Search results for: water splitting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8564

Search results for: water splitting

974 Applications of Greenhouse Data in Guatemala in the Analysis of Sustainability Indicators

Authors: Maria A. Castillo H., Andres R. Leandro, Jose F. Bienvenido B.

Abstract:

In 2015, Guatemala officially adopted the Sustainable Development Goals (SDG) according to the 2030 Agenda agreed by the United Nations Organization. In 2016, these objectives and goals were reviewed, and the National Priorities were established within the K'atún 2032 National Development Plan. In 2019 and 2021, progress was evaluated with 120 defined indicators, and the need to improve quality and availability of statistical data necessary for the analysis of sustainability indicators was detected, so the values to be reached in 2024 and 2032 were adjusted. The need for greater agricultural technology is one of the priorities established within SDG 2 "Zero Hunger". Within this area, protected agricultural production provides greater productivity throughout the year, reduces the use of chemical products to control pests and diseases, reduces the negative impact of climate and improves product quality. During the crisis caused by Covid-19, there was an increase in exports of fruits and vegetables produced in greenhouses from Guatemala. However, this information has not been considered in the 2021 revision of the Plan. The objective of this study is to evaluate the information available on Greenhouse Agricultural Production and its integration into the Sustainability Indicators for Guatemala. This study was carried out in four phases: 1. Analysis of the Goals established for SDG 2 and the indicators included in the K'atún Plan. 2. Analysis of Environmental, Social and Economic Indicator Models. 3. Definition of territorial levels in 2 geographic scales: Departments and Municipalities. 4. Diagnosis of the available data on technological agricultural production with emphasis on Greenhouses at the 2 geographical scales. A summary of the results is presented for each phase and finally some recommendations for future research are added. The main contribution of this work is to improve the available data that allow the incorporation of some agricultural technology indicators in the established goals, to evaluate their impact on Food Security and Nutrition, Employment and Investment, Poverty, the use of Water and Natural Resources, and to provide a methodology applicable to other production models and other geographical areas.

Keywords: greenhouses, protected agriculture, sustainable indicators, Guatemala, sustainability, SDG

Procedia PDF Downloads 66
973 Effect of Sulphur Concentration on Microbial Population and Performance of a Methane Biofilter

Authors: Sonya Barzgar, J. Patrick, A. Hettiaratchi

Abstract:

Methane (CH4) is reputed as the second largest contributor to greenhouse effect with a global warming potential (GWP) of 34 related to carbon dioxide (CO2) over the 100-year horizon, so there is a growing interest in reducing the emissions of this gas. Methane biofiltration (MBF) is a cost effective technology for reducing low volume point source emissions of methane. In this technique, microbial oxidation of methane is carried out by methane-oxidizing bacteria (methanotrophs) which use methane as carbon and energy source. MBF uses a granular medium, such as soil or compost, to support the growth of methanotrophic bacteria responsible for converting methane to carbon dioxide (CO₂) and water (H₂O). Even though the biofiltration technique has been shown to be an efficient, practical and viable technology, the design and operational parameters, as well as the relevant microbial processes have not been investigated in depth. In particular, limited research has been done on the effects of sulphur on methane bio-oxidation. Since bacteria require a variety of nutrients for growth, to improve the performance of methane biofiltration, it is important to establish the input quantities of nutrients to be provided to the biofilter to ensure that nutrients are available to sustain the process. The study described in this paper was conducted with the aim of determining the influence of sulphur on methane elimination in a biofilter. In this study, a set of experimental measurements has been carried out to explore how the conversion of elemental sulphur could affect methane oxidation in terms of methanotrophs growth and system pH. Batch experiments with different concentrations of sulphur were performed while keeping the other parameters i.e. moisture content, methane concentration, oxygen level and also compost at their optimum level. The study revealed the tolerable limit of sulphur without any interference to the methane oxidation as well as the particular sulphur concentration leading to the greatest methane elimination capacity. Due to the sulphur oxidation, pH varies in a transient way which affects the microbial growth behavior. All methanotrophs are incapable of growth at pH values below 5.0 and thus apparently are unable to oxidize methane. Herein, the certain pH for the optimal growth of methanotrophic bacteria is obtained. Finally, monitoring methane concentration over time in the presence of sulphur is also presented for laboratory scale biofilters.

Keywords: global warming, methane biofiltration (MBF), methane oxidation, methanotrophs, pH, sulphur

Procedia PDF Downloads 218
972 Investigation of Different Surface Oxidation Methods on Pyrolytic Carbon

Authors: Lucija Pustahija, Christine Bandl, Wolfgang Kern, Christian Mitterer

Abstract:

Concerning today´s ecological demands, producing reliable materials from sustainable resources is a continuously developing topic. Such an example is the production of carbon materials via pyrolysis of natural gases or biomass. The amazing properties of pyrolytic carbon are utilized in various fields, where in particular the application in building industry is a promising way towards the utilization of pyrolytic carbon and composites based on pyrolytic carbon. For many applications, surface modification of carbon is an important step in tailoring its properties. Therefore, in this paper, an investigation of different oxidation methods was performed to prepare the carbon surface before functionalizing it with organosilanes, which act as coupling agents for epoxy and polyurethane resins. Made in such a way, a building material based on carbon composites could be used as a lightweight, durable material that can be applied where water or air filtration / purification is needed. In this work, both wet and dry oxidation were investigated. Wet oxidation was first performed in solutions of nitric acid (at 120 °C and 150 °C) followed by oxidation in hydrogen peroxide (80 °C) for 3 and 6 h. Moreover, a hydrothermal method (under oxygen gas) in autoclaves was investigated. Dry oxidation was performed under plasma and corona discharges, using different power values to elaborate optimum conditions. Selected samples were then (in preliminary experiments) subjected to a silanization of the surface with amino and glycidoxy organosilanes. The functionalized surfaces were examined by X-ray photon spectroscopy and Fourier transform infrared spectroscopy spectroscopy, and by scanning electron microscopy. The results of wet and dry oxidation methods indicated that the creation of functionalities was influenced by temperature, the concentration of the reagents (and gases) and the duration of the treatment. Sequential oxidation in aq. HNO₃ and H₂O₂ results in a higher content of oxygen functionalities at lower concentrations of oxidizing agents, when compared to oxidizing the carbon with concentrated nitric acid. Plasma oxidation results in non-permanent functionalization on the carbon surface, by which it´s necessary to find adequate parameters of oxidation treatments that could enable longer stability of functionalities. Results of the functionalization of the carbon surfaces with organosilanes will be presented as well.

Keywords: building materials, dry oxidation, organosilanes, pyrolytic carbon, resins, surface functionalization, wet oxidation

Procedia PDF Downloads 80
971 Analysis of Structural and Photocatalytical Properties of Anatase, Rutile and Mixed Phase TiO2 Films Deposited by Pulsed-Direct Current and Radio Frequency Magnetron Co-Sputtering

Authors: S. Varnagiris, M. Urbonavicius, S. Tuckute, M. Lelis, K. Bockute

Abstract:

Amongst many water purification techniques, TiO2 photocatalysis is recognized as one of the most promising sustainable methods. It is known that for photocatalytical applications anatase is the most suitable TiO2 phase, however heterojunction of anatase/rutile phases could improve the photocatalytical activity of TiO2 even further. Despite the relative simplicity of TiO2 different synthesis methods lead to the highly dispersed crystal phases and photocatalytic activity of the corresponding samples. Accordingly, suggestions and investigations of various innovative methods of TiO2 synthesis are still needed. In this work structural and photocatalytical properties of TiO2 films deposited by the unconventional method of simultaneous co-sputtering from two magnetrons powered by pulsed-Direct Current (pDC) and Radio Frequency (RF) power sources with negative bias voltage have been studied. More specifically, TiO2 film thickness, microstructure, surface roughness, crystal structure, optical transmittance and photocatalytical properties were investigated by profilometer, scanning electron microscope, atomic force microscope, X-ray diffractometer and UV-Vis spectrophotometer respectively. The proposed unconventional two magnetron co-sputtering based TiO2 film formation method showed very promising results for crystalline TiO2 film formation while keeping process temperatures below 100 °C. XRD analysis revealed that by using proper combination of power source type and bias voltage various TiO2 phases (amorphous, anatase, rutile or their mixture) can be synthesized selectively. Moreover, strong dependency between power source type and surface roughness, as well as between the bias voltage and band gap value of TiO2 films was observed. Interestingly, TiO2 films deposited by two magnetron co-sputtering without bias voltage had one of the highest band gap values between the investigated films but its photocatalytic activity was superior compared to all other samples. It is suggested that this is due to the dominating nanocrystalline anatase phase with various exposed surfaces including photocatalytically the most active {001}.

