Search results for: stochastic volatility model
9874 Mosque as a Sustainable Model in Iranian Traditional Urban Development: The Case Study of Vakil Mosque in Shiraz
Authors: Amir Hossein Ashari, Sedighe Erfan Manesh
Abstract:
When investigating Iranian traditional and historical urban development, such as that seen in Shiraz, our attention is drawn to mosques as a focal point. Vakil Mosque in Shiraz is completely consistent, coordinated and integrated with the Bazaar, square and school. This is a significant example of traditional urban development. The position of the mosque in the most important urban joint near bazaar in a way that it is considered part of the bazaar structure are factors that have given it social, political, and economic roles in addition to the original religious role. These are among characteristics of sustainable development. The mosque has had an important effect in formation of the city because it is connected to main gates. In terms of access, the mosque has different main and peripheral access paths from different parts of the city. The courtyard of the mosque was located next to the main elements of the city so that it was considered as an urban open space, which made it a more active and more dynamic place. This study is carried out via library and field research with the purpose of finding strategies for taking advantage of useful features of the mosque in traditional urban development. These features include its role as a gathering center for people and city in sustainable urban development. Mosque can be used as a center for enhancing social interactions and creating a sense of association that leads to sustainable social space. These can act as a model which leads us to sustainable cities in terms of social and economic factors.Keywords: mosque, traditional urban development, sustainable social space, Vakil Mosque, Shiraz
Procedia PDF Downloads 4059873 Study of the Effect of Voltage and PH on the Inactivation of Byssochlamys fulva in Tomato Juice by Ohmic Process
Authors: Arash Dara, Mahsa Mokhtari, Nafiseh Zamindar
Abstract:
The aim of this study was to determine the effect of thermal resistance, temperature, voltage, and pH changes in an ohmic heating system on reducing the logarithmic number of Byssochlamys fulva species (PTCC 5062) in tomato juice water and to investigate the quantitative properties of tomato juice in the ohmic heating pasteurization system. The percentage of thermal degradation by ohmic heating was determined in tomato juice for the kinetics of Byssochlamys fulva in ohmic chamber at the temperatures of 88, 93, and 98°C, with two voltages of 30 and 40 volts and two pH levels of 3.5 and 4.5; this was done using Weibull frequency distribution model. Three different parameters (pH = 3.5, two voltages of 30 and 40, at three temperatures 88, 93, and 98) and (pH = 4.5, two voltages 30 and 40, at three temperatures 88, 93, and 98) in three replications were considered in the ohmic system. Heating time for the temperature of 88°C was 20 minutes once every 2 minutes, while for the temperature of 93°C, it was 10 minutes once every 1 minute. At the temperature of 98°C, the first time was 0.5 minutes, and for other times, sampling was done every 1 minute. In each condition, the qualitative characteristics, including acidity, Brix, and pH, were measured before and after the ohmic process in the tomato juice. This study demonstrates that the differences in pH and voltage due to different temperatures in the ohmic process can greatly affect the inactivation of Byssochlamys fulva fungus and the qualitative characteristics of the tomato juice. This is the first study using the Weibull frequency method to model the inactivation of Byssochlamys fulva in tomato juice. Variation in parameters such as temperature, voltage, and pH can prevent the presence of Byssochlamys fulva in the pasteurized juices.Keywords: pasteurization, ohmic heating process, Byssochlamys fulva, tomato juice, heat resistance, voltage, pH
Procedia PDF Downloads 3809872 Lessons Learned from Interlaboratory Noise Modelling in Scope of Environmental Impact Assessments in Slovenia
Abstract:
Noise assessment methods are regularly used in scope of Environmental Impact Assessments for planned projects to assess (predict) the expected noise emissions of these projects. Different noise assessment methods could be used. In recent years, we had an opportunity to collaborate in some noise assessment procedures where noise assessments of different laboratories have been performed simultaneously. We identified some significant differences in noise assessment results between laboratories in Slovenia. We estimate that despite good input Georeferenced Data to set up acoustic model exists in Slovenia; there is no clear consensus on methods for predictive noise methods for planned projects. We analyzed input data, methods and results of predictive noise methods for two planned industrial projects, both were done independently by two laboratories. We also analyzed the data, methods and results of two interlaboratory collaborative noise models for two existing noise sources (railway and motorway). In cases of predictive noise modelling, the validations of acoustic models were performed by noise measurements of surrounding existing noise sources, but in varying durations. The acoustic characteristics of existing buildings were also not described identically. The planned noise sources were described and digitized differently. Differences in noise assessment results between different laboratories have ranged up to 10 dBA, which considerably exceeds the acceptable uncertainty ranged between 3 to 6 dBA. Contrary to predictive noise modelling, in cases of collaborative noise modelling for two existing noise sources the possibility to perform the validation noise measurements of existing noise sources greatly increased the comparability of noise modelling results. In both cases of collaborative noise modelling for existing motorway and railway, the modelling results of different laboratories were comparable. Differences in noise modeling results between different laboratories were below 5 dBA, which was acceptable uncertainty set up by interlaboratory noise modelling organizer. The lessons learned from the study were: 1) Predictive noise calculation using formulae from International standard SIST ISO 9613-2: 1997 is not an appropriate method to predict noise emissions of planned projects since due to complexity of procedure they are not used strictly, 2) The noise measurements are important tools to minimize noise assessment errors of planned projects and should be in cases of predictive noise modelling performed at least for validation of acoustic model, 3) National guidelines should be made on the appropriate data, methods, noise source digitalization, validation of acoustic model etc. in order to unify the predictive noise models and their results in scope of Environmental Impact Assessments for planned projects.Keywords: environmental noise assessment, predictive noise modelling, spatial planning, noise measurements, national guidelines
Procedia PDF Downloads 2349871 Exploring the Synergistic Effects of Aerobic Exercise and Cinnamon Extract on Metabolic Markers in Insulin-Resistant Rats through Advanced Machine Learning and Deep Learning Techniques
Authors: Masoomeh Alsadat Mirshafaei
Abstract:
The present study aims to explore the effect of an 8-week aerobic training regimen combined with cinnamon extract on serum irisin and leptin levels in insulin-resistant rats. Additionally, this research leverages various machine learning (ML) and deep learning (DL) algorithms to model the complex interdependencies between exercise, nutrition, and metabolic markers, offering a groundbreaking approach to obesity and diabetes research. Forty-eight Wistar rats were selected and randomly divided into four groups: control, training, cinnamon, and training cinnamon. The training protocol was conducted over 8 weeks, with sessions 5 days a week at 75-80% VO2 max. The cinnamon and training-cinnamon groups were injected with 200 ml/kg/day of cinnamon extract. Data analysis included serum data, dietary intake, exercise intensity, and metabolic response variables, with blood samples collected 72 hours after the final training session. The dataset was analyzed using one-way ANOVA (P<0.05) and fed into various ML and DL models, including Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural Networks (CNN). Traditional statistical methods indicated that aerobic training, with and without cinnamon extract, significantly increased serum irisin and decreased leptin levels. Among the algorithms, the CNN model provided superior performance in identifying specific interactions between cinnamon extract concentration and exercise intensity, optimizing the increase in irisin and the decrease in leptin. The CNN model achieved an accuracy of 92%, outperforming the SVM (85%) and RF (88%) models in predicting the optimal conditions for metabolic marker improvements. The study demonstrated that advanced ML and DL techniques could uncover nuanced relationships and potential cellular responses to exercise and dietary supplements, which is not evident through traditional methods. These findings advocate for the integration of advanced analytical techniques in nutritional science and exercise physiology, paving the way for personalized health interventions in managing obesity and diabetes.Keywords: aerobic training, cinnamon extract, insulin resistance, irisin, leptin, convolutional neural networks, exercise physiology, support vector machines, random forest
