Search results for: legacy device
1398 Interfacing and Replication of Electronic Machinery Using MATLAB/SIMULINK
Authors: Abdulatif Abdulsalam, Mohamed Shaban
Abstract:
This paper introduces interfacing and replication of electronic tools based on the MATLAB/ SIMULINK mock-up package. Mock-up components contain dc-dc converters, power issue rectifiers, motivation machines, dc gear, synchronous gear, and more entire systems. Power issue rectifier model includes solid state device models. The tools are the clear-cut structure and mock-up of complex energetic systems connecting with power electronic machines.Keywords: power electronics, machine, MATLAB, simulink
Procedia PDF Downloads 3611397 Effects of Magnetic Field on 4H-SiC P-N Junctions
Authors: Khimmatali Nomozovich Juraev
Abstract:
Silicon carbide is one of the promising materials with potential applications in electronic devices using high power, high frequency and high electric field. Currently, silicon carbide is used to manufacture high power and frequency diodes, transistors, radiation detectors, light emitting diodes (LEDs) and other functional devices. In this work, the effects of magnetic field on p-n junctions based on 4H-SiC were experimentally studied. As a research material, monocrystalline silicon carbide wafers (Cree Research, Inc., USA) with relatively few growth defects grown by physical vapor transport (PVT) method were used: Nd dislocations 104 cm², Nm micropipes ~ 10–10² cm-², thickness ~ 300-600 μm, surface ~ 0.25 cm², resistivity ~ 3.6–20 Ωcm, the concentration of background impurities Nd − Na ~ (0.5–1.0)×1017cm-³. The initial parameters of the samples were determined on a Hall Effect Measurement System HMS-7000 (Ecopia) measuring device. Diffusing Ni nickel atoms were covered to the silicon surface of silicon carbide in a Universal Vacuum Post device at a vacuum of 10-⁵ -10-⁶ Torr by thermal sputtering and kept at a temperature of 600-650°C for 30 minutes. Then Ni atoms were diffused into the silicon carbide 4H-SiC sample at a temperature of 1150-1300°C by low temperature diffusion method in an air atmosphere, and the effects of the magnetic field on the I-V characteristics of the samples were studied. I-V characteristics of silicon carbide 4H-SiCKeywords: 4H-SiC, diffusion Ni, effects of magnetic field, I-V characteristics
Procedia PDF Downloads 981396 Impact of Kinesio Taping on Masseter Muscle: An Electromyographic Study
Authors: Joanna E. Owczarek, Izabela Zielinska
Abstract:
The incidence of temporomandibular disorders is 50% up to 80%. Kinesio taping (KT) is treatment method for musculoskeletal disorders. The aim of our study was to assess the impact of KT on masseter muscles’ tone evaluated by electromyography. 30 adults (aged 22±2.1) were examined. The tone of masseters before and after 4 days KT application on sternocleidomastoideus muscle was measured during resting mandibular position and clenching. Noraxon DTS device was used. Masseter muscles’ tone during clenching after KT application was relevently lower in comparison to its tone before the KT.Keywords: electromyography, kinesio taping, masseter muscle, TMD
Procedia PDF Downloads 2071395 Critical Evaluation and Analysis of Effects of Different Queuing Disciplines on Packets Delivery and Delay for Different Applications
Authors: Omojokun Gabriel Aju
Abstract:
Communication network is a process of exchanging data between two or more devices via some forms of transmission medium using communication protocols. The data could be in form of text, images, audio, video or numbers which can be grouped into FTP, Email, HTTP, VOIP or Video applications. The effectiveness of such data exchange will be proved if they are accurately delivered within specified time. While some senders will not really mind when the data is actually received by the receiving device, inasmuch as it is acknowledged to have been received by the receiver. The time a data takes to get to a receiver could be very important to another sender, as any delay could cause serious problem or even in some cases rendered the data useless. The validity or invalidity of a data after delay will therefore definitely depend on the type of data (information). It is therefore imperative for the network device (such as router) to be able to differentiate among the packets which are time sensitive and those that are not, when they are passing through the same network. So, here is where the queuing disciplines comes to play, to handle network resources when such network is designed to service widely varying types of traffics and manage the available resources according to the configured policies. Therefore, as part of the resources allocation mechanisms, a router within the network must implement some queuing discipline that governs how packets (data) are buffered while waiting to be transmitted. The implementation of the queuing discipline will regulate how the packets are buffered while waiting to be transmitted. In achieving this, various queuing disciplines are being used to control the transmission of these packets, by determining which of the packets get the highest priority, less priority and which packets are dropped. The queuing discipline will therefore control the packets latency by determining how long a packet can wait to be transmitted or dropped. The common queuing disciplines are first-in-first-out queuing, Priority queuing and Weighted-fair queuing (FIFO, PQ and WFQ). This paper critically evaluates and analyse through the use of Optimized Network Evaluation Tool (OPNET) Modeller, Version 14.5 the effects of three queuing disciplines (FIFO, PQ and WFQ) on the performance of 5 different applications (FTP, HTTP, E-Mail, Voice and Video) within specified parameters using packets sent, packets received and transmission delay as performance metrics. The paper finally suggests some ways in which networks can be designed to provide better transmission performance while using these queuing disciplines.Keywords: applications, first-in-first-out queuing (FIFO), optimised network evaluation tool (OPNET), packets, priority queuing (PQ), queuing discipline, weighted-fair queuing (WFQ)
Procedia PDF Downloads 3631394 An Inorganic Nanofiber/Polymeric Microfiber Network Membrane for High-Performance Oil/Water Separation
Authors: Zhaoyang Liu
Abstract:
It has been highly desired to develop a high-performance membrane for separating oil/water emulsions with the combined features of high water flux, high oil separation efficiency, and high mechanical stability. Here, we demonstrated a design for high-performance membranes constructed with ultra-long titanate nanofibers (over 30 µm in length)/cellulose microfibers. An integrated network membrane was achieved with these ultra-long nano/microfibers, contrast to the non-integrated membrane constructed with carbon nanotubes (5 µm in length)/cellulose microfibers. The morphological properties of the prepared membranes were characterized by A FEI Quanta 400 (Hillsboro, OR, United States) environmental scanning electron microscope (ESEM). The hydrophilicity, underwater oleophobicity and oil adhesion property of the membranes were examined using an advanced goniometer (Rame-hart model 500, Succasunna, NJ, USA). More specifically, the hydrophilicity of membranes was investigated by analyzing the spreading process of water into membranes. A filtration device (Nalgene 300-4050, Rochester, NY, USA) with an effective membrane area of 11.3 cm² was used for evaluating the separation properties of the fabricated membranes. The prepared oil-in-water