Keywords: films, magnetron co-sputtering, photocatalysis, TiO₂

Procedia PDF Downloads 103
970 Scenarios for the Energy Transition in Residential Buildings for the European Regions

Authors: Domenico Carmelo Mongelli, Laura Carnieletto, Michele De Carli, Filippo Busato

Abstract:

Starting from the current context in which the Russian invasion in Ukraine has highlighted Europe's dependence on natural gas imports for heating buildings, this study proposes solutions to resolve this dependency and evaluates related scenarios in the near future. In the first part of this work the methodologies and results of the economic impact are indicated by simulating a massive replacement of boilers powered by fossil fuels with electrically powered hightemperature air-water heat pumps for heating residential buildings in different European climates, without changing the current energy mix. For each individual European region, the costs for the purchase and installation of heat pumps for all residential buildings have been determined. Again for each individual European region, the economic savings during the operation phase that would be obtained in this future scenario of energy transition from fossil fuels to the electrification of domestic heating were calculated. For the European regions for which the economic savings were identified as positive, the payback times of the economic investments were analysed. In the second part of the work, hypothesizing different scenarios for a possible greater use of renewable energy sources and therefore with different possible future scenarios of the energy mix, the methodologies and results of the simulations on the economic analysis and on the environmental analysis are reported which have allowed us to evaluate the future effects of the energy transition from boilers to heat pumps for each European region. In the third part, assuming a rapid short-term diffusion of cooling for European residential buildings, the penetration shares in the cooling market and future projections of energy needs for cooling for each European region have been identified. A database was created where the results of this research relating to 38 European Nations divided into 179 regions were reported. Other previous works on the topics covered were limited to analyzing individual European nations, without ever going into detail about the individual regions within each nation, while the original contribution of the present work lies in the fact that the results achieved allow a specific numerical analysis and punctual for every single European region.

Keywords: buildings, energy, Europe, future

Procedia PDF Downloads 71
969 Review of Life-Cycle Analysis Applications on Sustainable Building and Construction Sector as Decision Support Tools

Authors: Liying Li, Han Guo

Abstract:

Considering the environmental issues generated by the building sector for its energy consumption, solid waste generation, water use, land use, and global greenhouse gas (GHG) emissions, this review pointed out to LCA as a decision-support tool to substantially improve the sustainability in the building and construction industry. The comprehensiveness and simplicity of LCA make it one of the most promising decision support tools for the sustainable design and construction of future buildings. This paper contains a comprehensive review of existing studies related to LCAs with a focus on their advantages and limitations when applied in the building sector. The aim of this paper is to enhance the understanding of a building life-cycle analysis, thus promoting its application for effective, sustainable building design and construction in the future. Comparisons and discussions are carried out between four categories of LCA methods: building material and component combinations (BMCC) vs. the whole process of construction (WPC) LCA,attributional vs. consequential LCA, process-based LCA vs. input-output (I-O) LCA, traditional vs. hybrid LCA. Classical case studies are presented, which illustrate the effectiveness of LCA as a tool to support the decisions of practitioners in the design and construction of sustainable buildings. (i) BMCC and WPC categories of LCA researches tend to overlap with each other, as majority WPC LCAs are actually developed based on a bottom-up approach BMCC LCAs use. (ii) When considering the influence of social and economic factors outside the proposed system by research, a consequential LCA could provide a more reliable result than an attributional LCA. (iii) I-O LCA is complementary to process-based LCA in order to address the social and economic problems generated by building projects. (iv) Hybrid LCA provides a more superior dynamic perspective than a traditional LCA that is criticized for its static view of the changing processes within the building’s life cycle. LCAs are still being developed to overcome their limitations and data shortage (especially data on the developing world), and the unification of LCA methods and data can make the results of building LCA more comparable and consistent across different studies or even countries.

Keywords: decision support tool, life-cycle analysis, LCA tools and data, sustainable building design

Procedia PDF Downloads 99
968 Risk Factors Associated with Dengue Fever Outbreak in Diredawa Administration City, Ethiopia, October 2015: A Case Control Study

Authors: Luna Degife, Desalegn Belay, Yoseph Worku, Tigist Tesfaye, Assefa Tufa, Abyot Bekele, Zegeye Hailemariam, Abay Hagos

Abstract:

Half of the world’s population is at risk of Dengue Fever (DF), a highly under-recognized and underreported mosquito-borne viral disease with high prevalence in the tropical and subtropical regions. Globally, an estimated 50 to 200 million cases and 20, 000 DF deaths occur annually as per the world health organization report. In Ethiopia, the first outbreak occurred in 2013 in Diredawa administration city. Afterward, three outbreaks have been reported from the eastern part of the country. We received a report of the fifth DF outbreak for Ethiopia and the second for Diredawa city on October 4, 2015. We conducted the investigation to confirm the outbreak, identify the risk factors for the repeatedly occurrence of the disease and implement control measures. We conducted un- matched case-control study and defined a suspected DF case as any person with fever of 2-7 days and 2 or more of the following: a headache, arthralgia, myalgia, rash, or bleeding from any part of the body. Controls were residents of Diredawa city without DF symptoms. We interviewed 70 Cases and 140 controls from all health facilities in Diredawa city from October 7 to 15; 2015. Epi Info version 7.1.5.0 was used to analyze the data and multivariable logistic regression was conducted to assess risk factors for DF. Sixty-nine blood samples were collected for Laboratory confirmation.The mean age for cases was 23.7±9.5 standard deviation (SD) and for controls 31.2±13 SD. Close contact with DF patient (Adjusted odds ratio (AOR)=5.36, 95% confidence interval(CI): 2.75-10.44), nonuse of long-lasting insecticidal nets (AOR=2.74, 95% CI: 1.06-7.08) and availability of stagnant water in the village (AOR=3.61, 95% CI:1.31-9.93) were independent risk factors associated with higher rates of the disease. Forty-two samples were tested positive. Endemicity of DF is becoming a concern for Diredawa city after the first outbreak. Therefore, effective vector control activities need to be part of long-term preventive measures.

Keywords: dengue fever, Diredawa, outbreak, risk factors, second

Procedia PDF Downloads 251
967 Degradation Study of Food Colorants by SingletOxygen

Authors: A. T. Toci, M. V. B. Zanoni

Abstract:

The advanced oxidation processes have been defined as destructive technologies treatment of wastewater. These involve the formation of powerful oxidizing agents (usually hydroxyl radical .OH) capable of reacting with organic compounds present in wastewater, transforming damaging substances in CO2 and H2O (mineralization) or other innocuous products. However, the photochemical degradation with singlet oxygen has been little explored as oxidative pathway for the treatment of effluents containing food colorants. The molecular oxygen is an effective suppressor of organic molecules in the triplet excited state. One of the possible results of the physical withdrawal is the formation of singlet oxygen. Studies with singlet oxygen (1O2) show an high reactivity of the excited state of the molecule with olefins, aromatic hydrocarbons and a number of other organic and inorganic compounds. Its reactivity is about 2500 times larger than the oxygen in the ground state. Thus, in this work, it was studied the degradation of some dyes used in food industry (tartrazine, sunset yellow, erythrosine and carmoisine) by singlet oxygen. The sensitizer used for generating the 1O2 was methylene blue, which has a quantum yield generation of 0.50. Samples were prepared in water at a concentration of 5 ppm and irradiated with a sunlight simulator (Newport brand, model no. 67005) by consecutive 8h. The absorption spectra of UV-Vis molecules were made each hour irradiation. The degradation kinetics for each dye was determined using the maximum length of each dye absorption. The analysis by UV-Vis revealed that the processes were very efficient for the colorants sunset yellow and carmoisine. Both presented degradation kinetics of order zero with degradation constants 0.416 and 0.104, respectively. In the case of sunset yellow degradation reached 53% after 7h irradiation, Demonstrating the process efficiency. The erithrosine presented during the period irradiated a oscillating degradation kinetics, which requires further study. In the other hand, tartrazine was stable in the presence of 1O2. The investigation of the dyes degradation products owned degradation by 1O2 are underway, the techniques used for this are MS and NMR. The results of this study will enable the application of the cleanest methods for the treatment of industrial effluents, as there are other non-toxic and polluting molecules to generate 1O2.