Procedia PDF Downloads 379870 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques
Authors: Chandu Rathnayake, Isuri Anuradha
Abstract:
Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.Keywords: CNN, random forest, decision tree, machine learning, deep learning
Procedia PDF Downloads 739869 A Broadband Tri-Cantilever Vibration Energy Harvester with Magnetic Oscillator
Authors: Xiaobo Rui, Zhoumo Zeng, Yibo Li
Abstract:
A novel tri-cantilever energy harvester with magnetic oscillator was presented, which could convert the ambient vibration into electrical energy to power the low-power devices such as wireless sensor networks. The most common way to harvest vibration energy is based on the use of linear resonant devices such as cantilever beam, since this structure creates the highest strain for a given force. The highest efficiency will be achieved when the resonance frequency of the harvester matches the vibration frequency. The limitation of the structure is the narrow effective bandwidth. To overcome this limitation, this article introduces a broadband tri-cantilever harvester with nonlinear stiffness. This energy harvester typically consists of three thin cantilever beams vertically arranged with Neodymium Magnets ( NdFeB)magnetics at its free end and a fixed base at the other end. The three cantilevers have different resonant frequencies by designed in different thicknesses. It is obviously that a similar advantage of multiple resonant frequencies as piezoelectric cantilevers array structure is built. To achieve broadband energy harvesting, magnetic interaction is used to introduce the nonlinear system stiffness to tune the resonant frequency to match the excitation. Since the three cantilever tips are all free and the magnetic force is distance dependent, the resonant frequencies will be complexly changed with the vertical vibration of the free end. Both model and experiment are built. The electromechanically coupled lumped-parameter model is presented. An electromechanical formulation and analytical expressions for the coupled nonlinear vibration response and voltage response are given. The entire structure is fabricated and mechanically attached to a electromagnetic shaker as a vibrating body via the fixed base, in order to couple the vibrations to the cantilever. The cantilevers are bonded with piezoelectric macro-fiber composite (MFC) materials (Model: M8514P2). The size of the cantilevers is 120*20mm2 and the thicknesses are separately 1mm, 0.8mm, 0.6mm. The prototype generator has a measured performance of 160.98 mW effective electrical power and 7.93 DC output voltage via the excitation level of 10m/s2. The 130% increase in the operating bandwidth is achieved. This device is promising to support low-power devices, peer-to-peer wireless nodes, and small-scale wireless sensor networks in ambient vibration environment.Keywords: tri-cantilever, ambient vibration, energy harvesting, magnetic oscillator
Procedia PDF Downloads 1549868 Algorithm for Modelling Land Surface Temperature and Land Cover Classification and Their Interaction
Authors: Jigg Pelayo, Ricardo Villar, Einstine Opiso
Abstract:
The rampant and unintended spread of urban areas resulted in increasing artificial component features in the land cover types of the countryside and bringing forth the urban heat island (UHI). This paved the way to wide range of negative influences on the human health and environment which commonly relates to air pollution, drought, higher energy demand, and water shortage. Land cover type also plays a relevant role in the process of understanding the interaction between ground surfaces with the local temperature. At the moment, the depiction of the land surface temperature (LST) at city/municipality scale particularly in certain areas of Misamis Oriental, Philippines is inadequate as support to efficient mitigations and adaptations of the surface urban heat island (SUHI). Thus, this study purposely attempts to provide application on the Landsat 8 satellite data and low density Light Detection and Ranging (LiDAR) products in mapping out quality automated LST model and crop-level land cover classification in a local scale, through theoretical and algorithm based approach utilizing the principle of data analysis subjected to multi-dimensional image object model. The paper also aims to explore the relationship between the derived LST and land cover classification. The results of the presented model showed the ability of comprehensive data analysis and GIS functionalities with the integration of object-based image analysis (OBIA) approach on automating complex maps production processes with considerable efficiency and high accuracy. The findings may potentially lead to expanded investigation of temporal dynamics of land surface UHI. It is worthwhile to note that the environmental significance of these interactions through combined application of remote sensing, geographic information tools, mathematical morphology and data analysis can provide microclimate perception, awareness and improved decision-making for land use planning and characterization at local and neighborhood scale. As a result, it can aid in facilitating problem identification, support mitigations and adaptations more efficiently.Keywords: LiDAR, OBIA, remote sensing, local scale
Procedia PDF Downloads 2829867 Modelling the Tensile Behavior of Plasma Sprayed Freestanding Yttria Stabilized Zirconia Coatings
Authors: Supriya Patibanda, Xiaopeng Gong, Krishna N. Jonnalagadda, Ralph Abrahams
Abstract:
Yttria stabilized zirconia (YSZ) is used as a top coat in thermal barrier coatings in high-temperature turbine/jet engine applications. The mechanical behaviour of YSZ depends on the microstructural features like crack density and porosity, which are a result of coating method. However, experimentally ascertaining their individual effect is difficult due to the inherent challenges involved like material synthesis and handling. The current work deals with the development of a phenomenological model to replicate the tensile behavior of air plasma sprayed YSZ obtained from experiments. Initially, uniaxial tensile experiments were performed on freestanding YSZ coatings of ~300 µm thick for different crack densities and porosities. The coatings exhibited a nonlinear behavior and also a huge variation in strength values. With the obtained experimental tensile curve as a base and crack density and porosity as prime variables, a phenomenological model was developed using ABAQUS interface with new user material defined employing VUMAT sub routine. The relation between the tensile stress and the crack density was empirically established. Further, a parametric study was carried out to investigate the effect of the individual features on the non-linearity in these coatings. This work enables to generate new coating designs by varying the key parameters and predicting the mechanical properties with the help of a simulation, thereby minimizing experiments.Keywords: crack density, finite element method, plasma sprayed coatings, VUMAT
Procedia PDF Downloads 1489866 An Infinite Mixture Model for Modelling Stutter Ratio in Forensic Data Analysis
Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer
Abstract:
Forensic DNA analysis has received much attention over the last three decades, due to its incredible usefulness in human identification. The statistical interpretation of DNA evidence is recognised as one of the most mature fields in forensic science. Peak heights in an Electropherogram (EPG) are approximately proportional to the amount of template DNA in the original sample being tested. A stutter is a minor peak in an EPG, which is not masking as an allele of a potential contributor, and considered as an artefact that is presumed to be arisen due to miscopying or slippage during the PCR. Stutter peaks are mostly analysed in terms of stutter ratio that is calculated relative to the corresponding parent allele height. Analysis of mixture profiles has always been problematic in evidence interpretation, especially with the presence of PCR artefacts like stutters. Unlike binary and semi-continuous models; continuous models assign a probability (as a continuous weight) for each possible genotype combination, and significantly enhances the use of continuous peak height information resulting in more efficient reliable interpretations. Therefore, the presence of a sound methodology to distinguish between stutters and real alleles is essential for the accuracy of the interpretation. Sensibly, any such method has to be able to focus on modelling stutter peaks. Bayesian nonparametric methods provide increased flexibility in applied statistical modelling. Mixture models are frequently employed as fundamental data analysis tools in clustering and classification of data and assume unidentified heterogeneous sources for data. In model-based clustering, each unknown source is reflected by a cluster, and the clusters are modelled using parametric models. Specifying the number of components in finite mixture models, however, is practically difficult even though the calculations are relatively simple. Infinite mixture models, in contrast, do not require the user to specify the number of components. Instead, a Dirichlet process, which is an infinite-dimensional generalization of the Dirichlet distribution, is used to deal with the problem of a number of components. Chinese restaurant process (CRP), Stick-breaking process and Pólya urn scheme are frequently used as Dirichlet priors in Bayesian mixture models. In this study, we illustrate an infinite mixture of simple linear regression models for modelling stutter ratio and introduce some modifications to overcome weaknesses associated with CRP.Keywords: Chinese restaurant process, Dirichlet prior, infinite mixture model, PCR stutter
Procedia PDF Downloads 3309865 Sustainability Impact Assessment of Construction Ecology to Engineering Systems and Climate Change
Authors: Moustafa Osman Mohammed
Abstract:
Construction industry, as one of the main contributor in depletion of natural resources, influences climate change. This paper discusses incremental and evolutionary development of the proposed models for optimization of a life-cycle analysis to explicit strategy for evaluation systems. The main categories are virtually irresistible for introducing uncertainties, uptake composite structure model (CSM) as environmental management systems (EMSs) in a practice science of evaluation small and medium-sized enterprises (SMEs). The model simplified complex systems to reflect nature systems’ input, output and outcomes mode influence “framework measures” and give a maximum likelihood estimation of how elements are simulated over the composite structure. The traditional knowledge of modeling is based on physical dynamic and static patterns regarding parameters influence environment. It unified methods to demonstrate how construction systems ecology interrelated from management prospective in procedure reflects the effect of the effects of engineering systems to ecology as ultimately unified technologies in extensive range beyond constructions impact so as, - energy systems. Sustainability broadens socioeconomic parameters to practice science that meets recovery performance, engineering reflects the generic control of protective systems. When the environmental model employed properly, management decision process in governments or corporations could address policy for accomplishment strategic plans precisely. The management and engineering limitation focuses on autocatalytic control as a close cellular system to naturally balance anthropogenic insertions or aggregation structure systems to pound equilibrium as steady stable conditions. Thereby, construction systems ecology incorporates engineering and management scheme, as a midpoint stage between biotic and abiotic components to predict constructions impact. The later outcomes’ theory of environmental obligation suggests either a procedures of method or technique that is achieved in sustainability impact of construction system ecology (SICSE), as a relative mitigation measure of deviation control, ultimately.Keywords: sustainability, environmental impact assessment, environemtal management, construction ecology
Procedia PDF Downloads 3939864 Governance Challenges for the Management of Water Resources in Agriculture: The Italian Way
Authors: Silvia Baralla, Raffaella Zucaro, Romina Lorenzetti
Abstract:
Water management needs to cope with economic, societal, and environmental changes. This could be guaranteed through 'shifting from government to governance'. In the last decades, it was applied in Europe through and within important legislative pillars (Water Framework Directive and Common Agricultural Policy) and their measures focused on resilience and adaptation to climate change, with particular attention to the creation of synergies among policies and all the actors involved at different levels. Within the climate change context, the agricultural sector can play, through sustainable water management, a leading role for climate-resilient growth and environmental integrity. A recent analysis on the water management governance of different countries identified some common gaps dealing with administrative, policy, information, capacity building, funding, objective, and accountability. The ability of a country to fill these gaps is an essential requirement to make some of the changes requested by Europe, in particular the improvement of the agro-ecosystem resilience to the effect of climatic change, supporting green and digital transitions, and sustainable water use. This research aims to contribute in sharing examples of water governances and related advantages useful to fill the highlighted gaps. Italy has developed a strong and exhaustive model of water governance in order to react with strategic and synergic actions since it is one of the European countries most threatened by climate change and its extreme events (drought, floods). In particular, the Italian water governance model was able to overcome several gaps, specifically as concerns the water use in agriculture, adopting strategies as a systemic/integrated approach, the stakeholder engagement, capacity building, the improvement of planning and monitoring ability, and an adaptive/resilient strategy for funding activities. They were carried out, putting in place regulatory, structural, and management actions. Regulatory actions include both the institution of technical committees grouping together water decision-makers and the elaboration of operative manuals and guidelines by means of a participative and cross-cutting approach. Structural actions deal with the funding of interventions within European and national funds according to the principles of coherence and complementarity. Finally, management actions regard the introduction of operational tools to support decision-makers in order to improve planning and monitoring ability. In particular, two cross-functional and interoperable web databases were introduced: SIGRIAN (National Information System for Water Resources Management in Agriculture) and DANIA (National Database of Investments for Irrigation and the Environment). Their interconnection allows to support sustainable investments, taking into account the compliance about irrigation volumes quantified in SIGRIAN, ensuring a high level of attention on water saving, and monitoring the efficiency of funding. Main positive results from the Italian water governance model deal with a synergic and coordinated work at the national, regional, and local level among institutions, the transparency on water use in agriculture, a deeper understanding from the stakeholder side of the importance of their roles and of their own potential benefits and the capacity to guarantee continuity to this model, through a sensitization process and the combined use of management operational tools.Keywords: agricultural sustainability, governance model, water management, water policies
Procedia PDF Downloads 1179863 Micro-Channel Flows Simulation Based on Nonlinear Coupled Constitutive Model
Authors: Qijiao He
Abstract:
MicroElectrical-Mechanical System (MEMS) is one of the most rapidly developing frontier research field both in theory study and applied technology. Micro-channel is a very important link component of MEMS. With the research and development of MEMS, the size of the micro-devices and the micro-channels becomes further smaller. Compared with the macroscale flow, the flow characteristics of gas in the micro-channel have changed, and the rarefaction effect appears obviously. However, for the rarefied gas and microscale flow, Navier-Stokes-Fourier (NSF) equations are no longer appropriate due to the breakup of the continuum hypothesis. A Nonlinear Coupled Constitutive Model (NCCM) has been derived from the Boltzmann equation to describe the characteristics of both continuum and rarefied gas flows. We apply the present scheme to simulate continuum and rarefied gas flows in a micro-channel structure. And for comparison, we apply other widely used methods which based on particle simulation or direct solution of distribution function, such as Direct simulation of Monte Carlo (DSMC), Unified Gas-Kinetic Scheme (UGKS) and Lattice Boltzmann Method (LBM), to simulate the flows. The results show that the present solution is in better agreement with the experimental data and the DSMC, UGKS and LBM results than the NSF results in rarefied cases but is in good agreement with the NSF results in continuum cases. And some characteristics of both continuum and rarefied gas flows are observed and analyzed.Keywords: continuum and rarefied gas flows, discontinuous Galerkin method, generalized hydrodynamic equations, numerical simulation
Procedia PDF Downloads 1719862 Stock Market Development and the Growth of Nigerian Economy
Authors: Godwin Chigozie Okpara, Eugene Iheanacho
Abstract:
This paper examined the dynamic behavior of stock market development and the growth of Nigerian economy. The variables; market capitalization ratio, turnover ratio and liquidity proxies by the ratio of market capitalization to gross domestic product were sourced and computed from the Nigerian stock exchange fact books and the CBN statistical bulletin of the Central Bank of Nigeria. The variables were tested and found stationary and cointregrated using the augumented Dickey Fuller unit root test and the Johnson cointegration test respectively. The dynamic behavior of the stock market development model was verified using the error correction model. The result shows that about 0.4l percent of the short run deviation is corrected every year and also reveals that market capitalization ratio and market liquidity are positive and significant function of economic growth. In other words market capitalization ratio and liquidity positively and significantly impact economic growth. Market development variables such as turnover ratio and market restriction can exert positive but insignificant impact on the growth of the economy suggesting that securities transaction relative to the size of the securities market are not high enough to significantly engender economic growth in Nigeria. In the light of this, the researchers recommend that the regulatory body as well as the government, should provide a conducive environment capable of encouraging the growth and development of the stock market. This if well articulated will enhance the market turnover and the growth of the economy.Keywords: market capitalization ratio, turnover ratio, liquidity, unit root test, cointegration
Procedia PDF Downloads 3399861 Non-Linear Dynamic Analyses of Grouted Pile-Sleeve Connection
Authors: Mogens Saberi
Abstract:
The focus of this article is to present the experience gained from the design of a grouted pile-sleeve connection and to present simple design expressions which can be used in the preliminary design phase of such connections. The grout pile-sleeve connection serves as a connection between an offshore jacket foundation and pre-installed piles located in the seabed. The jacket foundation supports a wind turbine generator resulting in significant dynamic loads on the connection. The connection is designed with shear keys in order to optimize the overall design but little experience is currently available in the use of shear keys in such connections. It is found that the consequence of introducing shear keys in the design is a very complex stress distribution which requires special attention due to significant fatigue loads. An optimal geometrical shape of the shear keys is introduced in order to avoid large stress concentration factors and a relatively easy fabrication. The connection is analysed in ANSYS Mechanical where the grout is modelled by a non-linear material model which allows for cracking of the grout material and captures the elastic-plastic behaviour of the grout material. Special types of finite elements are used in the interface between the pile sleeve and the grout material to model the slip surface between the grout material and the steel. Based on the performed finite element modelling simple design expressions are introduced.Keywords: fatigue design, non-linear finite element modelling, structural dynamics, simple design expressions
Procedia PDF Downloads 3849860 Business Continuity Risk Review for a Large Petrochemical Complex
Authors: Michel A. Thomet
Abstract:
A discrete-event simulation model was used to perform a Reliability-Availability-Maintainability (RAM) study of a large petrochemical complex which included sixteen process units, and seven feeds and intermediate streams. All the feeds and intermediate streams have associated storage tanks, so that if a processing unit fails and shuts down, the downstream units can keep producing their outputs. This also helps the upstream units which do not have to reduce their outputs, but can store their excess production until the failed unit restart. Each process unit and each pipe section carrying the feeds and intermediate streams has a probability of failure with an associated distribution and a Mean Time Between Failure (MTBF), as well as a distribution of the time to restore and a Mean Time To Restore (MTTR). The utilities supporting the process units can also fail and have their own distributions with specific MTBF and MTTR. The model runs are for ten years or more and the runs are repeated several times to obtain statistically relevant results. One of the main results is the On-Stream factor (OSF) of each process unit (percent of hours in a year when the unit is running in nominal conditions). One of the objectives of the study was to investigate if the storage capacity of each of the feeds and the intermediate stream was adequate. This was done by increasing the storage capacities in several steps and through running the simulation to see if the OSF were improved and by how much. Other objectives were to see if the failure of the utilities were an important factor in the overall OSF, and what could be done to reduce their failure rates through redundant equipment.Keywords: business continuity, on-stream factor, petrochemical, RAM study, simulation, MTBF
Procedia PDF Downloads 2199859 Gratitude, Forgiveness and Relationship Satisfaction in Dating College Students: A Parallel Multiple Mediator Model
Authors: Qinglu Wu, Anna Wai-Man Choi, Peilian Chi
Abstract:
Gratitude is one individual strength that not only facilitates the mental health, but also fosters the relationship satisfaction in the romantic relationship. In terms of moral effect theory and stress-and-coping theory of forgiveness, present study not only investigated the association between grateful disposition and relationship satisfaction, but also explored the mechanism by comprehensively examining the potential mediating roles of three profiles of forgiveness (trait forgivingness, decisional forgiveness, emotional forgiveness), another character strength that highly related to the gratitude and relationship satisfaction. Structural equation modeling was used to conduct the multiple mediator model with a sample of 103 Chinese college students in dating relationship (39 male students and 64 female students, Mage = 19.41, SD = 1.34). Findings displayed that both gratitude and relationship satisfaction positively correlated with decisional forgiveness and emotional forgiveness. Emotional forgiveness was the only mediator, and it completely mediated the relationship between gratitude and relationship satisfaction. Gratitude was helpful in enhancing individuals’ perception of satisfaction in romantic relationship through replacing negative emotions toward partners with positive ones after transgression in daily life. It highlighted the function of emotional forgiveness in personal healing and peaceful state, which is important to the perception of satisfaction in relationship. Findings not only suggested gratitude could provide a stability for forgiveness, but also the mechanism of prosocial responses or positive psychological processes on relationship satisfaction. The significant roles of gratitude and emotional forgiveness could be emphasized in the intervention working on the romantic relationship development or reconciliation.Keywords: decisional forgiveness, emotional forgiveness, gratitude, relationship satisfaction, trait forgivingness
Procedia PDF Downloads 2729858 Multi-dimensional Approach to Resilience and Support in Advanced School-based Mental Health Service Delivery (MARS-SMHSD) Framework Development for Low-Resource Areas
Authors: Wan You Ning
Abstract:
Addressing the rising prevalence of mental health issues among youths, the Multi-dimensional Approach to Resilience and Support in Advanced School-based Mental Health Service Delivery (MARS-ASMHSD) framework proposes the implementation of advanced mental health services in low-resource areas to further instil mental health resilience among students in a school-based setting. Recognizing the unsustainability of direct service delivery due to rapidly growing demands and costs, the MARS-ASMHSD framework endorses the deinstitutionalization of mental healthcare and explores a tiered, multi-dimensional approach in mental healthcare provision, establishing advanced school-based mental health service delivery. The framework is developed based on sustainable and credible evidence-based practices and modifications of existing mental health service deliveries in Asia, including Singapore, Thailand, Malaysia, Japan, and Taiwan. Dissemination of the framework model for implementation will enable a more progressive and advanced school-based mental health service delivery in low-resource areas. Through the evaluation of the mental health landscape and the role of stakeholders in the respective countries, the paper concludes with a multi-dimensional framework model for implementation in low-resource areas. A mixed-method independent research study is conducted to facilitate the framework's development.Keywords: mental health, youths, school-based services, framework development
Procedia PDF Downloads 469857 Investigating the Critical Drivers of Behavior: The Case of Online Taxi Services
Authors: Rosa Hendijani, Mohammadhesam Hajighasemi
Abstract:
As of late, the sharing economy has become an important type of business model. Online taxi services are one example that has grown rapidly around the world. This study examines the factors influencing the use of online taxis as one form of IT-enabled sharing services based on the theory of planned behavior (TPB). Based on the theory of planned behavior, these factors can be divided into three categories, including the ones related to attitude (e.g., image and perceived usefulness), normative believes (e.g., subjective norms), and behavioral control (e.g., technology facilitating conditions and self-efficacy). Three other factors were also considered based on the literature, including perceived economic benefits, openness towards using shared services, and perceived availability. The effect of all these variables was tested both directly and indirectly through intention as the mediating variable. A survey method was used to test the research hypotheses. In total, 361 individuals partook in the study. The results of a multiple regression analysis on behavior showed that perceived economic benefits, compatibility, and subjective norms were important factors influencing behavior among online taxi users. In addition, intention partially mediated the effect of perceived economic benefits and compatibility on behavior. It can be concluded that perceived economic benefits, compatibility, and subjective norms are the three main factors that influence behavior among online taxi users.Keywords: collaborative consumption, IT-enabled sharing services model, online taxi, sharing economy, theory of planned behavior
Procedia PDF Downloads 1389856 Multiscale Modelling of Textile Reinforced Concrete: A Literature Review
Authors: Anicet Dansou
Abstract:
Textile reinforced concrete (TRC)is increasingly used nowadays in various fields, in particular civil engineering, where it is mainly used for the reinforcement of damaged reinforced concrete structures. TRC is a composite material composed of multi- or uni-axial textile reinforcements coupled with a fine-grained cementitious matrix. The TRC composite is an alternative solution to the traditional Fiber Reinforcement Polymer (FRP) composite. It has good mechanical performance and better temperature stability but also, it makes it possible to meet the criteria of sustainable development better.TRCs are highly anisotropic composite materials with nonlinear hardening behavior; their macroscopic behavior depends on multi-scale mechanisms. The characterization of these materials through numerical simulation has been the subject of many studies. Since TRCs are multiscale material by definition, numerical multi-scale approaches have emerged as one of the most suitable methods for the simulation of TRCs. They aim to incorporate information pertaining to microscale constitute behavior, mesoscale behavior, and macro-scale structure response within a unified model that enables rapid simulation of structures. The computational costs are hence significantly reduced compared to standard simulation at a fine scale. The fine scale information can be implicitly introduced in the macro scale model: approaches of this type are called non-classical. A representative volume element is defined, and the fine scale information are homogenized over it. Analytical and computational homogenization and nested mesh methods belong to these approaches. On the other hand, in classical approaches, the fine scale information are explicitly introduced in the macro scale model. Such approaches pertain to adaptive mesh refinement strategies, sub-modelling, domain decomposition, and multigrid methods This research presents the main principles of numerical multiscale approaches. Advantages and limitations are identified according to several criteria: the assumptions made (fidelity), the number of input parameters required, the calculation costs (efficiency), etc. A bibliographic study of recent results and advances and of the scientific obstacles to be overcome in order to achieve an effective simulation of textile reinforced concrete in civil engineering is presented. A comparative study is further carried out between several methods for the simulation of TRCs used for the structural reinforcement of reinforced concrete structures.Keywords: composites structures, multiscale methods, numerical modeling, textile reinforced concrete
Procedia PDF Downloads 1089855 Factors Associated with Mammography Screening Behaviors: A Cross-Sectional Descriptive Study of Egyptian Women
Authors: Salwa Hagag Abdelaziz, Naglaa Fathy Youssef, Nadia Abdellatif Hassan, Rasha Wesam Abdelrahman
Abstract:
Breast cancer is considered as a substantial health concern and practicing mammography screening [MS] is important in minimizing its related morbidity. So it is essential to have a better understanding of breast cancer screening behaviors of women and factors that influence utilization of them. The aim of this study is to identify the factors that are linked to MS behaviors among the Egyptian women. A cross-sectional descriptive design was carried out to provide a snapshot of the factors that are linked to MS behaviors. A convenience sample of 311 women was utilized and all eligible participants admitted to the Women Imaging Unit who are 40 years of age or above, coming for mammography assessment, not pregnant or breast feeding and who accepted to participate in the study were included. A structured questionnaire was developed by the researchers and contains three parts; Socio-demographic data; Motivating factors associated with MS; and association between MS and model of behavior change. The analyzed data indicated that most of the participated women (66.6 %) belonged to the age group of 40-49.A high proportion of participants (58.1%) of group having previous MS influenced by their neighbors to practice MS, whereas 32.7 % in group not having previous MS were influenced by family members which indicated significant differences (P <0.05). Doctors and media are shown to be the least influence of others to practice MS. Women with intention to have a future mammogram had higher OR (1.404) for practicing MS compared with women with no intention. Further studies are needed to examine the relation between Trans-theoretical Model [TTM] and practicing MS.Keywords: breast cancer, mammography, screening behaviors, morbidity
Procedia PDF Downloads 4429854 Convective Hot Air Drying of Different Varieties of Blanched Sweet Potato Slices
Authors: M. O. Oke, T. S. Workneh
Abstract:
Drying behaviour of blanched sweet potato in a cabinet dryer using different five air temperatures (40-80oC) and ten sweet potato varieties sliced to 5 mm thickness were investigated. The drying data were fitted to eight models. The Modified Henderson and Pabis model gave the best fit to the experimental moisture ratio data obtained during the drying of all the varieties while Newton (Lewis) and Wang and Singh models gave the least fit. The values of Deff obtained for Bophelo variety (1.27 x 10-9 to 1.77 x 10-9 m2/s) was the least while that of S191 (1.93 x 10-9 to 2.47 x 10-9 m2/s) was the highest which indicates that moisture diffusivity in sweet potato is affected by the genetic factor. Activation energy values ranged from 0.27-6.54 kJ/mol. The lower activation energy indicates that drying of sweet potato slices requires less energy and is hence a cost and energy saving method. The drying behavior of blanched sweet potato was investigated in a cabinet dryer. Drying time decreased considerably with increase in hot air temperature. Out of the eight models fitted, the Modified Henderson and Pabis model gave the best fit to the experimental moisture ratio data on all the varieties while Newton, Wang and Singh models gave the least. The lower activation energy (0.27-6.54 kJ/mol) obtained indicates that drying of sweet potato slices requires less energy and is hence a cost and energy saving method.Keywords: sweet potato slice, drying models, moisture ratio, moisture diffusivity, activation energy