emulsions were poured into the filtration device. The separation process was driven under vacuum with a constant pressure of 5 kPa. The filtrate was collected, and the oil content in water was detected by a Shimadzu total organic carbon (TOC) analyzer (Nakagyo-ku, Kyoto, Japan) to examine the separation efficiency. Water flux (J) of the membrane was calculated by measuring the time needed to collect some volume of permeate. This network membrane demonstrated good mechanical flexibility and robustness, which are critical for practical applications. This network membrane also showed high separation efficiency (99.9%) for oil/water emulsions with oil droplet size down to 3 µm, and meanwhile, has high water permeation flux (6.8 × 10³ L m⁻² h⁻¹ bar⁻¹) at low operation pressure. The high water flux is attributed to the interconnected scaffold-like structure throughout the whole membrane, while the high oil separation efficiency is attributed to the nanofiber-made nanoporous selective layer. Moreover, the economic materials and low-cost fabrication process of this membrane indicate its great potential for large-scale industrial applications.Keywords: membrane, inorganic nanofibers, oil/water separation, emulsions
Procedia PDF Downloads 1791393 Psychoanalytical Foreshadowing: The Application of a Literary Device in Quranic Narratology
Authors: Fateme Montazeri
Abstract:
Literary approaches towards the text of the Quran predate the modern period. Suyuti (d.1505)’s encyclopedia of Quranic sciences, Al-Itqan, provides a notable example. In the modern era, the study of the Quranic rhetorics received particular attention in the second half of the twentieth century by Egyptian scholars. Amin Al-Khouli (d. 1966), who might be considered the first to argue for the necessity of applying a literary-rhetorical lens toward the tafseer, Islamic exegesis, and his students championed the literary analysis as the most effective approach to the comprehension of the holy text. Western scholars continued the literary criticism of the Islamic scripture by applying to the Quran similar methodologies used in biblical studies. In the history of the literary examination of the Quran, the scope of the critical methods applied to the Quranic text has been limited. For, the rhetorical approaches to the Quran, in the premodern as well as the modern period, concerned almost exclusively with the lexical layer of the text, leaving the narratological dimensions insufficiently examined. Recent contributions, by Leyla Ozgur Alhassen, for instance, attempt to fill this lacunae. This paper aims at advancing the studies of the Quranic narratives by investigating the application of a literary device whose role in the Quranic stories remains unstudied, that is, “foreshadowing.” This paper shall focus on Chapter 12, “Surah al-Yusuf,” as its case study. Chapter 12, the single chapter that includes the story of Joseph in one piece, contains several instances in which the events of the story are foreshadowed. As shall be discussed, foreshadowing occurs either through a monolog or dialogue whereby one or more of the characters allude to the future happenings or through the manner in which the setting is described. Through a close reading of the text, it will be demonstrated that the usage of the rhetorical tool of foreshadowing meets a dual purpose: on the one hand, foreshadowing prepares the reader/audience for the upcoming events in the plot, and on the other hand, it highlights the psychological dimensions of the characters, their thoughts, intentions, and disposition. In analyzing the story, this study shall draw on psychoanalytical criticism to explore the layers of meanings embedded in the Quranic narrative that are unfolded through foreshadowing.Keywords: foreshadowing, quranic narrative, literary criticism, surah yusuf
Procedia PDF Downloads 1581392 Linguistic Competencies of Students with Hearing Impairment
Authors: Munawar Malik, Muntaha Ahmad, Khalil Ullah Khan
Abstract:
Linguistic abilities in students with hearing impairment yet remain a concern for educationists. The emerging technological support and provisions in recent era vows to have addressed the situation and claims significant contribution in terms of linguistic repertoire. Being a descriptive and quantitative paradigm of study, the purpose of this research set forth was to assess linguistic competencies of students with hearing impairment in English language. The goals were further broken down to identify level of reading abilities in the subject population. The population involved students with HI studying at higher secondary level in Lahore. Simple random sampling technique was used to choose a sample of fifty students. A purposive curriculum-based assessment was designed in line with accelerated learning program by Punjab Government, to assess Linguistic competence among the sample. Further to it, an Informal Reading Inventory (IRI) corresponding to reading levels was also developed by researchers duly validated and piloted before the final use. Descriptive and inferential statistics were utilized to reach to the findings. Spearman’s correlation was used to find out relationship between degree of hearing loss, grade level, gender and type of amplification device. Independent sample t-test was used to compare means among groups. Major findings of the study revealed that students with hearing impairment exhibit significant deviation from the mean scores when compared in terms of grades, severity and amplification device. The study divulged that respective students with HI have yet failed to qualify an independent level of reading according to their grades as majority falls at frustration level of word recognition and passage comprehension. The poorer performance can be attributed to lower linguistic competence as it shows in the frustration levels of reading, writing and comprehension. The correlation analysis did reflect an improved performance grade wise, however scores could only correspond to frustration level and independent levels was never achieved. Reported achievements at instructional level of subject population may further to linguistic skills if practiced purposively.Keywords: linguistic competence, hearing impairment, reading levels, educationist
Procedia PDF Downloads 731391 NanoFrazor Lithography for advanced 2D and 3D Nanodevices
Authors: Zhengming Wu
Abstract:
NanoFrazor lithography systems were developed as a first true alternative or extension to standard mask-less nanolithography methods like electron beam lithography (EBL). In contrast to EBL they are based on thermal scanning probe lithography (t-SPL). Here a heatable ultra-sharp probe tip with an apex of a few nm is used for patterning and simultaneously inspecting complex nanostructures. The heat impact from the probe on a thermal responsive resist generates those high-resolution nanostructures. The patterning depth of each individual pixel can be controlled with better than 1 nm precision using an integrated in-situ metrology method. Furthermore, the inherent imaging capability of the Nanofrazor technology allows for markerless overlay, which has been achieved with sub-5 nm accuracy as well as it supports stitching layout sections together with < 10 nm error. Pattern transfer from such resist features below 10 nm resolution were demonstrated. The technology has proven its value as an enabler of new kinds of ultra-high resolution nanodevices as well as for improving the performance of existing device concepts. The application range for this new nanolithography technique