Keywords: food colourants, singlet oxygen, degradation, wastewater, oxidative

Procedia PDF Downloads 384
966 The Concentration of Selected Cosmogenic and Anthropogenic Radionuclides in the Ground Layer of the Atmosphere (Polar and Mid-Latitudes Regions)

Authors: A. Burakowska, M. Piotrowski, M. Kubicki, H. Trzaskowska, R. Sosnowiec, B. Myslek-Laurikainen

Abstract:

The most important source of atmospheric radioactivity are radionuclides generated as a result of the impact of primary and secondary cosmic radiation, with the nuclei of nitrogen oxygen and carbon in the upper troposphere and lower stratosphere. This creates about thirty radioisotopes of more than twenty elements. For organisms, the four of them are most important: ³H, ⁷Be, ²²Na, ¹⁴C. The natural radionuclides, which are present in Earth crust, also settle on dust and particles of water vapor. By this means, the derivatives of uranium and thorium, and long-life 40K get into the air. ¹³⁷Cs is the most widespread isotope, that is implemented by humans into the environment. To determine the concentration of radionuclides in the atmosphere, high volume air samplers were used, where the aerosol collection took place on a special filter fabric (Petrianov filter tissue FPP-15-1.5). In 2002 the high volume air sampler AZA-1000 was installed at the Polish Polar Observatory of the Polish Academy of Science in Hornsund, Spitsbergen (77°00’N, 15°33’E), designed to operate in all weather conditions of the cold polar region. Since 1991 (with short breaks) the ASS-500 air sampler has been working, which is located in Swider at the Kalinowski Geophysical Observatory of Geophysics Institute of the Polish Academy of Science (52°07’N, 21°15’E). The following results of radionuclides concentrations were obtained from both stations using gamma spectroscopy analysis: ⁷Be, ¹³⁷Cs, ¹³⁴Cs, ²¹⁰Pb, ⁴⁰K. For gamma spectroscopy analysis HPGe (High Purity Germanium) detector were used. These data were compared with each other. The preliminary results gave evidence that radioactivity measured in aerosols is not proportional to the amount of dust for both studied regions. Furthermore, the results indicate annual variability (seasonal fluctuations) as well as a decrease in the average activity of ⁷Be with increasing latitude. The content of ⁷Be in surface air also indicates the relationship with solar activity cycles.

Keywords: aerosols, air filters, atmospheric beryllium, environmental radionuclides, gamma spectroscopy, mid-latitude regions radionuclides, polar regions radionuclides, solar cycles

Procedia PDF Downloads 118
965 An Experimental Study on the Thermal Properties of Concrete Aggregates in Relation to Their Mineral Composition

Authors: Kyung Suk Cho, Heung Youl Kim

Abstract:

The analysis of the petrologic characteristics and thermal properties of crushed aggregates for concrete such as granite, gneiss, dolomite, shale and andesite found that rock-forming minerals decided the thermal properties of the aggregates. The thermal expansion coefficients of aggregates containing lots of quartz increased rapidly at 573 degrees due to quartz transition. The mass of aggregate containing carbonate minerals decreased rapidly at 750 degrees due to decarboxylation, while its specific heat capacity increased relatively. The mass of aggregates containing hydrated silicate minerals decreased more significantly, and their specific heat capacities were greater when compared with aggregates containing feldspar or quartz. It is deduced that the hydroxyl group (OH) in hydrated silicate dissolved as its bond became loose at high temperatures. Aggregates containing mafic minerals turned red at high temperatures due to oxidation response. Moreover, the comparison of cooling methods showed that rapid cooling using water resulted in more reduction in aggregate mass than slow cooling at room temperatures. In order to observe the fire resistance performance of concrete composed of the identical but coarse aggregate, mass loss and compressive strength reduction factor at 200, 400, 600 and 800 degrees were measured. It was found from the analysis of granite and gneiss that the difference in thermal expansion coefficients between cement paste and aggregates caused by quartz transit at 573 degrees resulted in thermal stress inside the concrete and thus triggered concrete cracking. The ferromagnesian hydrated silicate in andesite and shale caused greater reduction in both initial stiffness and mass compared with other aggregates. However, the thermal expansion coefficient of andesite and shale was similar to that of cement paste. Since they were low in thermal conductivity and high in specific heat capacity, concrete cracking was relatively less severe. Being slow in heat transfer, they were judged to be materials of high heat capacity.

Keywords: crush-aggregates, fire resistance, thermal expansion, heat transfer

Procedia PDF Downloads 213
964 Streamflow Modeling Using the PyTOPKAPI Model with Remotely Sensed Rainfall Data: A Case Study of Gilgel Ghibe Catchment, Ethiopia

Authors: Zeinu Ahmed Rabba, Derek D Stretch

Abstract:

Remote sensing contributes valuable information to streamflow estimates. Usually, stream flow is directly measured through ground-based hydrological monitoring station. However, in many developing countries like Ethiopia, ground-based hydrological monitoring networks are either sparse or nonexistent, which limits the manage water resources and hampers early flood-warning systems. In such cases, satellite remote sensing is an alternative means to acquire such information. This paper discusses the application of remotely sensed rainfall data for streamflow modeling in Gilgel Ghibe basin in Ethiopia. Ten years (2001-2010) of two satellite-based precipitation products (SBPP), TRMM and WaterBase, were used. These products were combined with the PyTOPKAPI hydrological model to generate daily stream flows. The results were compared with streamflow observations at Gilgel Ghibe Nr, Assendabo gauging station using four statistical tools (Bias, R², NS and RMSE). The statistical analysis indicates that the bias-adjusted SBPPs agree well with gauged rainfall compared to bias-unadjusted ones. The SBPPs with no bias-adjustment tend to overestimate (high Bias and high RMSE) the extreme precipitation events and the corresponding simulated streamflow outputs, particularly during wet months (June-September) and underestimate the streamflow prediction over few dry months (January and February). This shows that bias-adjustment can be important for improving the performance of the SBPPs in streamflow forecasting. We further conclude that the general streamflow patterns were well captured at daily time scales when using SBPPs after bias adjustment. However, the overall results demonstrate that the simulated streamflow using the gauged rainfall is superior to those obtained from remotely sensed rainfall products including bias-adjusted ones.

Keywords: Ethiopia, PyTOPKAPI model, remote sensing, streamflow, Tropical Rainfall Measuring Mission (TRMM), waterBase

Procedia PDF Downloads 259
963 Spirituality, Sense of Community and Economic Welfare: A Case of Mawlynnong Village, India

Authors: Ricky A. J. Syngkon, Santi Gopal Maji

Abstract:

Decent work and inclusive economic growth, social development, environmental protection, eradication of poverty and hunger as well as clean water and sanitation are the rudiments of 2030 agenda of sustainable development goals of the United Nations. On the other hand, spirituality is deeply entwined in the fabric of daily lives that helps in shaping attitudes, opinions, and behaviors of common people and ensuring quality of lives and overall sustainable development through protection of environment and natural resources. Mawlynnong, a small village in North-Eastern part of India, is a vivid example of how spirituality influences the development of sense of community leading to upliftment of the economic conditions of the people. Mawlynnong as a small hamlet has been in existence for a couple of centuries and it was acknowledged as the cleanest village of Asia in 2004 by BBC and National Geographic and subsequently endorsed by UNESCO in 2006. Consequently, it has attracted large number of tourists over the years from India and other parts of the world. This paper tries to explore how spirituality leads to a sense of community and the economic benefits for the people. Further, this paper also tries to find out the answer whether such an informal collective effort is sustainable or not for achieving solidarity economy. The study is based on both primary and secondary data collected from the local people and the State Government records. The findings of the study indicate that over the last one and a half decade the tourist footfall has increased to a great extent in Mawlynnong and this has brought about a paradigm shift in the occupational structure of its inhabitants from plantation to service sector particularly tourism and tourism related activities. As a result, from the economic standpoint, it is observed that life is much better off now as compared to before. But from the socio-cultural standpoint, the study finds a drift in terms of the cohesiveness and community bonding which was the hallmark of this village. This drift puts a question mark about the sustainability of such practices and consequently the development of solidarity economy.