Procedia PDF Downloads 5179853 Knowledge Creation and Diffusion Dynamics under Stable and Turbulent Environment for Organizational Performance Optimization
Authors: Jessica Gu, Yu Chen
Abstract:
Knowledge Management (KM) is undoubtable crucial to organizational value creation, learning, and adaptation. Although the rapidly growing KM domain has been fueled with full-fledged methodologies and technologies, studies on KM evolution that bridge the organizational performance and adaptation to the organizational environment are still rarely attempted. In particular, creation (or generation) and diffusion (or share/exchange) of knowledge are of the organizational primary concerns on the problem-solving perspective, however, the optimized distribution of knowledge creation and diffusion endeavors are still unknown to knowledge workers. This research proposed an agent-based model of knowledge creation and diffusion in an organization, aiming at elucidating how the intertwining knowledge flows at microscopic level lead to optimized organizational performance at macroscopic level through evolution, and exploring what exogenous interventions by the policy maker and endogenous adjustments of the knowledge workers can better cope with different environmental conditions. With the developed model, a series of simulation experiments are conducted. Both long-term steady-state and time-dependent developmental results on organizational performance, network and structure, social interaction and learning among individuals, knowledge audit and stocktaking, and the likelihood of choosing knowledge creation and diffusion by the knowledge workers are obtained. One of the interesting findings reveals a non-monotonic phenomenon on organizational performance under turbulent environment while a monotonic phenomenon on organizational performance under a stable environment. Hence, whether the environmental condition is turbulence or stable, the most suitable exogenous KM policy and endogenous knowledge creation and diffusion choice adjustments can be identified for achieving the optimized organizational performance. Additional influential variables are further discussed and future work directions are finally elaborated. The proposed agent-based model generates evidence on how knowledge worker strategically allocates efforts on knowledge creation and diffusion, how the bottom-up interactions among individuals lead to emerged structure and optimized performance, and how environmental conditions bring in challenges to the organization system. Meanwhile, it serves as a roadmap and offers great macro and long-term insights to policy makers without interrupting the real organizational operation, sacrificing huge overhead cost, or introducing undesired panic to employees.Keywords: knowledge creation, knowledge diffusion, agent-based modeling, organizational performance, decision making evolution
Procedia PDF Downloads 2389852 Transitioning Towards a Circular Economy in the Textile Industry: Approaches to Address Environmental Challenges
Authors: Atefeh Salehipoor
Abstract:
Textiles play a vital role in human life, particularly in the form of clothing. However, the alarming rate at which textiles end up in landfills presents a significant environmental risk. With approximately one garbage truck per second being filled with discarded textiles, urgent measures are required to mitigate this trend. Governments and responsible organizations are calling upon various stakeholders to shift from a linear economy to a circular economy model in the textile industry. This article highlights several key approaches that can be undertaken to address this pressing issue. These approaches include the creation of renewable raw material sources, rethinking production processes, maximizing the use and reuse of textile products, implementing reproduction and recycling strategies, exploring redistribution to new markets, and finding innovative means to extend the lifespan of textiles. However, the rapid accumulation of textiles in landfills poses a significant threat to the environment. This article explores the urgent need for the textile industry to transition from a linear economy model to a circular economy model. The linear model, characterized by the creation, use, and disposal of textiles, is unsustainable in the long term. By adopting a circular economy approach, the industry can minimize waste, reduce environmental impact, and promote sustainable practices. This article outlines key approaches that can be undertaken to drive this transition. Approaches to Address Environmental Challenges: 1. Creation of Renewable Raw Materials Sources: Exploring and promoting the use of renewable and sustainable raw materials, such as organic cotton, hemp, and recycled fibers, can significantly reduce the environmental footprint of textile production. 2. Rethinking Production Processes: Implementing cleaner production techniques, optimizing resource utilization, and minimizing waste generation are crucial steps in reducing the environmental impact of textile manufacturing. 3. Maximizing Use and Reuse of Textile Products: Encouraging consumers to prolong the lifespan of textile products through proper care, maintenance, and repair services can reduce the frequency of disposal and promote a culture of sustainability. 4. Reproduction and Recycling Strategies: Investing in innovative technologies and infrastructure to enable efficient reproduction and recycling of textiles can close the loop and minimize waste generation. 5. Redistribution of Textiles to New Markets: Exploring opportunities to redistribute textiles to new and parallel markets, such as resale platforms, can extend their lifecycle and prevent premature disposal. 6. Improvising Means to Extend Textile Lifespan: Encouraging design practices that prioritize durability, versatility, and timeless aesthetics can contribute to prolonging the lifespan of textiles. Conclusion The textile industry must urgently transition from a linear economy to a circular economy model to mitigate the adverse environmental impact caused by textile waste. By implementing the outlined approaches, such as sourcing renewable raw materials, rethinking production processes, promoting reuse and recycling, exploring new markets, and extending the lifespan of textiles, stakeholders can work together to create a more sustainable and environmentally friendly textile industry. These measures require collective action and collaboration between governments, organizations, manufacturers, and consumers to drive positive change and safeguard the planet for future generations.Keywords: textiles, circular economy, environmental challenges, renewable raw materials, production processes, reuse, recycling, redistribution, textile lifespan extension
Procedia PDF Downloads 839851 Middle School as a Developmental Context for Emergent Citizenship
Authors: Casta Guillaume, Robert Jagers, Deborah Rivas-Drake
Abstract:
Civically engaged youth are critical to maintaining and/or improving the functioning of local, national and global communities and their institutions. The present study investigated how school climate and academic beliefs (academic self-efficacy and school belonging) may inform emergent civic behaviors (emergent citizenship) among self-identified middle school youth of color (African American, Multiracial or Mixed, Latino, Asian American or Pacific Islander, Native American, and other). Study aims: 1) Understand whether and how school climate is associated with civic engagement behaviors, directly and indirectly, by fostering a positive sense of connection to the school and/or engendering feelings of self-efficacy in the academic domain. Accordingly, we examined 2) The association of youths’ sense of school connection and academic self-efficacy with their personally responsible and participatory civic behaviors in school and community contexts—both concurrently and longitudinally. Data from two subsamples of a larger study of social/emotional development among middle school students were used for longitudinal and cross sectional analysis. The cross-sectional sample included 324 6th-8th grade students, of which 43% identified as African American, 20% identified as Multiracial or Mixed, 18% identified as Latino, 12% identified as Asian American or Pacific Islander, 6% identified as Other, and 1% identified as Native American. The age of the sample ranged from 11 – 15 (M = 12.33, SD = .97). For the longitudinal test of our mediation model, we drew on data from the 6th and 7th grade cohorts only (n =232); the ethnic and racial diversity of this longitudinal subsample was virtually identical to that of the cross-sectional sample. For both the cross-sectional and longitudinal analyses, full information maximum likelihood was used to deal with missing data. Fit indices were inspected to determine if they met the recommended thresholds of RMSEA below .05 and CFI and TLI values of at least .90. To determine if particular mediation pathways were significant, the bias-corrected bootstrap confidence intervals for each indirect pathway were inspected. Fit indices for the latent variable mediation model using the cross-sectional data suggest that the hypothesized model fit the observed data well (CFI = .93; TLI =. 92; RMSEA = .05, 90% CI = [.04, .06]). In the model, students’ perceptions of school climate were significantly and positively associated with greater feelings of school connectedness, which were in turn significantly and positively associated with civic engagement. In addition, school climate was significantly and positively associated with greater academic self-efficacy, but academic self-efficacy was not significantly associated with civic engagement. Tests of mediation indicated there was one significant indirect pathway between school climate and civic engagement behavior. There was an indirect association between school climate and civic engagement via its association with sense of school connectedness, indirect association estimate = .17 [95% CI: .08, .32]. The aforementioned indirect association via school connectedness accounted for 50% (.17/.34) of the total effect. Partial support was found for the prediction that students’ perceptions of a positive school climate are linked to civic engagement in part through their role in students’ sense of connection to school.Keywords: civic engagement, early adolescence, school climate, school belonging, developmental niche
Procedia PDF Downloads 3709850 A Modified Refined Higher Order Zigzag Theory for Stress Analysis of Hybrid Composite Laminates
Authors: Dhiraj Biswas, Chaitali Ray
Abstract:
A modified refined higher order zigzag theory has been developed in this paper in order to compute the accurate interlaminar stresses within hybrid laminates. Warping has significant effect on the mechanical behaviour of the laminates. To the best of author(s)’ knowledge the stress analysis of hybrid laminates is not reported in the published literature. The present paper aims to develop a new C0 continuous element based on the refined higher order zigzag theories considering warping effect in the formulation of hybrid laminates. The eight noded isoparametric plate bending element is used for the flexural analysis of laminated composite plates to study the performance of the proposed model. The transverse shear stresses are computed by using the differential equations of stress equilibrium in a simplified manner. A computer code has been developed using MATLAB software package. Several numerical examples are solved to assess the performance of the present finite element model based on the proposed higher order zigzag theory by comparing the present results with three-dimensional elasticity solutions. The present formulation is validated by comparing the results obtained from the relevant literature. An extensive parametric study has been carried out on the hybrid laminates with varying percentage of materials and angle of orientation of fibre content.Keywords: hybrid laminate, Interlaminar stress, refined higher order zigzag theory, warping effect
Procedia PDF Downloads 2229849 Experimental Set-up for the Thermo-Hydric Study of a Wood Chips Bed Crossed by an Air Flow
Authors: Dimitri Bigot, Bruno Malet-Damour, Jérôme Vigneron
Abstract:
Many studies have been made about using bio-based materials in buildings. The goal is to reduce its environmental footprint by analyzing its life cycle. This can lead to minimize the carbon emissions or energy consumption. A previous work proposed to numerically study the feasibility of using wood chips to regulate relative humidity inside a building. This has shown the capability of a wood chips bed to regulate humidity inside the building, to improve thermal comfort, and so potentially reduce building energy consumption. However, it also shown that some physical parameters of the wood chips must be identified to validate the proposed model and the associated results. This paper presents an experimental setup able to study such a wood chips bed with different solicitations. It consists of a simple duct filled with wood chips and crossed by an air flow with variable temperature and relative humidity. Its main objective is to study the thermal behavior of the wood chips bed by controlling temperature and relative humidity of the air that enters into it and by observing the same parameters at the output. First, the experimental set up is described according to previous results. A focus is made on the particular properties that have to be characterized. Then some case studies are presented in relation to the previous results in order to identify the key physical properties. Finally, the feasibility of the proposed technology is discussed, and some model validation paths are given.Keywords: wood chips bed, experimental set-up, bio-based material, desiccant, relative humidity, water content, thermal behaviour, air treatment
Procedia PDF Downloads 1229848 Geochemical Characteristics of Aromatic Hydrocarbons in the Crude Oils from the Chepaizi Area, Junggar Basin, China
Authors: Luofu Liu, Fei Xiao Jr., Fei Xiao
Abstract:
Through the analysis technology of gas chromatography-mass spectrometry (GC-MS), the composition and distribution characteristics of aromatic hydrocarbons in the Chepaizi area of the Junggar Basin were analyzed in detail. Based on that, the biological input, maturity of crude oils and sedimentary environment of the corresponding source rocks were determined and the origin types of crude oils were divided. The results show that there are three types of crude oils in the study area including Type I, Type II and Type III oils. The crude oils from the 1st member of the Neogene Shawan Formation are the Type I oils; the crude oils from the 2nd member of the Neogene Shawan Formation are the Type II oils; the crude oils from the Cretaceous Qingshuihe and Jurassic Badaowan Formations are the Type III oils. For the Type I oils, they show a single model in the late retention time of the chromatogram of total aromatic hydrocarbons. The content of triaromatic steroid series is high, and the content of dibenzofuran is low. Maturity parameters related to alkyl naphthalene, methylphenanthrene and alkyl dibenzothiophene all indicate low maturity for the Type I oils. For the Type II oils, they have also a single model in the early retention time of the chromatogram of total aromatic hydrocarbons. The content of naphthalene and phenanthrene series is high, and the content of dibenzofuran is medium. The content of polycyclic aromatic hydrocarbon representing the terrestrial organic matter is high. The aromatic maturity parameters indicate high maturity for the Type II oils. For the Type III oils, they have a bi-model in the chromatogram of total aromatic hydrocarbons. The contents of naphthalene series, phenanthrene series, and dibenzofuran series are high. The aromatic maturity parameters indicate medium maturity for the Type III oils. The correlation results of triaromatic steroid series fingerprint show that the Type I and Type III oils have similar source and are both from the Permian Wuerhe source rocks. Because of the strong biodegradation and mixing from other source, the Type I oils are very different from the Type III oils in aromatic hydrocarbon characteristics. The Type II oils have the typical characteristics of terrestrial organic matter input under oxidative environment, and are the coal oil mainly generated by the mature Jurassic coal measure source rocks. However, the overprinting effect from the low maturity Cretaceous source rocks changed the original distribution characteristics of aromatic hydrocarbons to some degree.Keywords: oil source, geochemistry, aromatic hydrocarbons, crude oils, chepaizi area, Junggar Basin
Procedia PDF Downloads 3539847 Direct and Indirect Effects of Childhood Traumas, Emotion Regulation Difficulties and Age on Tendency to Violence
Authors: Selin Kara-Bahçekapılı, Bengisu Nehir Aydın
Abstract:
Objective: In this study, it is aimed to examine the relationship between childhood traumas (overprotection-control, emotional/physical/sexual abuse, emotional/physical neglect), age, emotional regulation difficulties, and the tendency of violence in adults. In the study, the direct and indirect effects of 6 sub-factors of childhood traumas, emotion regulation difficulties, and age on tendency to violence are evaluated on a model that theoretically reveals. Method: The population of this cross-sectional study consists of individuals between the ages of 18-65 living in Turkey. The data from 527 participants were obtained by online surveys and convenience sampling method within the scope of the study. As a result of exclusion criteria and then outlier data analysis, the data of 443 participants were included in the analysis. Data were collected by demographic information form, childhood trauma scale, emotion regulation difficulty scale, and violence tendency scale. Research data were analyzed by SPSS and AMOS using correlation, path analysis, direct and indirect effects. Results: According to the research findings, the variables in the model explained 28.2% of the variance of the mean scores of the individuals' tendency to violence. Emotion regulation difficulties have the most direct effect on the tendency to violence (d=.387; p<.01). The effects of excessive protection and control, emotional neglect, and physical neglect variables on the tendency to violence are not significant. When the significant and indirect effects of the variables on tendency to violence over emotion regulation difficulties are examined, age has a negative effect, emotional neglect has a positive effect, emotional abuse has a positive effect, and overprotection-control has a positive effect. The indirect effects of sexual abuse, physical neglect, and physical abuse on tendency to violence are not significant. Childhood traumas and age variables in the model explained 24.1% of the variance of the mean scores of the individuals’ emotion regulation difficulties. The variable that most affects emotion regulation difficulties is age (d=-.268; p<.001). The direct effects of sexual abuse, physical neglect, and physical abuse on emotion regulation difficulties are not significant. Conclusion: The results of the research emphasize the critical role of difficulty in emotion regulation on the tendency to violence. Difficulty in emotion regulation affects the tendency to violence both directly and by mediating different variables. In addition, it is seen that some sub-factors of childhood traumas have direct and/or indirect effects on the tendency to violence. Emotional abuse and age have both direct and indirect effects on the tendency to violence over emotion regulation difficulties.Keywords: childhood trauma, emotion regulation difficulties, tendency to violence, path analysis
Procedia PDF Downloads 979846 Adapting an Accurate Reverse-time Migration Method to USCT Imaging
Authors: Brayden Mi
Abstract:
Reverse time migration has been widely used in the Petroleum exploration industry to reveal subsurface images and to detect rock and fluid properties since the early 1980s. The seismic technology involves the construction of a velocity model through interpretive model construction, seismic tomography, or full waveform inversion, and the application of the reverse-time propagation of acquired seismic data and the original wavelet used in the acquisition. The methodology has matured from 2D, simple media to present-day to handle full 3D imaging challenges in extremely complex geological conditions. Conventional Ultrasound computed tomography (USCT) utilize travel-time-inversion to reconstruct the velocity structure of an organ. With the velocity structure, USCT data can be migrated with the “bend-ray” method, also known as migration. Its seismic application counterpart is called Kirchhoff depth migration, in which the source of reflective energy is traced by ray-tracing and summed to produce a subsurface image. It is well known that ray-tracing-based migration has severe limitations in strongly heterogeneous media and irregular acquisition geometries. Reverse time migration (RTM), on the other hand, fully accounts for the wave phenomena, including multiple arrives and turning rays due to complex velocity structure. It has the capability to fully reconstruct the image detectable in its acquisition aperture. The RTM algorithms typically require a rather accurate velocity model and demand high computing powers, and may not be applicable to real-time imaging as normally required in day-to-day medical operations. However, with the improvement of computing technology, such a computational bottleneck may not present a challenge in the near future. The present-day (RTM) algorithms are typically implemented from a flat datum for the seismic industry. It can be modified to accommodate any acquisition geometry and aperture, as long as sufficient illumination is provided. Such flexibility of RTM can be conveniently implemented for the application in USCT imaging if the spatial coordinates of the transmitters and receivers are known and enough data is collected to provide full illumination. This paper proposes an implementation of a full 3D RTM algorithm for USCT imaging to produce an accurate 3D acoustic image based on the Phase-shift-plus-interpolation (PSPI) method for wavefield extrapolation. In this method, each acquired data set (shot) is propagated back in time, and a known ultrasound wavelet is propagated forward in time, with PSPI wavefield extrapolation and a piece-wise constant velocity model of the organ (breast). The imaging condition is then applied to produce a partial image. Although each image is subject to the limitation of its own illumination aperture, the stack of multiple partial images will produce a full image of the organ, with a much-reduced noise level if compared with individual partial images.Keywords: illumination, reverse time migration (RTM), ultrasound computed tomography (USCT), wavefield extrapolation
Procedia PDF Downloads 749845 Performance Management of Tangible Assets within the Balanced Scorecard and Interactive Business Decision Tools
Authors: Raymond K. Jonkers
Abstract:
The present study investigated approaches and techniques to enhance strategic management governance and decision making within the framework of a performance-based balanced scorecard. The review of best practices from strategic, program, process, and systems engineering management provided for a holistic approach toward effective outcome-based capability management. One technique, based on factorial experimental design methods, was used to develop an empirical model. This model predicted the degree of capability effectiveness and is dependent on controlled system input variables and their weightings. These variables represent business performance measures, captured within a strategic balanced scorecard. The weighting of these measures enhances the ability to quantify causal relationships within balanced scorecard strategy maps. The focus in this study was on the performance of tangible assets within the scorecard rather than the traditional approach of assessing performance of intangible assets such as knowledge and technology. Tangible assets are represented in this study as physical systems, which may be thought of as being aboard a ship or within a production facility. The measures assigned to these systems include project funding for upgrades against demand, system certifications achieved against those required, preventive maintenance to corrective maintenance ratios, and material support personnel capacity against that required for supporting respective systems. The resultant scorecard is viewed as complimentary to the traditional balanced scorecard for program and performance management. The benefits from these scorecards are realized through the quantified state of operational capabilities or outcomes. These capabilities are also weighted in terms of priority for each distinct system measure and aggregated and visualized in terms of overall state of capabilities achieved. This study proposes the use of interactive controls within the scorecard as a technique to enhance development of alternative solutions in decision making. These interactive controls include those for assigning capability priorities and for adjusting system performance measures, thus providing for what-if scenarios and options in strategic decision-making. In this holistic approach to capability management, several cross functional processes were highlighted as relevant amongst the different management disciplines. In terms of assessing an organization’s ability to adopt this approach, consideration was given to the P3M3 management maturity model.Keywords: management, systems, performance, scorecard
Procedia PDF Downloads 322