is very broad spanning from ultra-high resolution 2D and 3D patterning to chemical and physical modification of matter at the nanoscale. Nanometer-precise markerless overlay and non-invasiveness to sensitive materials are among the key strengths of the technology. However, while patterning at below 10 nm resolution is achieved, significantly increasing the patterning speed at the expense of resolution is not feasible by using the heated tip alone. Towards this end, an integrated laser write head for direct laser sublimation (DLS) of the thermal resist has been introduced for significantly faster patterning of micrometer to millimeter-scale features. Remarkably, the areas patterned by the tip and the laser are seamlessly stitched together and both processes work on the very same resist material enabling a true mix-and-match process with no developing or any other processing steps in between. The presentation will include examples for (i) high-quality metal contacting of 2D materials, (ii) tuning photonic molecules, (iii) generating nanofluidic devices and (iv) generating spintronic circuits. Some of these applications have been enabled only due to the various unique capabilities of NanoFrazor lithography like the absence of damage from a charged particle beam.Keywords: nanofabrication, grayscale lithography, 2D materials device, nano-optics, photonics, spintronic circuits
Procedia PDF Downloads 791390 The Olympic Games’ Effect on National Company Growth
Authors: Simon Strande Henriksen
Abstract:
When a city and country decide to undertake an Olympic Games, they do so with the notion that hosting the Olympics will provide direct financial benefits to the city, country, and national companies. Like many activities, the Olympic Games tend to be more popular when it is warm, and the athletes are known, and therefore this paper will only focus on the two latest Olympic Summer Games. Cities and countries continue to invest billions of dollars in infrastructure to secure the role of being Olympic hosts. The multiple investments expect to provide both economic growth and a lasting legacy for the citizens. This study aims to determine whether host country companies experience superior economic impact from the Olympics. Building on existing work within the Olympic field of research, it asks: Do companies in host countries of the Olympic Summer Games experience a superior increase in operating revenue and return on assets compared to other comparable countries? In this context, comparable countries are the two candidates following the host city in the bidding procedure. Based on methods used by scholars, a panel data regression was conducted on revenue growth rate and return on assets, to determine if host country companies see a positive relation with hosting the Olympic Games. Combined with an analysis of motivation behind hosting the Olympics, the regression showed no significant positive relations across all analyses, besides in one instance. Indications of a relationship between company performance and economic motivation were found to be present. With the results indicating a limited effect on company growth, it is recommended that prospective host cities and countries carefully consider possible implications the role of being an Olympic host might have on national companies.Keywords: cross-country analysis, mega-event, multiple regression, quantitative analysis
Procedia PDF Downloads 1441389 Cryptocurrency-Based Mobile Payments with Near-Field Communication-Enabled Devices
Authors: Marko Niinimaki
Abstract:
Cryptocurrencies are getting increasingly popular, but very few of them can be conveniently used in daily mobile phone purchases. To solve this problem, we demonstrate how to build a functional prototype of a mobile cryptocurrency-based e-commerce application the communicates with Near-Field Communication (NFC) tags. Using the system, users are able to purchase physical items with an NFC tag that contains an e-commerce URL. The payment is done simply by touching the tag with a mobile device and accepting the payment. Our method is constructive: we describe the design and technologies used in the implementation and evaluate the security and performance of the solution. Our main finding is that the analysis and measurements show that our solution is feasible for e-commerce.Keywords: cryptocurrency, e-commerce, NFC, mobile devices
Procedia PDF Downloads 1911388 Potential of High Performance Ring Spinning Based on Superconducting Magnetic Bearing
Authors: M. Hossain, A. Abdkader, C. Cherif, A. Berger, M. Sparing, R. Hühne, L. Schultz, K. Nielsch
Abstract:
Due to the best quality of yarn and the flexibility of the machine, the ring spinning process is the most widely used spinning method for short staple yarn production. However, the productivity of these machines is still much lower in comparison to other spinning systems such as rotor or air-jet spinning process. The main reason for this limitation lies on the twisting mechanism of the ring spinning process. In the ring/traveler twisting system, each rotation of the traveler along with the ring inserts twist in the yarn. The rotation of the traveler at higher speed includes strong frictional forces, which in turn generates heat. Different ring/traveler systems concerning with its geometries, material combinations and coatings have already been implemented to solve the frictional problem. However, such developments can neither completely solve the frictional problem nor increase the productivity. The friction free superconducting magnetic bearing (SMB) system can be a right alternative replacing the existing ring/traveler system. The unique concept of SMB bearings is that they possess a self-stabilizing behavior, i.e. they remain fully passive without any necessity for expensive position sensing and control. Within the framework of a research project funded by German research foundation (DFG), suitable concepts of the SMB-system have been designed, developed, and integrated as a twisting device of ring spinning replacing the existing ring/traveler system. With the help of the developed mathematical model and experimental investigation, the physical limitations of this innovative twisting device in the spinning process have been determined. The interaction among the parameters of the spinning process and the superconducting twisting element has been further evaluated, which derives the concrete information regarding the new spinning process. Moreover, the influence of the implemented SMB twisting system on the yarn quality has been analyzed with respect to different process parameters. The presented work reveals the enormous potential of the innovative twisting mechanism, so that the productivity of the ring spinning process especially in case of thermoplastic materials can be at least doubled for the first time in a hundred years. The SMB ring spinning tester has also been presented in the international fair “International Textile Machinery Association (ITMA) 2015”.Keywords: ring spinning, superconducting magnetic bearing, yarn properties, productivity
Procedia PDF Downloads 2401387 Productivity Improvement in the Propeller Shaft Manufacturing Process
Authors: Won Jung
Abstract:
In automotive, propeller shaft is the device for transferring power from engine to axle via transmission, and the slip yoke is one of the main parts in the component. Since the propeller shafts are subject to torsion and shear stress, they need to be strong enough to bear the stress. The purpose of this research is to improve the productivity of slip yoke for automotive propeller shaft. We present how to redesign the component that currently manufactured as a forged single body type. The research was focused on not only reducing processing time but insuring durability of the component simultaneously.Keywords: automotive, propeller shaft, productivity, durability, slip yoke