Keywords: spirituality, sense of community, economic welfare, solidarity economy, Mawlynnong village

Procedia PDF Downloads 122
962 The Spatial Potential of the Croatian Adriatic Area for the Development of an Indigenous Form of Cruising Tourism - Mini Croatian Cruiser

Authors: Srećko Favro, Dora Mužinić

Abstract:

The eastern coast of the Adriatic Sea has been a significant part of the most important traffic corridors since Antiquity due to its position as the deepest indented bay of the Mediterranean and numerous bays on the coast and is-lands. The central place throughout history was occupied by the central part - Split-Dalmatia County, with its center in Antica in Salona and later in Split. Nowadays, in addition to its traffic and economic importance, this area is also important for tourism, an area where Croatia develops its economy and realizing its economic growth. Nautical tourism is the most important form of the tourist economic sector that uses the geographical features of the Croatian Adriatic water area and achieves the greatest growth based on tour-ist trends in the world (coronavirus - separation from the masses, adventure tourism - own arrangements) and thus opens up the possibility of develop-ment for other parts of the tourist economy. This will be described in the ex-ample of the business of the Split-Dalmatia County shipping company from Krilo Jesenice, which operates as a mini-cruising service provider, the lead-ing form of cruising in Croatia. The advantages that this type of tourism provides to travelers in terms of customized itineraries, high-quality services, an intimate atmosphere, and a unique experience through familiarization with local culture and tradition will be considered. Through direct primary research and analysis of available secondary research data, an attempt will be made to show how traditional Croatian mini cruisers manage to stand out in a competitive tourist environment. Their impact on the local economy, sus-tainability, and environmental protection will be considered, as well as how they are integrated into the tourist offer of other destinations in Croatia. In addition, the challenges and opportunities that arise in the maintenance and development of traditional Croatian mini cruisers will be discussed, includ-ing issues such as infrastructure, staff training, and market trends.

Keywords: croatia, adriatic, cruising, nautical tourism, mini cruise

Procedia PDF Downloads 49
961 The Effects of Cooling during Baseball Games on Perceived Exertion and Core Temperature

Authors: Chih-Yang Liao

Abstract:

Baseball is usually played outdoors in the warmest months of the year. Therefore, baseball players are susceptible to the influence of the hot environment. It has been shown that hitting performance is increased in games played in warm weather, compared to in cold weather, in Major League Baseball. Intermittent cooling during sporting events can prevent the risk of hyperthermia and increase endurance performance. However, the effects of cooling during baseball games played in a hot environment are unclear. This study adopted a cross-over design. Ten Division I collegiate male baseball players in Taiwan volunteered to participate in this study. Each player played two simulated baseball games, with one day in between. Five of the players received intermittent cooling during the first simulated game, while the other five players received intermittent cooling during the second simulated game. The participants were covered in neck and forehand regions for 6 min with towels that were soaked in icy salt water 3 to 4 times during the games. The participants received the cooling treatment in the dugout when they were not on the field for defense or hitting. During the 2 simulated games, the temperature was 31.1-34.1°C and humidity was 58.2-61.8%, with no difference between the two games. Ratings of perceived exertion, thermal sensation, tympanic and forehead skin temperature immediately after each defensive half-inning and after cooling treatments were recorded. Ratings of perceived exertion were measured using the Borg 10-point scale. The thermal sensation was measured with a 6-point scale. The tympanic and skin temperature was measured with infrared thermometers. The data were analyzed with a two-way analysis of variance with repeated measurement. The results showed that intermitted cooling significantly reduced ratings of perceived exertion and thermal sensation. Forehead skin temperature was also significantly decreased after cooling treatments. However, the tympanic temperature was not significantly different between the two trials. In conclusion, intermittent cooling in the neck and forehead regions was effective in alleviating the perceived exertion and heat sensation. However, this cooling intervention did not affect the core temperature. Whether intermittent cooling has any impact on hitting or pitching performance in baseball players warrants further investigation.

Keywords: baseball, cooling, ratings of perceived exertion, thermal sensation

Procedia PDF Downloads 132
960 Dependence of the Photoelectric Exponent on the Source Spectrum of the CT

Authors: Rezvan Ravanfar Haghighi, V. C. Vani, Suresh Perumal, Sabyasachi Chatterjee, Pratik Kumar

Abstract:

X-ray attenuation coefficient [µ(E)] of any substance, for energy (E), is a sum of the contributions from the Compton scattering [ μCom(E)] and photoelectric effect [µPh(E)]. In terms of the, electron density (ρe) and the effective atomic number (Zeff) we have µCom(E) is proportional to [(ρe)fKN(E)] while µPh(E) is proportional to [(ρeZeffx)/Ey] with fKN(E) being the Klein-Nishina formula, with x and y being the exponents for photoelectric effect. By taking the sample's HU at two different excitation voltages (V=V1, V2) of the CT machine, we can solve for X=ρe, Y=ρeZeffx from these two independent equations, as is attempted in DECT inversion. Since µCom(E) and µPh(E) are both energy dependent, the coefficients of inversion are also dependent on (a) the source spectrum S(E,V) and (b) the detector efficiency D(E) of the CT machine. In the present paper we tabulate these coefficients of inversion for different practical manifestations of S(E,V) and D(E). The HU(V) values from the CT follow: <µ(V)>=<µw(V)>[1+HU(V)/1000] where the subscript 'w' refers to water and the averaging process <….> accounts for the source spectrum S(E,V) and the detector efficiency D(E). Linearity of μ(E) with respect to X and Y implies that (a) <µ(V)> is a linear combination of X and Y and (b) for inversion, X and Y can be written as linear combinations of two independent observations <µ(V1)>, <µ(V2)> with V1≠V2. These coefficients of inversion would naturally depend upon S(E, V) and D(E). We numerically investigate this dependence for some practical cases, by taking V = 100 , 140 kVp, as are used for cardiological investigations. The S(E,V) are generated by using the Boone-Seibert source spectrum, being superposed on aluminium filters of different thickness lAl with 7mm≤lAl≤12mm and the D(E) is considered to be that of a typical Si[Li] solid state and GdOS scintilator detector. In the values of X and Y, found by using the calculated inversion coefficients, errors are below 2% for data with solutions of glycerol, sucrose and glucose. For low Zeff materials like propionic acid, Zeffx is overestimated by 20% with X being within1%. For high Zeffx materials like KOH the value of Zeffx is underestimated by 22% while the error in X is + 15%. These imply that the source may have additional filtering than the aluminium filter specified by the manufacturer. Also it is found that the difference in the values of the inversion coefficients for the two types of detectors is negligible. The type of the detector does not affect on the DECT inversion algorithm to find the unknown chemical characteristic of the scanned materials. The effect of the source should be considered as an important factor to calculate the coefficients of inversion.

