, TEMOA-Europe will be used to produce and comparatively analyze scenarios to assess the consequences of Green Deal-related measures on the future evolution of the energy mix over the whole energy system in an economic optimization environment.

Keywords: European Green Deal, energy system optimization modeling, scenario analysis, TEMOA-Europe

Procedia PDF Downloads 104
358 The Removal of Common Used Pesticides from Wastewater Using Golden Activated Charcoal

Authors: Saad Mohamed Elsaid Onaizah

Abstract:

One of the reasons for the intensive use of pesticides is to protect agricultural crops and orchards from pests or agricultural worms. The period of time that pesticides stay inside the soil is estimated at about (2) to (12) weeks. Perhaps the most important reason that led to groundwater pollution is the easy leakage of these harmful pesticides from the soil into the aquifers. This research aims to find the best ways to use trated activated charcoal with gold nitrate solution; For the purpose of removing the deadly pesticides from the aqueous solution by adsorption phenomenon. The most used pesticides in Egypt were selected, such as Malathion, Methomyl Abamectin and, Thiamethoxam. Activated charcoal doped with gold ions was prepared by applying chemical and thermal treatments to activated charcoal using gold nitrate solution. Adsorption of studied pesticide onto activated carbon /Au was mainly by chemical adsorption forming complex with the gold metal immobilised on activated carbon surfaces. Also, gold atom was considered as a catalyst to cracking the pesticide molecule. Gold activated charcoal is a low cost material due to the use of very low concentrations of gold nitrate solution. its notice the great ability of activated charcoal in removing selected pesticides due to the presence of the positive charge of the gold ion, in addition to other active groups such as functional oxygen and lignin cellulose. The presence of pores of different sizes on the surface of activated charcoal is the driving force for the good adsorption efficiency for the removal of the pesticides under study The surface area of the prepared char as well as the active groups were determined using infrared spectroscopy and scanning electron microscopy. Some factors affecting the ability of activated charcoal were applied in order to reach the highest adsorption capacity of activated charcoal, such as the weight of the charcoal, the concentration of the pesticide solution, the time of the experiment, and the pH. Experiments showed that the maximum limit revealed by the batch adsorption study for the adsorption of selected insecticides was in contact time (80) minutes at pH (7.70). These promising results were confirmed, and by establishing the practical application of the developed system, the effect of various operating factors with equilibrium, kinetic and thermodynamic studies is evident, using the Langmuir application on the effectiveness of the absorbent material with absorption capacities higher than most other adsorbents.

Keywords: waste water, pesticides pollution, adsorption, activated carbon

Procedia PDF Downloads 78
357 Improvement of Water Distillation Plant by Using Statistical Process Control System

Authors: Qasim Kriri, Harsh B. Desai

Abstract:

Water supply and sanitation in Saudi Arabia is portrayed by difficulties and accomplishments. One of the fundamental difficulties is water shortage. With a specific end goal to beat water shortage, significant ventures have been attempted in sea water desalination, water circulation, sewerage, and wastewater treatment. The motivation behind Statistical Process Control (SPC) is to decide whether the execution of a procedure is keeping up an acceptable quality level [AQL]. SPC is an analytical decision-making method. A fundamental apparatus in the SPC is the Control Charts, which follow the inconstancy in the estimations of the item quality attributes. By utilizing the suitable outline, administration can decide whether changes should be made with a specific end goal to keep the procedure in charge. The two most important quality factors in the distilled water which were taken into consideration were pH (Potential of Hydrogen) and TDS (Total Dissolved Solids). There were three stages at which the quality checks were done. The stages were as follows: (1) Water at the source, (2) water after chemical treatment & (3) water which is sent for packing. The upper specification limit, central limit and lower specification limit are taken as per Saudi water standards. The procedure capacity to accomplish the particulars set for the quality attributes of Berain water Factory chose to be focused by the proposed SPC system.