Procedia PDF Downloads 3811386 The Art of Himachal Pradesh: A Confluence of Tradition and Aesthetic Grandeur
Authors: Dinesh Kumar
Abstract:
Himachal Pradesh, a northern hill state in India, is renowned for its breathtaking landscapes, hills, and vibrant cultural heritage. The art of Himachal Pradesh is a testament to its deep-rooted traditions, spiritual beliefs, and skilled craftsmanship. This paper explores the multifaceted art forms of the region, including painting, sculpture, textiles, and architecture, delving into their historical significance, stylistic characteristics, and contemporary relevance. From the exquisite Pahari miniature paintings to the intricate wood carvings of temples, the region’s artistic expressions are both diverse and profound. The study also examines the iconic Kullu and Kinnauri shawls, showcasing the exceptional weaving traditions of the region, along with the Chamba rumals, which reflect a seamless blend of art and utility. Additionally, this research highlights the architectural grandeur of Himachal Pradesh, where structures like the Hadimba Temple and Bhimakali Temple exemplify a unique amalgamation of aesthetic beauty and structural ingenuity. The interplay between the region’s natural environment and its artistic traditions has significantly influenced the thematic elements and materials used in these art forms, creating a distinctive identity. The paper also addresses the contemporary relevance of these traditions amidst rapid modernization. Through government initiatives, local artisan efforts, and the growing interest in sustainable tourism, the art of Himachal Pradesh continues to thrive, fostering cultural pride and economic development. By analyzing the intricate relationship between the state’s art forms and its cultural ethos, this study underlines their enduring legacy in shaping the region’s identity and heritage.Keywords: Kangra painting, Kullu shawls, Chamba Rumal, local artisan, traditions, Pahari painting, art, Himachal Pradesh
Procedia PDF Downloads 161385 Cloud Computing Impact on e-Government Adoption
Authors: Ali Elshabrawy
Abstract:
Cloud computing is expected to be important for e Government in near future. Governments need it for solving some of its e Government, financial, infrastructure, legacy systems and integration problems. It reduces information technology (IT) infrastructure needs and support costs, and offers on-demand infrastructure and computational power, improved collaboration capabilities, which are important for e Government projects start up and sustainability. Budget pressures will continue to drive more and more government IT to hybrid and even public clouds, and more cooperation between cloud service providers and governmental agencies are expected, Or developing governmental private, community clouds. Motivation to convince governments to use cloud computing services, will create a pressure on cloud service providers to cope with government's requirements for interoperability, security standards, open data and integration between their cloud systems There will be significant legal action arising out of governmental uses of cloud computing, and legislation addressing both IT and business needs and consumer fears and protections. Cloud computing is a considered a revolution for IT and E business in general and e commerce, e Government in particular. As governments faces increasing challenges regarding IT infrastructure required for e Government projects implementation. As a result of Lack of required financial resources allocated for e Government projects in developed and developing countries. Cloud computing can play a major role to solve some of e Government projects challenges such as, lack of financial resources, IT infrastructure, Human resources trained to manage e Government applications, interoperability, cost efficiency challenges. If we could solve some security issues related to cloud computing usage which considered critical for e Government projects. Pretty sure it’s Just a matter of time before cloud service providers will find out solutions to attract governments as major customers for their business.Keywords: cloud computing, e-government, adoption, supply side barriers, e-government requirements, challenges
Procedia PDF Downloads 3511384 A 30 Year Audit of the Vascular Complications of Ports: Permanent Intravascular Access Devices
Authors: S. Kershaw, P. J. Barry, K. Webb
Abstract:
Background: Cystic Fibrosis (CF) is a chronic lung disease where patients have chronic lung infection punctuated by acute exacerbations that require intermittent intravenous (IV) antibiotics during their lives. With time, peripheral venous access can become difficult and limited. Accessing these veins can become arduous, traumatic, painful and unworkable. A permanent intravascular access device or Port is a small device that is inserted into the central venous system that allows the delivery of medicine eliminating the need for peripheral venous access. Ports represent a convenient and efficient method when venous access is required on a permanent basis however they are also associated with significant vascular complications. Superior Vena Cava Obstruction (SVCO) is a rare but significant vascular complication of ports in this setting. Objective: We aimed to look at a single CF centre’s experience of port-related SVCO over a thirty year period. Methods: Retrospective data was extracted using patient’s notes, electronic radiological reports and local databases over a period in excess of 30 years from 1982 to 2014. Results: 13 patients were identified with SVCO as a result of their port. 11 patients had CF (9 female, 2 male), one male patient had Primary Ciliary Dyskinesia and one female patient had severe Asthma. The mean port function was 1532 days (range 110 – 4049) and the mean age at SVCO was 24 years (range 11.1 to 36.5 years). The most common symptoms were facial oedema (n=8, 61.5%) and dilated veins (n=6, 46.2%). 7 patients had their Ports removed after SVCO. 6 patients underwent attempted stenting (46.2%) and 6 did not. 4 out of the 6 who underwent stenting required/had re-intervention. 3 of the 6 patients who underwent stenting had symptom resolution, however, 4 of the 6 patients who were not stented had symptom resolution also. Symptom resolution was not guaranteed with stenting and required re-intervention in two-thirds. Conclusion: This case series represents the experience of one of the longest established CF units in the UK and represents the largest cohort ever reported in the literature.Keywords: ports, Superior Vena Cava Obstruction, cystic fibrosis, access devices
Procedia PDF Downloads 3231383 Investigation of Magnetic Resonance Wireless Charger Efficiency for Mobile Device
Authors: SeungHee Ryu, Junil Moon
Abstract:
The magnetic resonance wireless power transfer system is widely researched due to its benefits such as spatial freedom. In this paper, power transmitting unit and power receiving unit of wireless battery charger for mobile devices is presented. Power transmitting unit efficiency is measured under different test conditions with power receiving units.Keywords: magnetic resonance coupling, wireless power transfer, power transfer efficiency.