Keywords: attenuation coefficient, computed tomography, photoelectric effect, source spectrum

Procedia PDF Downloads 383
959 The Influence of Partial Replacement of Hydrated Lime by Pozzolans on Properties of Lime Mortars

Authors: Przemyslaw Brzyski, Stanislaw Fic

Abstract:

Hydrated lime, because of the life cycle (return to its natural form as a result of the setting and hardening) has a positive environmental impact. The lime binder is used in mortars. Lime is a slow setting binder with low mechanical properties. The aim of the study was to evaluate the possibility of improving the properties of the lime binder by using different pozzolanic materials as partial replacement of hydrated lime binder. Pozzolan materials are the natural or industrial waste, so do not affect the environmental impact of the lime binder. The following laboratory tests were performed: the analysis of the physical characteristics of the tested samples of lime mortars (bulk density, porosity), flexural and compressive strength, water absorption and the capillary rise of samples and consistency of fresh mortars. As a partial replacement of hydrated lime (in the amount of 10%, 20%, 30% by weight of lime) a metakaolin, silica fume, and zeolite were used. The shortest setting and hardening time showed mortars with the addition of metakaolin. All additives noticeably improved strength characteristic of lime mortars. With the increase in the amount of additive, the increase in strength was also observed. The highest flexural strength was obtained by using the addition of metakaolin in an amount of 20% by weight of lime (2.08 MPa). The highest compressive strength was obtained by using also the addition of metakaolin but in an amount of 30% by weight of lime (9.43 MPa). The addition of pozzolan caused an increase in the mortar tightness which contributed to the limitation of absorbability. Due to the different surface area, pozzolanic additives affected the consistency of fresh mortars. Initial consistency was assumed as plastic. Only the addition of silica fume an amount of 20 and 30% by weight of lime changed the consistency to the thick-plastic. The conducted study demonstrated the possibility of applying lime mortar with satisfactory properties. The features of lime mortars do not differ significantly from cement-based mortar properties and show a lower environmental impact due to CO₂ absorption during lime hardening. Taking into consideration the setting time, strength and consistency, the best results can be obtained with metakaolin addition to the lime mortar.

Keywords: lime, binder, mortar, pozzolan, properties

Procedia PDF Downloads 176
958 Experimental and Numerical Study of Ultra-High-Performance Fiber-Reinforced Concrete Column Subjected to Axial and Eccentric Loads

Authors: Chengfeng Fang, Mohamed Ali Sadakkathulla, Abdul Sheikh

Abstract:

Ultra-high-performance fiber reinforced concrete (UHPFRC) is a specially formulated cement-based composite characterized with an ultra-high compressive strength (fc = 240 MPa) and a low water-cement ratio (W/B= 0.2). With such material characteristics, UHPFRC is favored for the design and constructions of structures required high structural performance and slender geometries. Unlike conventional concrete, the structural performance of members manufactured with UHPFRC has not yet been fully studied, particularly, for UHPFRC columns with high slenderness. In this study, the behaviors of slender UHPFRC columns under concentric or eccentric load will be investigated both experimentally and numerically. Four slender UHPFRC columns were tested under eccentric loads with eccentricities, of 0 mm, 35 mm, 50 mm, and 85 mm, respectively, and one UHPFRC beam was tested under four-point bending. Finite element (FE) analysis was conducted with concrete damage plasticity (CDP) modulus to simulating the load-middle height or middle span deflection relationships and damage patterns of all UHPFRC members. Simulated results were compared against the experimental results and observation to gain the confidence of FE model, and this model was further extended to conduct parametric studies, which aim to investigate the effects of slenderness regarding failure modes and load-moment interaction relationships. Experimental results showed that the load bearing capacities of the slender columns reduced with an increase in eccentricity. Comparisons between load-middle height and middle span deflection relationships as well as damage patterns of all UHPFRC members obtained both experimentally and numerically demonstrated high accuracy of the FE simulations. Based on the available FE model, the following parametric study indicated that a further increase in the slenderness of column resulted in significant decreases in the load-bearing capacities, ductility index, and flexural bending capacities.

Keywords: eccentric loads, ductility index, RC column, slenderness, UHPFRC

Procedia PDF Downloads 109
957 Development of a Computer Based, Nutrition and Fitness Programme and Its Effect on Nutritional Status and Fitness of Obese Adults

Authors: Richa Soni, Vibha Bhatnagar, N. K. Jain

Abstract:

This study was conducted to develop a computer mediated programme for weight management and physical fitness and examining its efficacy in reducing weight and improving physical fitness in obese adults. A user friendly, computer based programme was developed to provide a simple, quick, easy and user-friendly method of assessing energy balance at individual level. The programme had four main sections viz. personal Profile, know about your weight, fitness and food exchange list. The computer programme was developed to provide facilities of creating individual profile, tracking meal and physical activities, suggesting nutritional and exercise requirements, planning calorie specific menus, keeping food diaries and revising the diet and exercise plans if needed. The programme was also providing information on obesity, underweight, physical fitness. An exhaustive food exchange list was also given in the programme to assist user to make right food choice decisions. The developed programme was evaluated by a panel of 15 experts comprising endocrinologists, nutritionists and diet counselors. Suggestions given by the experts were paned down and the entire programme was modified in light of suggestions given by the panel members and was reevaluated by the same panel of experts. For assessing the impact of the programme 22 obese subjects were selected purposively and randomly assigned to intervention group (n=12) and no information control group. (n=10). The programme group was asked to strictly follow the programme for one month. Significant reduction in the intake of energy, fat and carbohydrates was observed while intake of fruits, green leafy vegetables was increased. The programme was also found to be effective in reducing body weight, body fat percent and body fat mass whereas total body water and physical fitness scores improved significantly. There was no significant alteration observed in any parameters in the control group.

Keywords: body composition, body weight, computer programme, physical fitness

Procedia PDF Downloads 267
956 Ligandless Extraction and Determination of Trace Amounts of Lead in Pomegranate, Zucchini and Lettuce Samples after Dispersive Liquid-Liquid Microextraction with Ultrasonic Bath and Optimization of Extraction Condition with RSM Design

Authors: Fariba Tadayon, Elmira Hassanlou, Hasan Bagheri, Mostafa Jafarian

Abstract:

Heavy metals are released into water, plants, soil, and food by natural and human activities. Lead has toxic roles in the human body and may cause serious problems even in low concentrations, since it may have several adverse effects on human. Therefore, determination of lead in different samples is an important procedure in the studies of environmental pollution. In this work, an ultrasonic assisted-ionic liquid based-liquid-liquid microextraction (UA-IL-DLLME) procedure for the determination of lead in zucchini, pomegranate, and lettuce has been established and developed by using flame atomic absorption spectrometer (FAAS). For UA-IL-DLLME procedure, 10 mL of the sample solution containing Pb2+ was adjusted to pH=5 in a glass test tube with a conical bottom; then, 120 μL of 1-Hexyl-3-methylimidazolium hexafluoro phosphate (CMIM)(PF6) was rapidly injected into the sample solution with a microsyringe. After that, the resulting cloudy mixture was treated by ultrasonic for 5 min, then the separation of two phases was obtained by centrifugation for 5 min at 3000 rpm and IL-phase diluted with 1 cc ethanol, and the analytes were determined by FAAS. The effect of different experimental parameters in the extraction step including: ionic liquid volume, sonication time and pH was studied and optimized simultaneously by using Response Surface Methodology (RSM) employing a central composite design (CCD). The optimal conditions were determined to be an ionic liquid volume of 120 μL, sonication time of 5 min, and pH=5. The linear ranges of the calibration curve for the determination by FAAS of lead were 0.1-4 ppm with R2=0.992. Under optimized conditions, the limit of detection (LOD) for lead was 0.062 μg.mL-1, the enrichment factor (EF) was 93, and the relative standard deviation (RSD) for lead was calculated as 2.29%. The levels of lead for pomegranate, zucchini, and lettuce were calculated as 2.88 μg.g-1, 1.54 μg.g-1, 2.18 μg.g-1, respectively. Therefore, this method has been successfully applied for the analysis of the content of lead in different food samples by FAAS.

Keywords: Dispersive liquid-liquid microextraction, Central composite design, Food samples, Flame atomic absorption spectrometry.

