Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2
Search results for: Diredawa
2 Risk Factors Associated with Dengue Fever Outbreak in Diredawa Administration City, Ethiopia, October 2015: A Case Control Study
Authors: Luna Degife, Desalegn Belay, Yoseph Worku, Tigist Tesfaye, Assefa Tufa, Abyot Bekele, Zegeye Hailemariam, Abay Hagos
Abstract:
Half of the world’s population is at risk of Dengue Fever (DF), a highly under-recognized and underreported mosquito-borne viral disease with high prevalence in the tropical and subtropical regions. Globally, an estimated 50 to 200 million cases and 20, 000 DF deaths occur annually as per the world health organization report. In Ethiopia, the first outbreak occurred in 2013 in Diredawa administration city. Afterward, three outbreaks have been reported from the eastern part of the country. We received a report of the fifth DF outbreak for Ethiopia and the second for Diredawa city on October 4, 2015. We conducted the investigation to confirm the outbreak, identify the risk factors for the repeatedly occurrence of the disease and implement control measures. We conducted un- matched case-control study and defined a suspected DF case as any person with fever of 2-7 days and 2 or more of the following: a headache, arthralgia, myalgia, rash, or bleeding from any part of the body. Controls were residents of Diredawa city without DF symptoms. We interviewed 70 Cases and 140 controls from all health facilities in Diredawa city from October 7 to 15; 2015. Epi Info version 7.1.5.0 was used to analyze the data and multivariable logistic regression was conducted to assess risk factors for DF. Sixty-nine blood samples were collected for Laboratory confirmation.The mean age for cases was 23.7±9.5 standard deviation (SD) and for controls 31.2±13 SD. Close contact with DF patient (Adjusted odds ratio (AOR)=5.36, 95% confidence interval(CI): 2.75-10.44), nonuse of long-lasting insecticidal nets (AOR=2.74, 95% CI: 1.06-7.08) and availability of stagnant water in the village (AOR=3.61, 95% CI:1.31-9.93) were independent risk factors associated with higher rates of the disease. Forty-two samples were tested positive. Endemicity of DF is becoming a concern for Diredawa city after the first outbreak. Therefore, effective vector control activities need to be part of long-term preventive measures.Keywords: dengue fever, Diredawa, outbreak, risk factors, second
Procedia PDF Downloads 2761 Spatial Pattern and Predictors of Malaria in Ethiopia: Application of Auto Logistics Spatial Regression
Authors: Melkamu A. Zeru, Yamral M. Warkaw, Aweke A. Mitku, Muluwerk Ayele
Abstract:
Introduction: Malaria is a severe health threat in the World, mainly in Africa. It is the major cause of health problems in which the risk of morbidity and mortality associated with malaria cases are characterized by spatial variations across the county. This study aimed to investigate the spatial patterns and predictors of malaria distribution in Ethiopia. Methods: A weighted sample of 15,239 individuals with rapid diagnosis tests was obtained from the Central Statistical Agency and Ethiopia malaria indicator survey of 2015. Global Moran's I and Moran scatter plots were used in determining the distribution of malaria cases, whereas the local Moran's I statistic was used in identifying exposed areas. In data manipulation, machine learning was used for variable reduction and statistical software R, Stata, and Python were used for data management and analysis. The auto logistics spatial binary regression model was used to investigate the predictors of malaria. Results: The final auto logistics regression model reported that male clients had a positive significant effect on malaria cases as compared to female clients [AOR=2.401, 95 % CI: (2.125 - 2.713)]. The distribution of malaria across the regions was different. The highest incidence of malaria was found in Gambela [AOR=52.55, 95%CI: (40.54-68.12)] followed by Beneshangul [AOR=34.95, 95%CI: (27.159 - 44.963)]. Similarly, individuals in Amhara [AOR=0.243, 95% CI:(0.1950.303],Oromiya[AOR=0.197,95%CI:(0.1580.244)],DireDawa[AOR=0.064,95%CI(0.049-0.082)],AddisAbaba[AOR=0.057,95%CI:(0.044-0.075)], Somali[AOR=0.077,95%CI:(0.059-0.097)], SNNPR[OR=0.329, 95%CI: (0.261- 0.413)] and Harari [AOR=0.256, 95%CI:(0.201 - 0.325)] were less likely to had low incidence of malaria as compared with Tigray. Furthermore, for a one-meter increase in altitude, the odds of a positive rapid diagnostic test (RDT) decrease by 1.6% [AOR = 0.984, 95% CI :( 0.984 - 0.984)]. The use of a shared toilet facility was found as a protective factor for malaria in Ethiopia [AOR=1.671, 95% CI: (1.504 - 1.854)]. The spatial autocorrelation variable changes the constant from AOR = 0.471 for logistic regression to AOR = 0.164 for auto logistics regression. Conclusions: This study found that the incidence of malaria in Ethiopia had a spatial pattern that is associated with socio-economic, demographic, and geographic risk factors. Spatial clustering of malaria cases had occurred in all regions, and the risk of clustering was different across the regions. The risk of malaria was found to be higher for those who live in soil floor-type houses as compared to those who live in cement or ceramics floor type. Similarly, households with thatched, metal and thin, and other roof-type houses have a higher risk of malaria than ceramic tiles roof houses. Moreover, using a protected anti-mosquito net reduced the risk of malaria incidence.Keywords: malaria, Ethiopia, auto logistics, spatial model, spatial clustering
Procedia PDF Downloads 34