Procedia PDF Downloads 5131382 A Smartphone-Based Real-Time Activity Recognition and Fall Detection System
Authors: Manutchanok Jongprasithporn, Rawiphorn Srivilai, Paweena Pongsopha
Abstract:
Fall is the most serious accident leading to increased unintentional injuries and mortality. Falls are not only the cause of suffering and functional impairments to the individuals, but also the cause of increasing medical cost and days away from work. The early detection of falls could be an advantage to reduce fall-related injuries and consequences of falls. Smartphones, embedded accelerometer, have become a common device in everyday life due to decreasing technology cost. This paper explores a physical activity monitoring and fall detection application in smartphones which is a non-invasive biomedical device to determine physical activities and fall event. The combination of application and sensors could perform as a biomedical sensor to monitor physical activities and recognize a fall. We have chosen Android-based smartphone in this study since android operating system is an open-source and no cost. Moreover, android phone users become a majority of Thai’s smartphone users. We developed Thai 3 Axis (TH3AX) as a physical activities and fall detection application which included command, manual, results in Thai language. The smartphone was attached to right hip of 10 young, healthy adult subjects (5 males, 5 females; aged< 35y) to collect accelerometer and gyroscope data during performing physical activities (e.g., walking, running, sitting, and lying down) and falling to determine threshold for each activity. Dependent variables are including accelerometer data (acceleration, peak acceleration, average resultant acceleration, and time between peak acceleration). A repeated measures ANOVA was performed to test whether there are any differences between DVs’ means. Statistical analyses were considered significant at p<0.05. After finding threshold, the results were used as training data for a predictive model of activity recognition. In the future, accuracies of activity recognition will be performed to assess the overall performance of the classifier. Moreover, to help improve the quality of life, our system will be implemented with patients and elderly people who need intensive care in hospitals and nursing homes in Thailand.Keywords: activity recognition, accelerometer, fall, gyroscope, smartphone
Procedia PDF Downloads 6941381 Preparation and Characterization of CO-Tolerant Electrocatalyst for PEM Fuel Cell
Authors: Ádám Vass, István Bakos, Irina Borbáth, Zoltán Pászti, István Sajó, András Tompos
Abstract:
Important requirements for the anode side electrocatalysts of polymer electrolyte membrane (PEM) fuel cells are CO-tolerance, stability and corrosion resistance. Carbon is still the most common material for electrocatalyst supports due to its low cost, high electrical conductivity and high surface area, which can ensure good dispersion of the Pt. However, carbon becomes degraded at higher potentials and it causes problem during application. Therefore it is important to explore alternative materials with improved stability. Molybdenum-oxide can improve the CO-tolerance of the Pt/C catalysts, but it is prone to leach in acidic electrolyte. The Mo was stabilized by isovalent substitution of molybdenum into the rutile phase titanium-dioxide lattice, achieved by a modified multistep sol-gel synthesis method optimized for preparation of Ti0.7Mo.3O2-C composite. High degree of Mo incorporation into the rutile lattice was developed. The conductivity and corrosion resistance across the anticipated potential/pH window was ensured by mixed oxide – activated carbon composite. Platinum loading was carried out using NaBH4 and ethylene glycol; platinum content was 40 wt%. The electrocatalyst was characterized by both material investigating methods (i.e. XRD, TEM, EDS, XPS techniques) and electrochemical methods (cyclic-voltammetry, COads stripping voltammetry, hydrogen oxidation reaction on rotating disc electrode). The electrochemical activity of the sample was compared to commercial 40 wt% Pt/C (Quintech) and PtRu/C (Quintech, Pt= 20 wt%, Ru= 10 wt%) references. Enhanced CO tolerance of the electrocatalyst prepared using the Ti0.7Mo.3O2-C composite material was evidenced by the appearance of a CO-oxidation related 'pre-peak' and by the pronounced shift of the maximum of the main CO oxidation peak towards less positive potential compared to Pt/C. Fuel cell polarization measurements were also carried out using Bio-Logic and Paxitech FCT-150S test device. All details on the design, preparation, characterization and testing by both electrochemical measurements and fuel cell test device of electrocatalyst supported on Ti0.7Mo.3O2-C composite material will be presented and discussed.Keywords: anode electrocatalyst, composite material, CO-tolerance, TiMoOx
Procedia PDF Downloads 3041380 Protocol for Dynamic Load Distributed Low Latency Web-Based Augmented Reality and Virtual Reality
Authors: Rohit T. P., Sahil Athrij, Sasi Gopalan
Abstract:
Currently, the content entertainment industry is dominated by mobile devices. As the trends slowly shift towards Augmented/Virtual Reality applications the computational demands on these devices are increasing exponentially and we are already reaching the limits of hardware optimizations. This paper proposes a software solution to this problem. By leveraging the capabilities of cloud computing we can offload the work from mobile devices to dedicated rendering servers that are way more powerful. But this introduces the problem of latency. This paper introduces a protocol that can achieve high-performance low latency Augmented/Virtual Reality experience. There are two parts to the protocol, 1) In-flight compression The main cause of latency in the system is the time required to transmit the camera frame from client to server. The round trip time is directly proportional to the amount of data transmitted. This can therefore be reduced by compressing the frames before sending. Using some standard compression algorithms like JPEG can result in minor size reduction only. Since the images to be compressed are consecutive camera frames there won't be a lot of changes between two consecutive images. So inter-frame compression is preferred. Inter-frame compression can be implemented efficiently using WebGL but the implementation of WebGL limits the precision of floating point numbers to 16bit in most devices. This can introduce noise to the image due to rounding errors, which will add up eventually. This can be solved using an improved interframe compression algorithm. The algorithm detects changes between frames and reuses unchanged pixels from the previous frame. This eliminates the need for floating point subtraction thereby cutting down on noise. The change detection is also improved drastically by taking the weighted average difference of pixels instead of the absolute difference. The kernel weights for this comparison can be fine-tuned to match the type of image to be compressed. 2) Dynamic Load distribution Conventional cloud computing architectures work by offloading as much work as possible to the servers, but this approach can cause a hit on bandwidth and server costs. The most optimal solution is obtained when the device utilizes 100% of its resources and the rest is done by the server. The protocol balances the load between the server and the client by doing a fraction of the computing on the device depending on the power of the device and network conditions. The protocol will be responsible for dynamically partitioning the tasks. Special flags will be used to communicate the workload fraction between the client and the server and will be updated in a constant interval of time ( or frames ). The whole of the protocol is designed so that it can be client agnostic. Flags are available to the client for resetting the frame, indicating latency, switching mode, etc. The server can react to client-side changes on the fly and adapt accordingly by switching to different pipelines. The server is designed to effectively spread the load and thereby scale horizontally. This is achieved by isolating client connections into different processes.Keywords: 2D kernelling, augmented reality, cloud computing, dynamic load distribution, immersive experience, mobile computing, motion tracking, protocols, real-time systems, web-based augmented reality application