Procedia PDF Downloads 262
955 Soil Liquefaction Hazard Evaluation for Infrastructure in the New Bejaia Quai, Algeria

Authors: Mohamed Khiatine, Amal Medjnoun, Ramdane Bahar

Abstract:

The North Algeria is a highly seismic zone, as evidenced by the historical seismicity. During the past two decades, it has experienced several moderate to strong earthquakes. Therefore, the geotechnical engineering problems that involve dynamic loading of soils and soil-structure interaction system requires, in the presence of saturated loose sand formations, liquefaction studies. Bejaia city, located in North-East of Algiers, Algeria, is a part of the alluvial plain which covers an area of approximately 750 hectares. According to the Algerian seismic code, it is classified as moderate seismicity zone. This area had not experienced in the past urban development because of the different hazards identified by hydraulic and geotechnical studies conducted in the region. The low bearing capacity of the soil, its high compressibility and the risk of liquefaction and flooding are among these risks and are a constraint on urbanization. In this area, several cases of structures founded on shallow foundations have suffered damages. Hence, the soils need treatment to reduce the risk. Many field and laboratory investigations, core drilling, pressuremeter test, standard penetration test (SPT), cone penetrometer test (CPT) and geophysical down hole test, were performed in different locations of the area. The major part of the area consists of silty fine sand , sometimes heterogeneous, has not yet reached a sufficient degree of consolidation. The ground water depth changes between 1.5 and 4 m. These investigations show that the liquefaction phenomenon is one of the critical problems for geotechnical engineers and one of the obstacles found in design phase of projects. This paper presents an analysis to evaluate the liquefaction potential, using the empirical methods based on Standard Penetration Test (SPT), Cone Penetration Test (CPT) and shear wave velocity and numerical analysis. These liquefaction assessment procedures indicate that liquefaction can occur to considerable depths in silty sand of harbor zone of Bejaia.

Keywords: earthquake, modeling, liquefaction potential, laboratory investigations

Procedia PDF Downloads 339
954 Effect of Sodium Aluminate on Compressive Strength of Geopolymer at Elevated Temperatures

Authors: Ji Hoi Heo, Jun Seong Park, Hyo Kim

Abstract:

Geopolymer is an inorganic material synthesized by alkali activation of source materials rich in soluble SiO2 and Al2O3. Many researches have studied the effect of aluminum species on the synthesis of geopolymer. However, it is still unclear about the influence of Al additives on the properties of geopolymer. The current study identified the role of the Al additive on the thermal performance of fly ash based geopolymer and observing the microstructure development of the composite. NaOH pellets were dissolved in water for 14 M (14 moles/L) sodium hydroxide solution which was used as an alkali activator. The weight ratio of alkali activator to fly ash was 0.40. Sodium aluminate powder was employed as an Al additive and added in amounts of 0.5 wt.% to 2 wt.% by the weight of fly ash. The mixture of alkali activator and fly ash was cured in a 75°C dry oven for 24 hours. Then, the hardened geopolymer samples were exposed to 300°C, 600°C and 900°C for 2 hours, respectively. The initial compressive strength after oven curing increased with increasing sodium aluminate content. It was also observed in SEM results that more amounts of geopolymer composite were synthesized as sodium aluminate was added. The compressive strength increased with increasing heating temperature from 300°C to 600°C regardless of sodium aluminate addition. It was consistent with the ATR-FTIR results that the peak position related to asymmetric stretching vibrations of Si-O-T (T: Si or Al) shifted to higher wavenumber as the heating temperature increased, indicating the further geopolymer reaction. In addition, geopolymer sample with higher content of sodium aluminate showed better compressive strength. It was also reflected on the IR results by more shift of the peak position assigned to Si-O-T toward the higher wavenumber. However, the compressive strength decreased after being exposed to 900°C in all samples. The degree of reduction in compressive strength was decreased with increasing sodium aluminate content. The deterioration in compressive strength was most severe in the geopolymer sample without sodium aluminate additive, while the samples with sodium aluminate addition showed better thermal durability at 900°C. This is related to the phase transformation with the occurrence of nepheline phase at 900°C, which was most predominant in the sample without sodium aluminate. In this work, it was concluded that sodium aluminate could be a good additive in the geopolymer synthesis by showing the improved compressive strength at elevated temperatures.

Keywords: compressive strength, fly ash based geopolymer, microstructure development, Na-aluminate

Procedia PDF Downloads 111
953 Microbial Effects of Iron Elution from Hematite into Seawater Mediated via Dissolved Organic Matter

Authors: Apichaya Aneksampant, Xuefei Tu, Masami Fukushima, Mitsuo Yamamoto

Abstract:

The restoration of seaweed beds recovery has been developed using a fertilization technique for supplying dissolved iron to barren coastal areas. The fertilizer is composed of iron oxides as a source of iron and compost as humic substance (HS) source, which can serve as chelator of iron to stabilize the dissolved species under oxic seawater condition. However, elution mechanisms of iron from iron oxide surfaces have not sufficiently elucidated. In particular, roles of microbial activities in the elution of iron from the fertilizer are not sufficiently understood. In the present study, a fertilizer (iron oxide/compost = 1/1, v/v) was incubated in a water tank at Mashike coast, Hokkaido Japan. Microorganisms in the 6-month fertilizer were isolated and identified as Exiguobacterium oxidotolerans sp. (T-2-2). The identified bacteria were inoculated to perform iron elution test in a postgate B medium, prepared in artificial seawater. Hematite was used as a model iron oxide and anthraquinone-2,7-disolfonate (AQDS) as a model for HSs. The elution test performed in presence and absence of bacteria inoculation. ICP-AES was used to analyze total iron and a colorimetric technique using ferrozine employed for the determination of ferrous ion. During the incubation period, sample contained hematite and T-2-2 in both presence and absence of AQDS continuously showed the iron elution and reached at the highest concentration after 9 days of incubation and then slightly decrease to stabilize within 20 days. Comparison to the sample without T-2-2, trace amount of iron was observed, suggesting that iron elution to seawater can be attributed to bacterial activities. The levels of total organic carbon (TOC) in the culture solution with hematite decreased. This may be to the adsorption of organic compound, AQDS, to hematite surfaces. The decrease in UV-vis absorption of AQDS in the culture solution also support the results of TOC that AQDS was adsorbed to hematite surfaces. AQDS can enhance the iron elution, while the adsorption of organic matter suppresses the iron elution from hematite.

Keywords: anthraquinone-2, 7-disolfonate, barren ground, E.oxidotolerans sp., hematite, humic substances, iron elution

Procedia PDF Downloads 360
952 Activity of Resveratrol on the Influence of Aflatoxin B1 on the Testes of Sprague Dawley Rats

Authors: Ali D. Omur, Betul Apaydin Yildirim, Yavuz S. Saglam, Selim Comakli, Mustafa Ozkaraca

Abstract:

Twenty-eight male Sprague Dawley rats (aged 3 months) were used in the study. The animals were given feed and water as ad libitum. Sprague Dawley rats were randomly divided into 4 groups as 7 rats in each group. Aflatoxin B1 (7.5 μg/200 g), resveratrol (60 mg/kg) was administered to rats in groups other than the control group. At the end of the 16th day, blood, semen and tissue specimens were taken by decapitation under ether anesthesia. The effects of aflatoxin B1 and resveratrol on spermatological, pathological and biochemical parameters were determined in rats. When we evaluate the spermatological parameters, it is understood that resveratrol has a statistically significant difference in terms of sperm motility and viability (membrane integrity) compared to the control group and aflatoxin B1 administration groups, indicating a protective effect on spermatological parameters (groups: control, resveratrol, aflatoxin B1 and Afb1 + res; respectively, values of motility: 71,42 ± 0,52b, 72,85 ± 1, 48c , 60,71 ± 1,30a, 57,14 ± 2, 40a; values of viability: 63,85 ± 1,33b, 70,42 ± 2,61c, 55,00 ± 1,54a, 56,57 ± 0,89a. In terms of pathological parameters -histopathological examination- in the control and resveratrol groups, seminiferous tubules were observed to be in normal structure. In the group treated with aflatoxin, the regular structure of the spermatogenic cells deteriorated, and the seminiferous tubules became necrotic and degenerative. In the group treated with Afb1 + res, the decreasing of necrotic and degenerative changes were determined compared with in the group treated with aflatoxin. As immunohistochemical examination, cleaved caspase 3 expression was found to be very low in the control and resveratrol groups. Cleaved caspase 3 expression was severely exacerbated in seminiferous tubules in aflatoxin group but cleaved caspase 3 expression level decreased in Afb1 + res. In the biochemical direction, resveratrol has been shown to inhibit the adverse effects of aflatoxin on antioxidant levels (GSH-mmol/L, CAT-kU/L, GPx-U/mL, SOD-EU/mL) and to show a protective effect. For this purpose, the use of resveratrol with antioxidant activity was investigated in preventing or ameliorating damage to aflatoxin B1. It has been concluded that resveratrol effectively prevents the aflatoxin-induced testicular damage and lipid peroxidation. It has also been shown that resveratrol has protective effects on sperm motility and viability.