Keywords: acceptable quality level, statistical quality control, control charts, process charts

Procedia PDF Downloads 183
356 The Effectiveness of Cathodic Protection on Microbiologically Influenced Corrosion Control

Authors: S. Taghavi Kalajahi, A. Koerdt, T. Lund Skovhus

Abstract:

Cathodic protection (CP) is an electrochemical method to control and manage corrosion in different industries and environments. CP which is widely used, especially in buried and sub-merged environments, which both environments are susceptible to microbiologically influenced corrosion (MIC). Most of the standards recommend performing CP using -800 mV, however, if MIC threats are high or sulfate reducing bacteria (SRB) is present, the recommendation is to use more negative potentials for adequate protection of the metal. Due to the lack of knowledge and research on the effectiveness of CP on MIC, to the author’s best knowledge, there is no information about what MIC threat is and how much more negative potentials should be used enabling adequate protection and not overprotection (due to hydrogen embrittlement risk). Recently, the development and cheaper price of molecular microbial methods (MMMs) open the door for more effective investigations on the corrosion in the presence of microorganisms, along with other electrochemical methods and surface analysis. In this work, using MMMs, the gene expression of SRB biofilm under different potentials of CP will be investigated. The specific genes, such as pH buffering, metal oxidizing, etc., will be compared at different potentials, enabling to determine the precise potential that protect the metal effectively from SRB. This work is the initial step to be able to standardize the recommended potential under MIC condition, resulting better protection for the infrastructures.

Keywords: cathodic protection, microbiologically influenced corrosion, molecular microbial methods, sulfate reducing bacteria

Procedia PDF Downloads 90
355 Biodegradable Magnesium Alloys with Addition of Rare Earth Elements for Biomedical Applications

Authors: Yuncang Li, Cuie Wen

Abstract:

Biodegradable metallic materials such as magnesium (Mg)-based alloys have attracted extensive interest for use as bone implant materials. However, the high biodegradation rate of existing Mg alloys in the physiological environment of human body leads to losing mechanical integrity before adequate bone healing and producing a large volume of hydrogen gas. Therefore, slowing down the biodegradation rate of Mg alloys is a critical task in developing new biodegradable Mg alloy implant materials. One of the most effective approaches to achieve this is to strategically design new Mg alloys with low biodegradation rate, excellent biocompatibility, and enhanced mechanical properties. Our research selected biocompatible and biofunctional alloying elements such as zirconium (Zr), strontium (Sr), and rare earth elements (REEs) to alloy Mg and has developed a new series of Mg-Zr-Sr-REEs alloys for biodegradable implant applications. Research results indicated that Sr and Zr additions could refine the grain size, decrease the biodegradation rate, and enhance the biological behaviors of the Mg alloys. The REE addition, such as holmium (Ho) and dysprosium (Dy) to Mg-Zr-Sr alloys resulted in enhanced mechanical strength and decreased biodegradation rate. In addition, Ho and Dy additions (≤ 5 wt.%) to Mg-Zr-Sr alloys led to enhancement of cell adhesion and proliferation of osteoblast cells on the Mg-Zr-Sr-Ho/Dy alloys.

Keywords: biocompatibility, magnesium, mechanical and biodegrade properties, rare earth elements

Procedia PDF Downloads 119
354 Interlayer Interaction Arising from Lone Pairs in s-Orbitals in 2D Materials

Authors: Yuan Yan

Abstract:

Interlayer interactions or hybridization in van der Waals (vdW) heterostructures of two-dimensional (2D) materials significantly influence their physical characteristics, including layer-dependent electronic and vibrational structures, magic-angle superconductivity, interlayer antiferromagnetism, and interlayer excitons. These interactions are sensitive to a set of interdependent and externally tunable parameters. To fully exploit the potential of these materials, it is crucial to understand the physical origins of interlayer interaction and hybridization. Traditional theories often attribute these interactions to the sharing of electrons via p orbital lone pairs or π electrons, based on the octet rule, which posits that p electrons are the primary occupants of the outermost atomic shells, except in hydrogen. However, our study challenges this prevailing belief. Through high-throughput screening and density function theory, we demonstrate that s orbital lone pairs can also drive interlayer interactions in 2D materials. The crystal field and inert pair effect induce a Stark-like phenomenon, leading to energy level splitting and the formation of directional electron clouds. This allows these electrons to directly participate in the hybridization of interlayer wavefunctions without forming chemical bonds. Our findings expand the understanding of interlayer interactions, revealing new mechanisms that govern these properties and providing a theoretical foundation for manipulating interlayer phenomena in 2D materials.