Procedia PDF Downloads 781379 Invisible Aircraft Using Plasma Display
Authors: C. Ramamoorthy, R. Ranga Raj
Abstract:
In olden days the Ramayana epic depicts the usage of invisible and fuel less aircraft named pushpavimana. The change of color in the reptile family chameleon paves way for the concept of color change phenomenon available in nature. In present scenario the aircrafts are visible so it is easily identified. So there are too many problems from the threatening. Research is still going on about this problem by using Liquid Crystal Display (LCD). Objective of this paper is to find much better to use the concept of invisible aircraft using plasma display through Couple Charged Device camera (CCD), which has a high resolution and can be used for many purposes like spying, defense, etc. Moreover it is cost wise cheap then, escaping the foe viewing.Keywords: CCD camera, chameleon, invisible, plasma display
Procedia PDF Downloads 4041378 Thermoelectric Blanket for Aiding the Treatment of Cerebral Hypoxia and Other Related Conditions
Authors: Sarayu Vanga, Jorge Galeano-Cabral, Kaya Wei
Abstract:
Cerebral hypoxia refers to a condition in which there is a decrease in oxygen supply to the brain. Patients suffering from this condition experience a decrease in their body temperature. While there isn't any cure to treat cerebral hypoxia as of date, certain procedures are utilized to help aid in the treatment of the condition. Regulating the body temperature is an example of one of those procedures. Hypoxia is well known to reduce the body temperature of mammals, although the neural origins of this response remain uncertain. In order to speed recovery from this condition, it is necessary to maintain a stable body temperature. In this study, we present an approach to regulating body temperature for patients who suffer from cerebral hypoxia or other similar conditions. After a thorough literature study, we propose the use of thermoelectric blankets, which are temperature-controlled thermal blankets based on thermoelectric devices. These blankets are capable of heating up and cooling down the patient to stabilize body temperature. This feature is possible through the reversible effect that thermoelectric devices offer while behaving as a thermal sensor, and it is an effective way to stabilize temperature. Thermoelectricity is the direct conversion of thermal to electrical energy and vice versa. This effect is now known as the Seebeck effect, and it is characterized by the Seebeck coefficient. In such a configuration, the device has cooling and heating sides with temperatures that can be interchanged by simply switching the direction of the current input in the system. This design integrates various aspects, including a humidifier, ventilation machine, IV-administered medication, air conditioning, circulation device, and a body temperature regulation system. The proposed design includes thermocouples that will trigger the blanket to increase or decrease a set temperature through a medical temperature sensor. Additionally, the proposed design allows an efficient way to control fluctuations in body temperature while being cost-friendly, with an expected cost of 150 dollars. We are currently working on developing a prototype of the design to collect thermal and electrical data under different conditions and also intend to perform an optimization analysis to improve the design even further. While this proposal was developed for treating cerebral hypoxia, it can also aid in the treatment of other related conditions, as fluctuations in body temperature appear to be a common symptom that patients have for many illnesses.Keywords: body temperature regulation, cerebral hypoxia, thermoelectric, blanket design
Procedia PDF Downloads 1661377 A Study of Smartphone Engagement Patterns of Millennial in India
Authors: Divyani Redhu, Manisha Rathaur
Abstract:
India has emerged as a very lucrative market for the smartphones in a very short span of time. The number of smartphone users here is growing massively with each passing day. Also, the expansion of internet services to far corners of the nation has also given a push to the smartphone revolution in India. Millennial, also known as Generation Y or the Net Generation is the generation born between the early 1980s and mid-1990s (some definitions extending further to early 2000s). Spanning roughly over 15 years, different social classes, cultures, and continents; it is irrational to imagine that millennial have a unified identity. But still, it cannot be denied that the growing millennial population is not only young but is highly tech-savvy too. It is not just the appearance of the device that today; we call it ‘smart’. Rather, it is the numerous tasks and functions that it can perform which has led its name to evolve as that of a ‘smartphone’. From usual tasks that were earlier performed by a simple mobile phone like making calls, sending messages, clicking photographs, recording videos etc.; today, the time has come where most of our day – to – day tasks are being taken care of by our all-time companion, i.e. smartphones. From being our alarm clock to being our note-maker, from our watch to our radio, our book-reader to our reminder, smartphones are present everywhere. Smartphone has now become an essential device for particularly the millennial to communicate not only with their friends but also with their family, colleagues, and teachers. The study by the researchers would be quantitative in nature. For the same, a survey would be conducted in particularly the capital of India, i.e. Delhi and the National Capital Region (NCR), which is the metropolitan area covering the entire National Capital Territory of Delhi and urban areas covering states of Haryana, Uttarakhand, Uttar Pradesh and Rajasthan. The tool of the survey would be a questionnaire and the number of respondents would be 200. The results derived from the study would primarily focus on the increasing reach of smartphones in India, smartphones as technological innovation and convergent tools, smartphone usage pattern of millennial in India, most used applications by the millennial, the average time spent by them, the impact of smartphones on the personal interactions of millennial etc. Thus, talking about the smartphone technology and the millennial in India, it would not be wrong to say that the growth, as well as the potential of the smartphones in India, is still immense. Also, very few technologies have made it possible to give a global exposure to the users and smartphone, if not the only one is certainly an immensely effective one that comes to the mind in this case.Keywords: Delhi – NCR, India, millennial, smartphone
Procedia PDF Downloads 1441376 Towards the Production of Least Contaminant Grade Biosolids and Biochar via Mild Acid Pre-treatment
Authors: Ibrahim Hakeem
Abstract:
Biosolids are stabilised sewage sludge produced from wastewater treatment processes. Biosolids contain valuable plant nutrient which facilitates their beneficial reuse in agricultural land. However, the increasing levels of legacy and emerging contaminants such as heavy metals (HMs), PFAS, microplastics, pharmaceuticals, microbial pathogens etc., are restraining the direct land application of biosolids. Pyrolysis of biosolids can effectively degrade microbial and organic contaminants; however, HMs remain a persistent problem with biosolids and their pyrolysis-derived biochar. In this work, we demonstrated the integrated processing of biosolids involving the acid pre-treatment for HMs removal and selective reduction of ash-forming elements followed by the bench-scale pyrolysis of the treated biosolids to produce quality biochar and bio-oil enriched with valuable platform chemicals. The pre-treatment of biosolids using 3% v/v H₂SO₄ at room conditions for 30 min reduced the ash content from 30 wt% in raw biosolids to 15 wt% in the treated sample while removing about 80% of limiting HMs without degrading the organic matter. The preservation of nutrients and reduction of HMs concentration and mobility via the developed hydrometallurgical process improved the grade of the treated biosolids for beneficial land reuse. The co-removal of ash-forming elements from biosolids positively enhanced the fluidised bed pyrolysis of the acid-treated biosolids at 700 ℃. Organic matter devolatilisation was improved by 40%, and the produced biochar had higher surface area (107 m²/g), heating value (15 MJ/kg), fixed carbon (35 wt%), organic carbon retention (66% dry-ash free) compared to the raw biosolids biochar with surface area (56 m²/g), heating value (9 MJ/kg), fixed carbon (20 wt%) and organic carbon retention (50%). Pre-treatment also improved microporous structure development of the biochar and substantially decreased the HMs concentration and bioavailability by at least 50% relative to the raw biosolids biochar. The integrated process is a viable approach to enhancing value recovery from biosolids.Keywords: biosolids, pyrolysis, biochar, heavy metals
Procedia PDF Downloads 811375 Analyzing Mexican Adaptation of Shakespeare: A Study of Onstage Violence in Richard III and Its Impact on Mexican Viewers
Authors: Nelya Babynets
Abstract:
Shakespeare and Mexican theatregoers have enjoyed quite a complex relationship. Shakespearean plays have appeared on the Mexican stage with remarkable perseverance, yet with mixed success. Although Shakespeare has long been a part of the global cultural marketplace and his works are celebrated all around the world, the adaptation of his plays on the contemporary Mexican stage is always an adventure, since the works of this early modern author are frequently seen as the legacy of a ‘high’, but obsolete, culture, one that is quite distant from the present-day viewers’ daily experiences and concerns. Moreover, Mexican productions of Shakespeare are presented mostly in Peninsular Spanish, a language similar yet alien to the language spoken in Mexico, one that does not wholly fit into the viewers’ cultural praxis. This is the reason why Mexican dramatic adaptations of Shakespearean plays tend to replace the cultural references of the original piece with ones that are more significant and innate to Latin American spectators. This paper analyses the new Mexican production of Richard III adapted and directed by Mauricio Garcia Lozano, which employs onstage violence - a cultural force that is inherent to all human beings regardless of their beliefs, ethnic background or nationality - as the means to make this play more relevant to a present-day audience. Thus, this paper addresses how the bloody bombast of staged murders helps to avoid the tyranny of a rigid framework of fixed meanings that denies the possibility of an intercultural appropriation of this European play written over four hundred years ago. The impact of violence displayed in Garcia Lozano’s adaptation of Richard III on Mexican audiences will also be examined. This study is particularly relevant in Mexico where the term ‘tragedy’ has become a commonplace and where drug wars and state-sanctioned violence have already taken the lives of many people.Keywords: audience, dramatic adaptation, Shakespeare, viewer
Procedia PDF Downloads 4621374 Microscale observations of a gas cell wall rupture in bread dough during baking and confrontation to 2/3D Finite Element simulations of stress concentration
Authors: Kossigan Bernard Dedey, David Grenier, Tiphaine Lucas
Abstract:
Bread dough is often described as a dispersion of gas cells in a continuous gluten/starch matrix. The final bread crumb structure is strongly related to gas cell walls (GCWs) rupture during baking. At the end of proofing and during baking, part of the thinnest GCWs between expanding gas cells is reduced to a gluten film of about the size of a starch granule. When such size is reached gluten and starch granules must be considered as interacting phases in order to account for heterogeneities and appropriately describe GCW rupture. Among experimental investigations carried out to assess GCW rupture, no experimental work was performed to observe the GCW rupture in the baking conditions at GCW scale. In addition, attempts to numerically understand GCW rupture are usually not performed at the GCW scale and often considered GCWs as continuous. The most relevant paper that accounted for heterogeneities dealt with the gluten/starch interactions and their impact on the mechanical behavior of dough film. However, stress concentration in GCW was not discussed. In this study, both experimental and numerical approaches were used to better understand GCW rupture in bread dough during baking. Experimentally, a macro-scope placed in front of a two-chamber device was used to observe the rupture of a real GCW of 200 micrometers in thickness. Special attention was paid in order to mimic baking conditions as far as possible (temperature, gas pressure and moisture). Various differences in pressure between both sides of GCW were applied and different modes of fracture initiation and propagation in GCWs were observed. Numerically, the impact of gluten/starch interactions (cohesion or non-cohesion) and rheological moduli ratio on the mechanical behavior of GCW under unidirectional extension was assessed in 2D/3D. A non-linear viscoelastic and hyperelastic approach was performed to match the finite strain involved in GCW during baking. Stress concentration within GCW was identified. Simulated stresses concentration was discussed at the light of GCW failure observed in the device. The gluten/starch granule interactions and rheological modulus ratio were found to have a great effect on the amount of stress possibly reached in the GCW.Keywords: dough, experimental, numerical, rupture
Procedia PDF Downloads 1241373 A Next-Generation Pin-On-Plate Tribometer for Use in Arthroplasty Material Performance Research
Authors: Lewis J. Woollin, Robert I. Davidson, Paul Watson, Philip J. Hyde
Abstract:
Introduction: In-vitro testing of arthroplasty materials is of paramount importance when ensuring that they can withstand the performance requirements encountered in-vivo. One common machine used for in-vitro testing is a pin-on-plate tribometer, an early stage screening device that generates data on the wear characteristics of arthroplasty bearing materials. These devices test vertically loaded rotating cylindrical pins acting against reciprocating plates, representing the bearing surfaces. In this study, a pin-on-plate machine has been developed that provides several improvements over current technology, thereby progressing arthroplasty bearing research. Historically, pin-on-plate tribometers have been used to investigate the performance of arthroplasty bearing materials under conditions commonly encountered during a standard gait cycle; nominal operating pressures of 2-6 MPa and an operating frequency of 1 Hz are typical. There has been increased interest in using pin-on-plate machines to test more representative in-vivo conditions, due to the drive to test 'beyond compliance', as well as their testing speed and economic advantages over hip simulators. Current pin-on-plate machines do not accommodate the increased performance requirements associated with more extreme kinematic conditions, therefore a next-generation pin-on-plate tribometer has been developed to bridge the gap between current technology and future research requirements. Methodology: The design was driven by several physiologically relevant requirements. Firstly, an increased loading capacity was essential to replicate the peak pressures that occur in the natural hip joint during running and chair-rising, as well as increasing the understanding of wear rates in obese patients. Secondly, the introduction of mid-cycle load variation was of paramount importance, as this allows for an approximation of the loads present in a gait cycle to be applied and to test the