Keywords: Aflatoxin B1, rat, resveratrol, sperm

Procedia PDF Downloads 340
951 Effect of Roasting Temperature on the Proximate, Mineral and Antinutrient Content of Pigeon Pea (Cajanus cajan) Ready-to-Eat Snack

Authors: Olaide Ruth Aderibigbe, Oluwatoyin Oluwole

Abstract:

Pigeon pea is one of the minor leguminous plants; though underutilised, it is used traditionally by farmers to alleviate hunger and malnutrition. Pigeon pea is cultivated in Nigeria by subsistence farmers. It is rich in protein and minerals, however, its utilisation as food is only common among the poor and rural populace who cannot afford expensive sources of protein. One of the factors contributing to its limited use is the high antinutrient content which makes it indigestible, especially when eaten by children. The development of value-added products that can reduce the antinutrient content and make the nutrients more bioavailable will increase the utilisation of the crop and contribute to reduction of malnutrition. This research, therefore, determined the effects of different roasting temperatures (130 0C, 140 0C, and 150 0C) on the proximate, mineral and antinutrient component of a pigeon pea snack. The brown variety of pigeon pea seeds were purchased from a local market- Otto in Lagos, Nigeria. The seeds were cleaned, washed, and soaked in 50 ml of water containing sugar and salt (4:1) for 15 minutes, and thereafter the seeds were roasted at 130 0C, 140 0C, and 150 0C in an electric oven for 10 minutes. Proximate, minerals, phytate, tannin and alkaloid content analyses were carried out in triplicates following standard procedures. The results of the three replicates were polled and expressed as mean±standard deviation; a one-way analysis of variance (ANOVA) and the Least Significance Difference (LSD) were carried out. The roasting temperatures significantly (P<0.05) affected the protein, ash, fibre and carbohydrate content of the snack. Ready-to-eat snack prepared by roasting at 150 0C significantly had the highest protein (23.42±0.47%) compared the ones roasted at 130 0C and 140 0C (18.38±1.25% and 20.63±0.45%, respectively). The same trend was observed for the ash content (3.91±0.11 for 150 0C, 2.36±0.15 for 140 0C and 2.26±0.25 for 130 0C), while the fibre and carbohydrate contents were highest at roasting temperature of 130 0C. Iron, zinc, and calcium were not significantly (P<0.5) affected by the different roasting temperatures. Antinutrients decreased with increasing temperature. Phytate levels recorded were 0.02±0.00, 0.06±0.00, and 0.07±0.00 mg/g; tannin levels were 0.50±0.00, 0.57±0.00, and 0.68±0.00 mg/g, while alkaloids levels were 0.51±0.01, 0.78±0.01, and 0.82±0.01 mg/g for 150 0C, 140 0C, and 130 0C, respectively. These results show that roasting at high temperature (150 0C) can be utilised as a processing technique for increasing protein and decreasing antinutrient content of pigeon pea.

Keywords: antinutrients, pigeon pea, protein, roasting, underutilised species

Procedia PDF Downloads 117
950 Spatial Distribution of Virus-Transmitting Aphids of Plants in Al Bahah Province, Saudi Arabia

Authors: Sabir Hussain, Muhammad Naeem, Yousif Aldryhim, Susan E. Halbert, Qingjun Wu

Abstract:

Plant viruses annually cause severe economic losses in crop production and globally, different aphid species are responsible for the transmission of such viruses. Additionally, aphids are also serious pests of trees, and agricultural crops. Al Bahah Province, Kingdom of Saudi Arabia (KSA) has a high native and introduced plant species with a temperate climate that provides ample habitats for aphids. In this study, we surveyed virus-transmitting aphids from the Province to highlight their spatial distributions and hot spot areas for their target control strategies. During our fifteen month's survey in Al Bahah Province, three hundred and seventy samples of aphids were collected using both beating sheets and yellow water pan traps. Consequently, fifty-four aphid species representing 30 genera belonging to four families were recorded from Al Bahah Province. Alarmingly, 35 aphid species from our records are virus transmitting species. The most common virus transmitting aphid species based on number of collecting samples, were Macrosiphum euphorbiae (Thomas, 1878), Brachycaudus rumexicolens (Patch, 1917), Uroleucon sonchi (Linnaeus, 1767), Brachycaudus helichrysi (Kaltenbach, 1843), and Myzus persicae (Sulzer, 1776). The numbers of samples for the forementioned species were 66, 24, 23, 22, and 20, respectively. The widest range of plant hosts were found for M. euphorbiae (39 plant species), B. helichrysi (12 plant species), M. persicae (12 plant species), B. rumexicolens (10 plant species), and U. sonchi (9 plant species). The hottest spot areas were found in Al-Baha, Al Mekhwah and Biljarashi cities of the province on the basis of their abundance. This study indicated that Al Bahah Province has relatively rich aphid diversity due to the relatively high plant diversity in a favorable climatic condition. ArcGIS tools can be helpful for biologists to implement the target control strategies against these pests in the integrated pest management, and ultimately to save money and time.

Keywords: Al Bahah province, aphid-virus interaction, biodiversity, global information system

Procedia PDF Downloads 164
949 Hypolipidemic and Antioxidant Effects of Mycelial Polysaccharides from Calocybe indica in Hyperlipidemic Rats Induced by High-Fat Diet

Authors: Govindan Sudha, Mathumitha Subramaniam, Alamelu Govindasamy, Sasikala Gunasekaran

Abstract:

The aim of this study was to investigate the protective effect of Hypsizygus ulmarius polysaccharides (HUP) on reducing oxidative stress, cognitive impairment and neurotoxicity in D-galactose induced aging mice. Mice were subcutaneously injected with D-galactose (150 mg/kg per day) for 6 weeks and were administered HUP simultaneously. Aged mice receiving vitamin E (100 mg/kg) served as positive control. Chronic administration of D-galactose significantly impaired cognitive performance oxidative defence and mitochondrial enzymes activities as compared to control group. The results showed that HUP (200 and 400 mg/kg) treatment significantly improved the learning and memory ability in Morris water maze test. Biochemical examination revealed that HUP significantly increased the decreased activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), mitochondrial enzymes-NADH dehydrogenase, malate dehydrogenase (MDH), isocitrate dehydrogenase (ICDH), Na+K+, Ca2+, Mg2+ATPase activities, elevated the lowered total anti-oxidation capability (TAOC), glutathione (GSH), vitamin C and decreased the raised acetylcholinesterase (AChE) activities, malondialdehyde (MDA), hydroperoxide (HPO), protein carbonyls (PCO), advanced oxidation protein products (AOPP) levels in brain of aging mice induced by D-gal in a dose-dependent manner. In conclusion, present study highlights the potential role of HUP against D-galactose induced cognitive impairment, biochemical and mitochondrial dysfunction in mice. In vitro studies on the effect of HUP on scavenging DPPH, ABTS, DMPD, OH radicals, reducing power, B-carotene bleaching and lipid peroxidation inhibition confirmed the free radical scavenging and antioxidant activity of HUP. The results suggest that HUP possesses anti-aging efficacy and may have potential in treatment of neurodegenerative diseases.