Keywords: interlayer interaction, nanomaterials, 2D materials, van der waals, heterostructures

Procedia PDF Downloads 4
353 Fuzzy Logic Based Ventilation for Controlling Harmful Gases in Livestock Houses

Authors: Nuri Caglayan, H. Kursat Celik

Abstract:

There are many factors that influence the health and productivity of the animals in livestock production fields, including temperature, humidity, carbon dioxide (CO2), ammonia (NH3), hydrogen sulfide (H2S), physical activity and particulate matter. High NH3 concentrations reduce feed consumption and cause daily weight gain. At high concentrations, H2S causes respiratory problems and CO2 displace oxygen, which can cause suffocation or asphyxiation. Good air quality in livestock facilities can have an impact on the health and well-being of animals and humans. Air quality assessment basically depends on strictly given limits without taking into account specific local conditions between harmful gases and other meteorological factors. The stated limitations may be eliminated. using controlling systems based on neural networks and fuzzy logic. This paper describes a fuzzy logic based ventilation algorithm, which can calculate different fan speeds under pre-defined boundary conditions, for removing harmful gases from the production environment. In the paper, a fuzzy logic model has been developed based on a Mamedani’s fuzzy method. The model has been built on MATLAB software. As the result, optimum fan speeds under pre-defined boundary conditions have been presented.

Keywords: air quality, fuzzy logic model, livestock housing, fan speed

Procedia PDF Downloads 371
352 Magnetocaloric Effect in Ho₂O₃ Nanopowder at Cryogenic Temperature

Authors: K. P. Shinde, M. V. Tien, H. Lin, H.-R. Park, S.-C.Yu, K. C. Chung, D.-H. Kim

Abstract:

Magnetic refrigeration provides an attractive alternative cooling technology due to its potential advantages such as high cooling efficiency, environmental friendliness, low noise, and compactness over the conventional cooling techniques based on gas compression. Magnetocaloric effect (MCE) occurs by changes in entropy (ΔS) and temperature (ΔT) under external magnetic fields. We have been focused on identifying materials with large MCE in two temperature regimes, not only room temperature but also at cryogenic temperature for specific technological applications, such as space science and liquefaction of hydrogen in fuel industry. To date, the commonly used materials for cryogenic refrigeration are based on hydrated salts. In the present work, we report giant MCE in rare earth Ho2O3 nanopowder at cryogenic temperature. HoN nanoparticles with average size of 30 nm were prepared by using plasma arc discharge method with gas composition of N2/H2 (80%/20%). The prepared HoN was sintered in air atmosphere at 1200 oC for 24 hrs to convert it into oxide. Structural and morphological properties were studied by XRD and SEM. XRD confirms the pure phase and cubic crystal structure of Ho2O3 without any impurity within error range. It has been discovered that Holmium oxide exhibits giant MCE at low temperature without magnetic hysteresis loss with the second-order antiferromagnetic phase transition with Néels temperature around 2 K. The maximum entropy change was found to be 25.2 J/kgK at an applied field of 6 T.

Keywords: magnetocaloric effect, Ho₂O₃, magnetic entropy change, nanopowder

Procedia PDF Downloads 145
351 Sono- and Photocatalytic Degradation of Indigocarmine in Water Using ZnO

Authors: V. Veena, Suguna Yesodharan, E. P. Yesodharan

Abstract:

Two Advanced Oxidation Processes (AOP) i.e., sono- and photo-catalysis mediated by semiconductor oxide catalyst, ZnO has been found effective for the removal of trace amounts of the toxic dye pollutant Indigocarmine (IC) from water. The effect of various reaction parameters such as concentration of the dye, catalyst dosage, temperature, pH, dissolved oxygen etc. as well as the addition of oxidisers and presence of salts in water on the rate of degradation has been evaluated and optimised. The degradation follows variable kinetics depending on the concentration of the substrate, the order of reaction varying from 1 to 0 with increase in concentration. The reaction proceeds through a number of intermediates and many of them have been identified using GCMS technique. The intermediates do not affect the rate of degradation significantly. The influence of anions such as chloride, sulphate, fluoride, carbonate, bicarbonate, phosphate etc. on the degradation of IC is not consistent and does not follow any predictable pattern. Phosphates and fluorides inhibit the degradation while chloride, sulphate, carbonate and bicarbonate enhance. Adsorption studies of the dye in the absence as well as presence of these anions show that there may not be any direct correlation between the adsorption of the dye on the catalyst and the degradation. Oxidants such as hydrogen peroxide and persulphate enhance the degradation though the combined effect and it is less than the cumulative effect of individual components. COD measurements show that the degradation proceeds to complete mineralisation. The results will be presented and probable mechanism for the degradation will be discussed.

Keywords: AOP, COD, indigocarmine, photocatalysis, sonocatalysis

Procedia PDF Downloads 333
350 Comparing UV-based and O₃-Based AOPs for Removal of Emerging Contaminants from Food Processing Digestate Sludge

Authors: N. Moradi, C. M. Lopez-Vazquez, H. Garcia Hernandez, F. Rubio Rincon, D. Brdanovic, Mark van Loosdrecht

Abstract:

Advanced oxidation processes have been widely used for disinfection, removal of residual organic material, and for the removal of emerging contaminants from drinking water and wastewater. Yet, the application of these technologies to sludge treatment processes has not gained enough attention, mostly, considering the complexity of the sludge matrix. In this research, ozone and UV/H₂O₂ treatment were applied for the removal of emerging contaminants from a digestate supernatant. The removal of the following compounds was assessed:(i) salicylic acid (SA) (a surrogate of non-stradiol anti-inflammatory drugs (NSAIDs)), and (ii) sulfamethoxazole (SMX), sulfamethazine (SMN), and tetracycline (TCN) (the most frequent human and animal antibiotics). The ozone treatment was carried out in a plexiglass bubble column reactor with a capacity of 2.7 L; the system was equipped with a stirrer and a gas diffuser. The UV and UV/H₂O₂ treatments were done using a LED set-up (PearlLab beam device) dosing H₂O₂. In the ozone treatment evaluations, 95 % of the three antibiotics were removed during the first 20 min of exposure time, while an SA removal of 91 % occurred after 8 hours of exposure time. In the UV treatment evaluations, when adding the optimum dose of hydrogen peroxide (H₂O₂:COD molar ratio of 0.634), 36% of SA, 82% of TCN, and more than 90 % of both SMX and SMN were removed after 8 hours of exposure time. This study concluded that O₃ was more effective than UV/H₂O₂ in removing emerging contaminants from the digestate supernatant.

Keywords: digestate sludge, emerging contaminants, ozone, UV-AOP

Procedia PDF Downloads 100
349 Antioxidative Potential of Aqueous Extract of Ocimum americanum L. Leaves: An in vitro and in vivo Evaluation

Authors: Bukola Tola Aluko, Omotade Ibidun Oloyede

Abstract:

Ocimum americanum L. (Lamiaceae) is an annual herb that is native to tropical Africa. The in vitro and in vivo antioxidant activity of its aqueous extract was carefully investigated by assessing the DPPH radical scavenging activity, ABTS radical scavenging activity and hydrogen peroxide radical scavenging activity. The reducing power, total phenol, total flavonoids and flavonols content of the extract were also evaluated. The data obtained revealed that the extract is rich in polyphenolic compounds and scavenged the radicals in a concentration-dependent manner. This was done in comparison with the standard antioxidants such as BHT and Vitamin C. Also, the induction of oxidative damage with paracetamol (2000 mg/kg) resulted in the elevation of lipid peroxides and significant (P < 0.05) decrease in activities of superoxide dismutase, glutathione peroxidase, glutathione reductase and catalase in the liver and kidney of rats. However, the pretreatment of rats with aqueous extract of O. americanum leaves (200 and 400 mg/kg), and silymarin (100 mg/kg) caused a significant (P < 0.05) reduction in the values of lipid peroxides and restored the levels of antioxidant parameters in these organs. These findings suggest that the leaves of O. americanum have potent antioxidant properties which may be responsible for its acclaimed folkloric uses.