fatigue properties of materials. Finally, the rig must be validated against previous-generation pin-on-plate and arthroplasty wear data. Results: The resulting machine is a twelve station device that is split into three sets of four stations, providing an increased testing capacity compared to most current pin-on-plate tribometers. The loading of the pins is generated using a pneumatic system, which can produce contact pressures of up to 201 MPa on a 3.2 mm² round pin face. This greatly exceeds currently achievable contact pressures in literature and opens new research avenues such as testing rim wear of mal-positioned hip implants. Additionally, the contact pressure of each set can be changed independently of the others, allowing multiple loading conditions to be tested simultaneously. Using pneumatics also allows the applied pressure to be switched ON/OFF mid-cycle, another feature not currently reported elsewhere, which allows for investigation into intermittent loading and material fatigue. The device is currently undergoing a series of validation tests using Ultra-High-Molecular-Weight-Polyethylene pins and 316L Stainless Steel Plates (polished to a Ra < 0.05 µm). The operating pressures will be between 2-6 MPa, operating at 1 Hz, allowing for validation of the machine against results reported previously in the literature. The successful production of this next-generation pin-on-plate tribometer will, following its validation, unlock multiple previously unavailable research avenues.Keywords: arthroplasty, mechanical design, pin-on-plate, total joint replacement, wear testing
Procedia PDF Downloads 981372 Improving the Design of Blood Pressure and Blood Saturation Monitors
Authors: L. Parisi
Abstract:
A blood pressure monitor or sphygmomanometer can be either manual or automatic, employing respectively either the auscultatory method or the oscillometric method. The manual version of the sphygmomanometer involves an inflatable cuff with a stethoscope adopted to detect the sounds generated by the arterial walls to measure blood pressure in an artery. An automatic sphygmomanometer can be effectively used to monitor blood pressure through a pressure sensor, which detects vibrations provoked by oscillations of the arterial walls. The pressure sensor implemented in this device improves the accuracy of the measurements taken.Keywords: blood pressure, blood saturation, sensors, actuators, design improvement
Procedia PDF Downloads 4601371 Braille Code Matrix
Authors: Mohammed E. A. Brixi Nigassa, Nassima Labdelli, Ahmed Slami, Arnaud Pothier, Sofiane Soulimane
Abstract:
According to the world health organization (WHO), there are almost 285 million people with visual disability, 39 million of these people are blind. Nevertheless, there is a code for these people that make their life easier and allow them to access information more easily; this code is the Braille code. There are several commercial devices allowing braille reading, unfortunately, most of these devices are not ergonomic and too expensive. Moreover, we know that 90 % of blind people in the world live in low-incomes countries. Our contribution aim is to concept an original microactuator for Braille reading, as well as being ergonomic, inexpensive and lowest possible energy consumption. Nowadays, the piezoelectric device gives the better actuation for low actuation voltage. In this study, we focus on piezoelectric (PZT) material which can bring together all these conditions. Here, we propose to use one matrix composed by six actuators to form the 63 basic combinations of the Braille code that contain letters, numbers, and special characters in compliance with the standards of the braille code. In this work, we use a finite element model with Comsol Multiphysics software for designing and modeling this type of miniature actuator in order to integrate it into a test device. To define the geometry and the design of our actuator, we used physiological limits of perception of human being. Our results demonstrate in our study that piezoelectric actuator could bring a large deflection out-of-plain. Also, we show that microactuators can exhibit non uniform compression. This deformation depends on thin film thickness and the design of membrane arm. The actuator composed of four arms gives the higher deflexion and it always gives a domed deformation at the center of the deviceas in case of the Braille system. The maximal deflection can be estimated around ten micron per Volt (~ 10µm/V). We noticed that the deflection according to the voltage is a linear function, and this deflection not depends only on the voltage the voltage, but also depends on the thickness of the film used and the design of the anchoring arm. Then, we were able to simulate the behavior of the entire matrix and thus display different characters in Braille code. We used these simulations results to achieve our demonstrator. This demonstrator is composed of a layer of PDMS on which we put our piezoelectric material, and then added another layer of PDMS to isolate our actuator. In this contribution, we compare our results to optimize the final demonstrator.Keywords: Braille code, comsol software, microactuators, piezoelectric
Procedia PDF Downloads 3601370 Modeling of Silicon Window Layers for Solar Cells Based SIGE
Authors: Meriem Boukais, B. Dennai, A. Ould- Abbas
Abstract:
The efficiency of SiGe solar cells might be improved by a wide-band-gap window layer. In this work we were simulated using the one dimensional simulation program called analysis of microelectronic and photonic structures (AMPS-1D). In the modeling, the thickness of silicon window was varied from 80 to 150 nm. The rest of layer’s thicknesses were kept constant, by varying thickness of window layer the simulated device performance was demonstrate in the form of current-voltage (I-V) characteristics and quantum efficiency (QE).Keywords: modeling, SiGe, AMPS-1D, quantum efficiency, conversion, efficiency
Procedia PDF Downloads 7271369 Steady and Spatio-Temporal Monitoring of Water Quality Feeding Area Southwest of Great Casablanca (Morocco)
Authors: Hicham Maklache, Rajae Delhi, Fatiha Benzha, Mohamed Tahiri
Abstract:
In Morocco, where semi-arid climate is dominant, the supply of industrial and drink water is provided primarily by surface water. Morocco has currently 118 multi-purpose dams. If the construction of these works was a necessity to ensure in all seasons, the water essential to our country, it is impartial to control and protect the quality of running water. -Most dam reservoir used are threatened by eutrophication due to increased terrigenous and anthropogenic pollutants, coming from an over-fertilization of water by phosphorus and nitrogen nutrients and accelerated by uncontrolled development of microalgae aging. It should also be noted that the daily practices of citizens with respect to the resource, an essential component involved in almost all human activities (agriculture, agro-industries, hydropower, ...), has contributed significantly to the deterioration of water quality despite its treatment in several plants. Therefore, the treated water, provides a legacy of bad tastes and odors unacceptable to the consumer. -The present work exhibits results of water quality watershed Oum Erbia used to supply drinking water to the whole terraced area connecting the city of Khenifra to the city of Azemmour. The area south west of Great Casablanca (metropolis of the kingdom with about 4 million inhabitants) supplied 50% of its water needs by sourcing Dam Sidi Said Maachou located, last anchor point of the watershed before the spill in the Atlantic Ocean. The results were performed in a spatio-temporal scale and helped to establish a history of monitoring water quality during the 2009-2011 cycles, the study also presents the development of quality according to the seasonal rhythmicity and rainfall. It gives also an overview on the concept of watershed stewardship.Keywords: crude surface water quality, Oum Er Rbia hydraulic basin, spatio-temporal monitoring, Great Casablanca drink water quality, Morocco
Procedia PDF Downloads 446