Keywords: aging, antioxidants, mushroom, neurotoxicity

Procedia PDF Downloads 500
948 Latent Heat Storage Using Phase Change Materials

Authors: Debashree Ghosh, Preethi Sridhar, Shloka Atul Dhavle

Abstract:

The judicious and economic consumption of energy for sustainable growth and development is nowadays a thing of primary importance; Phase Change Materials (PCM) provide an ingenious option of storing energy in the form of Latent Heat. Energy storing mechanism incorporating phase change material increases the efficiency of the process by minimizing the difference between supply and demand; PCM heat exchangers are used to storing the heat or non-convectional energy within the PCM as the heat of fusion. The experimental study evaluates the effect of thermo-physical properties, variation in inlet temperature, and flow rate on charging period of a coiled heat exchanger. Secondly, a numerical study is performed on a PCM double pipe heat exchanger packed with two different PCMs, namely, RT50 and Fatty Acid, in the annular region. In this work, the simulation of charging of paraffin wax (RT50) using water as high-temperature fluid (HTF) is performed. Commercial software Ansys-Fluent 15 is used for simulation, and hence charging of PCM is studied. In the Enthalpy-porosity model, a single momentum equation is applicable to describe the motion of both solid and liquid phases. The details of the progress of phase change with time are presented through the contours of melt-fraction, temperature. The velocity contour is shown to describe the motion of the liquid phase. The experimental study revealed that paraffin wax melts with almost the same temperature variation at the two Intermediate positions. Fatty acid, on the other hand, melts faster owing to greater thermal conductivity and low melting temperature. It was also observed that an increase in flow rate leads to a reduction in the charging period. The numerical study also supports some of the observations found in the experimental study like the significant dependence of driving force on the process of melting. The numerical study also clarifies the melting pattern of the PCM, which cannot be observed in the experimental study.

Keywords: latent heat storage, charging period, discharging period, coiled heat exchanger

Procedia PDF Downloads 98
947 In Vitro and in Vivo Evaluation of Nano Collagen Molecules to Enhance Mesenchymal Stem Cells Differentiate into Insulin Producing Cells

Authors: Chin-Tsu Ma, Yi-Jhen Wu, Hsia Ying Cheng, Han Hsiang Huang, Shyh Ming Kuo

Abstract:

The use of specific molecules including nutrients and pharmacological agents has been tried in modulation of stem cells differentiation (MSCs) to insulin producing cells. The aim of this study is to investigate the ability of nano collagen molecules (nutrient or scaffold) to enhance the MSCs differentiation into insulin-producing cells in combination with nicotinamide and exendin-4 (pharmacological agents) in vitro and in vivo. The results demonstrated that the cells exhibit morphologically islet-like clusters after treatment with nano collagen molecules, nicotinamide and exendin-4. MSCs extra treated with nano collagen molecules showed significant increases in Nkx6.1 and insulin mRNA expression at 14-d and 21-d culture compared with those merely treated with nicotinamide and exendin-4. Early 7-day elevation in PDX-1 mRNA expression was observed. Furthermore, the MSCs exposed to nano collagen molecules produced the highest secretion of insulin (p < 0.05). Type-2 diabetes induced by high-fat diet and low dose of streptozotocin in rat model was built in this study. This rat exhibited higher food intake, water intake, lower glucose tolerance, lower-insulin tolerance, and higher HbA1C (significant increases, p < 0.01) as compared with the normal rat that demonstrated the model of type-2 diabetes was successfully built. Biopsy examinations also showed that obvious destruction of islet. After injection of differentiated MSCs into the destructed pancreas of diabetes rat, more regenerated islet were observed at the rats that treated with nano collagen molecules and exhibited much lower HbA1C as compared with the normal rat and diabetes rat after 4 weeks (significant deceases, p < 0.001). These results indicate that the culturing MSCs with nano collagen molecules, nicotinamide, and exendin-4 are beneficial for MSCs differentiation into islet-like cells. These nano collagen molecules may lead to alternations or up-regulation of gene expression and influence the differentiated outcomes induced by nicotinamide and exendin-4.

Keywords: nano collagen molecules, nicotinamide, MSCs, diabetes

Procedia PDF Downloads 393
946 Hypotensive, Free Radical Scavenging and Anti-Lipid Peroxidation Activities of Crataegus azarolus L. Leaves Extracts Growing in Algeria

Authors: Amel Bouaziz, Seddik Khennouf, Mussa Abu Zarga, Shtayway Abdalla, Saliha Djidel, Assia Bentahar, Saliha Dahamna, Smain Amira

Abstract:

The present study aimed to evaluate the hypotensive and the in vitro antioxidant activities of Crataegus azarolus L. (Rosaceae), a plant widely used as natural remedy for hypertension in folk medicine. The antioxidant potential of methanolic extract (ME)and its three fractions of Chloroform (CHE), ethyl acetate (EAE)and water (AqE) have been investigated using several assays, including the DPPH scavenging, ABTS scavenging, hydroxyl radical scavenging. Inhibition of lipid peroxidation was performed by the β-carotene bleaching assay, ferric thiocyanate method and thiobarburic acid method. Total phenolic and total flavonoid contents of the extracts were estimated using Folin-Chiocalteu reagent and AlCl3, respectively. EAE extract showed the highest polyphenolic and flavonoids contents (396,04±1.20 mg GAE/g of dry extract and 32,73 ± 0.03mg QE/g of dry extract) respectively. Similarly, this extract possessed the highest scavenging activity for DPPH radical (IC 50 = 0,006±0,0001mg /ml), ABTS radical (IC50=0.0035±0,0007 mg/ml) and hydroxyl radical(IC 50=0,283± 0.01 mg/ml). In addition, the EAE exhibited the highest antioxidant activity in the inhibition of linoleic acid/ß-carotene coupled oxidation (89,21%), lipid peroxidation in the ferric thiocyanate(FTC) method (90.13%), and thio-barbituric acid (TBA) method (74.23%). Intravenous administration of Me and EAE decreased mean arterial blood pressure, systolic and diastolic blood pressure in anesthetized rats dose-dependently, at the dose range of 0.4 to 12 mg/kg. The mean arterial blood pressure dropped by 27.58 and 39.37% for ME and EAE, respectively. In conclusion, The present study supported the significant potential to use C. azarolus by-products as a source of natural antioxidants and provides scientific justification for its traditional uses as cardio-protective and anti-hypertensive remedy.

Keywords: Crataegus azarolus, polyphenols, flavonoids, hypertension, antioxidant activity, free radicals, peroxidation

Procedia PDF Downloads 321
945 Pros and Cons of Agriculture Investment in Gambella Region, Ethiopia

Authors: Azeb Degife

Abstract:

Over the past few years, the volume of international investment in agricultural land has increased globally. In recent times, Ethiopian government uses agricultural investment as one of the most important and effective strategies for economic growth, food security and poverty reduction in rural areas. Since the mid-2000s, government has awarded millions of hectares of most fertile land to rich countries and some of the world's most wealthy people to export various kinds of crop, often in long-term leases and at bargain prices. This study focuses on the pros and cons of large-scale agriculture investment Gambella region, Ethiopia. The main results were generated both from primary and secondary data sources. Primary data are obtained through interview, direct observation and a focus group discussion (FGDs). The secondary data are obtained from published documents, reports from governmental and non-governmental institutions. The findings of the study demonstrated that agriculture investment has advantages on the socio-economic and disadvantages on socio-environmental aspects. The main benefits agriculture investments in the region are infrastructural development and generation employment for the local people. Further, the Ethiopian government also generates foreign currency from the agriculture investment opportunities. On the other hand, Gambella people are strongly tied to the land and the rivers that run through in the region. However, now large-scale agricultural investment by foreign and local investors on an industrial scale results deprives people livelihoods and natural resources of the region. Generally, the negative effects of agriculture investment include increasing food insecurity, and displacement of smallholder farmers and pastoralists. Moreover, agriculture investment has strong adverse environmental impacts on natural resources such as land, water, forests and biodiversity. Therefore, an Ethiopian government strategy needs to focus on integration approach and sustainable agricultural growth.

Keywords: agriculture investment, cons, displacement, Gambella, integration approach, pros, socio-economic, socio-environmental

Procedia PDF Downloads 313