Keywords: antioxidants, free radicals, ocimum americanum, scavenging activity

Procedia PDF Downloads 333
348 Control of Spoilage Fungi by Lactobacilli

Authors: Laref Nora, Guessas Bettache

Abstract:

Lactic acid bacteria (LAB) have a major potential to be used in biopreservation methods because they are safe to consume (GRAS: generally regarded as safe) and they naturally occurring microflora of many foods. The preservative action of LAB is due to several antimicrobial metabolites, including lactic acid, acetic acid, hydrogen peroxide, bacteriocins, carbon dioxide, diacetyl, and reuterin. Several studies have focused on the antifungal activity compounds from natural sources for biopreservation in alternatives to chemical use. LAB has an antifungal activity which may inhibit food spoilage fungi. Lactobacillus strains isolated from silage prepared in our laboratory by fermentation of grass in anaerobic condition were screened for antifungal activity with overlay assay against Aspergillus spp. The antifungal compounds were originated from organic acids; inhibitory activity did not change after treatment with proteolytic enzymes. Lactobacillus strains were able also to inhibit Trichoderma spp, Penicillium spp, Fusarium roseum, and Stemphylim spp by confrontation assay. The inhibitory activity could be detected against the mould Aspergillus spp in the apricot juice but not in a bakery product. These antifungal compounds have the potential to be used as food biopreservation to inhibit conidia germination, and mycelia growth of spoilage fungi depending on food type, pH of food especially in heat, and cold processed foods.

Keywords: lactic acid bacteria, Lactobacillus, Aspergillus, antifungal activity

Procedia PDF Downloads 329
347 Computational Approach to Identify Novel Chemotherapeutic Agents against Multiple Sclerosis

Authors: Syed Asif Hassan, Tabrej Khan

Abstract:

Multiple sclerosis (MS) is a chronic demyelinating autoimmune disorder, of the central nervous system (CNS). In the present scenario, the current therapies either do not halt the progression of the disease or have side effects which limit the usage of current Disease Modifying Therapies (DMTs) for a longer period of time. Therefore, keeping the current treatment failure schema, we are focusing on screening novel analogues of the available DMTs that specifically bind and inhibit the Sphingosine1-phosphate receptor1 (S1PR1) thereby hindering the lymphocyte propagation toward CNS. The novel drug-like analogs molecule will decrease the frequency of relapses (recurrence of the symptoms associated with MS) with higher efficacy and lower toxicity to human system. In this study, an integrated approach involving ligand-based virtual screening protocol (Ultrafast Shape Recognition with CREDO Atom Types (USRCAT)) to identify the non-toxic drug like analogs of the approved DMTs were employed. The potency of the drug-like analog molecules to cross the Blood Brain Barrier (BBB) was estimated. Besides, molecular docking and simulation using Auto Dock Vina 1.1.2 and GOLD 3.01 were performed using the X-ray crystal structure of Mtb LprG protein to calculate the affinity and specificity of the analogs with the given LprG protein. The docking results were further confirmed by DSX (DrugScore eXtented), a robust program to evaluate the binding energy of ligands bound to the ligand binding domain of the Mtb LprG lipoprotein. The ligand, which has a higher hypothetical affinity, also has greater negative value. Further, the non-specific ligands were screened out using the structural filter proposed by Baell and Holloway. Based on the USRCAT, Lipinski’s values, toxicity and BBB analysis, the drug-like analogs of fingolimod and BG-12 showed that RTL and CHEMBL1771640, respectively are non-toxic and permeable to BBB. The successful docking and DSX analysis showed that RTL and CHEMBL1771640 could bind to the binding pocket of S1PR1 receptor protein of human with greater affinity than as compared to their parent compound (Fingolimod). In this study, we also found that all the drug-like analogs of the standard MS drugs passed the Bell and Holloway filter.

Keywords: antagonist, binding affinity, chemotherapeutics, drug-like, multiple sclerosis, S1PR1 receptor protein

Procedia PDF Downloads 254
346 Electrically Tuned Photoelectrochemical Properties of Ferroelectric PVDF/Cu/PVDF-NaNbO₃ Photoanode

Authors: Simrjit Singh, Neeraj Khare

Abstract:

In recent years, photo-electrochemical (PEC) water splitting with an aim to generate hydrogen (H₂) as a clean and renewable fuel has been the subject of intense research interests. Ferroelectric semiconductors have been demonstrated to exhibit enhanced PEC properties as these can be polarized with the application of an external electric field resulting in a built-in potential which helps in separating out the photogenerated charge carriers. In addition to this, by changing the polarization direction, the energy band alignment at the electrode/electrolyte interface can be modulated in a way that it can help in the easy transfer of the charge carriers from the electrode to the electrolyte. In this paper, we investigated the photoelectrochemical properties of ferroelectric PVDF/Cu/PVDF-NaNbO₃ PEC cell and demonstrated that PEC properties can be tuned with ferroelectric polarization and piezophototronic effect. Photocurrent density is enhanced from ~0.71 mA/cm² to 1.97 mA/cm² by changing the polarization direction. Furthermore, due to flexibility and piezoelectric properties of PVDF/Cu/PVDF-NaNbO₃ PEC cell, a further ~26% enhancement in the photocurrent is obtained using the piezophototronic effect. A model depicting the modulation of band alignment between PVDF and NaNbO₃ with the electric field is proposed to explain the observed tuning of the PEC properties. Electrochemical Impedance spectroscopy measurements support the validity of the proposed model.

Keywords: electrical tuning, H₂ generation, photoelectrochemical, NaNbO₃

Procedia PDF Downloads 170
345 Synthesis and Catalytic Activity of N-Heterocyclic Carbene Copper Catalysts Supported on Magnetic Nanoparticles

Authors: Iwona Misztalewska-Turkowicz, Agnieszka Z. Wilczewska, Karolina H. Markiewicz

Abstract:

Carbenes - species which possess neutral carbon atom with two shared and two unshared valence electrons, are known for their high reactivity and instability. Nevertheless, it is also known, that some carbenes i.e. N-heterocyclic carbenes (NHCs), can form stable crystals. The usability of NHCs in organic synthesis was studied. Due to their exceptional properties (high nucleophilicity) NHCs are commonly used as organocatalysts and also as ligands in transition metal complexes. NHC ligands possess better electron-donating properties than phosphines. Moreover, they exhibit lower toxicity. Due to these features, phosphines are frequently replaced by NHC ligands. In this research is discussed the synthesis of five-membered NHCs which are mainly obtained by deprotonation of azolium salts, e.g., imidazolium or imidazolinium salts. Some of them are immobilized on a solid support what leads to formation of heterogeneous, recyclable catalysts. Magnetic nanoparticles (MNPs) are often used as a solid support for catalysts. MNPs can be easily separated from the reaction mixture using an external magnetic field. Due to their low size and high surface to volume ratio, they are a good choice for immobilization of catalysts. Herein is presented synthesis of N-heterocyclic carbene copper complexes directly on the surface of magnetic nanoparticles. Formation of four different catalysts is discussed. They vary in copper oxidation state (Cu(I) and Cu(II)) and structure of NHC ligand. Catalysts were tested in Huisgen reaction, a type of copper catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Huisgen reaction represents one of the few universal and highly efficient reactions in which 1,2,3-triazoles can be obtained. The catalytic activity of all synthesized catalysts was compared with activity of commercially available ones. Different reaction conditions (solvent, temperature, the addition of reductant) and reusability of the obtained catalysts were investigated and are discussed. The project was financially supported by National Science Centre, Poland, grant no. 2016/21/N/ST5/01316. Analyses were performed in Centre of Synthesis and Analyses BioNanoTechno of University of Bialystok. The equipment in the Centre of Synthesis and Analysis BioNanoTechno of University of Bialystok was funded by EU, as a part of the Operational Program Development of Eastern Poland 2007-2013, project: POPW.01.03.00-20-034/09-00 and POPW.01.03.00-20-004/11.

Keywords: N-heterocyclic carbenes, click reaction, magnetic nanoparticles, copper catalysts

Procedia PDF Downloads 155