Search results for: technology enabled learning
6849 Underwater Image Enhancement and Reconstruction Using CNN and the MultiUNet Model
Authors: Snehal G. Teli, R. J. Shelke
Abstract:
CNN and MultiUNet models are the framework for the proposed method for enhancing and reconstructing underwater images. Multiscale merging of features and regeneration are both performed by the MultiUNet. CNN collects relevant features. Extensive tests on benchmark datasets show that the proposed strategy performs better than the latest methods. As a result of this work, underwater images can be represented and interpreted in a number of underwater applications with greater clarity. This strategy will advance underwater exploration and marine research by enhancing real-time underwater image processing systems, underwater robotic vision, and underwater surveillance.Keywords: convolutional neural network, image enhancement, machine learning, multiunet, underwater images
Procedia PDF Downloads 766848 Investigation on the Energy Impact of Spatial Geometry in a Residential Building Using Building Information Modeling Technology
Authors: Shashank. S. Bagane, H. N. Rajendra Prasad
Abstract:
Building Information Modeling (BIM) has currently developed into a potent solution. The consistent development of BIM technology in the sphere of Architecture, Engineering, and Construction (AEC) industry has enhanced the effectiveness of construction and decision making. However, aggrandized global warming and energy crisis has impacted on building energy analysis. It is now becoming an important factor to be considered in the AEC industry. Amalgamating energy analysis in the planning and design phase of a structure has become a necessity. In the current construction industry, estimating energy usage and reducing its footprint is of high priority. The construction industry is giving more prominence to sustainability alongside energy efficiency. This demand is compelling the designers, planners, and engineers to inspect the sustainable performance throughout the building's life cycle. The current study primarily focuses on energy consumption, space arrangement, and spatial geometry of a residential building. Most commonly residential structures in India are constructed considering Vastu Shastra. Vastu designs are intended to integrate architecture with nature and utilizing geometric patterns, symmetry, and directional alignments. In the current study, a residential brick masonry structure is considered for BIM analysis, Architectural model of the structure will be created using Revit software, later the orientation and spatial arrangement will be finalized based on Vastu principles. Furthermore, the structure will be investigated for the impact of building orientation and spatial arrangements on energy using Green Building Studio software. Based on the BIM analysis of the structure, energy consumption of subsequent building orientations will be understood. A well-orientated building having good spatial arrangement can save a considerable amount of energy throughout its life cycle and reduces the need for heating and lighting which will prove to diminish energy usage and improve the energy efficiency of the residential building.Keywords: building information modeling, energy impact, spatial geometry, vastu
Procedia PDF Downloads 1616847 The Impact of FDI on Economic Growth in Algeria
Authors: Mohammed Yagoub
Abstract:
The new orientation to the market economy sponsored by the Algeria government in the early Nineties of the last century, and its desire to develop investment mechanisms and the promotion of development recently, the access into a partnership with the European Union, and the forthcoming accession to the World Trade Organization, foreign direct investment makes one of the most important means of opening up to foreign markets and bring technology and interact with globalization, this article we will discuss the impact of FDI on economic growth in the Algerian.Keywords: economic, development, markets, FDI, displacement, globalization
Procedia PDF Downloads 3636846 The Impact of Artificial Intelligence on Agricultural Machines and Plant Nutrition
Authors: Kirolos Gerges Yakoub Gerges
Abstract:
Self-sustaining agricultural machines act in stochastic surroundings and therefore, should be capable of perceive the surroundings in real time. This notion can be done using image sensors blended with superior device learning, mainly Deep mastering. Deep convolutional neural networks excel in labeling and perceiving colour pix and since the fee of RGB-cameras is low, the hardware cost of accurate notion relies upon heavily on memory and computation power. This paper investigates the opportunity of designing lightweight convolutional neural networks for semantic segmentation (pixel clever class) with reduced hardware requirements, to allow for embedded usage in self-reliant agricultural machines. The usage of compression techniques, a lightweight convolutional neural community is designed to carry out actual-time semantic segmentation on an embedded platform. The community is skilled on two big datasets, ImageNet and Pascal Context, to apprehend as much as four hundred man or woman instructions. The 400 training are remapped into agricultural superclasses (e.g. human, animal, sky, road, area, shelterbelt and impediment) and the capacity to provide correct actual-time perception of agricultural environment is studied. The network is carried out to the case of self-sufficient grass mowing the usage of the NVIDIA Tegra X1 embedded platform. Feeding case-unique pics to the community consequences in a fully segmented map of the superclasses within the picture. As the network remains being designed and optimized, handiest a qualitative analysis of the technique is entire on the abstract submission deadline. intending this cut-off date, the finalized layout is quantitatively evaluated on 20 annotated grass mowing pictures. Light-weight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show aggressive performance on the subject of accuracy and speed. It’s miles viable to offer value-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.Keywords: centrifuge pump, hydraulic energy, agricultural applications, irrigationaxial flux machines, axial flux applications, coreless machines, PM machinesautonomous agricultural machines, deep learning, safety, visual perception
Procedia PDF Downloads 266845 Pioneering Conservation of Aquatic Ecosystems under Australian Law
Authors: Gina M. Newton
Abstract:
Australia’s Environment Protection and Biodiversity Conservation Act (EPBC Act) is the premiere, national law under which species and 'ecological communities' (i.e., like ecosystems) can be formally recognised and 'listed' as threatened across all jurisdictions. The listing process involves assessment against a range of criteria (similar to the IUCN process) to demonstrate conservation status (i.e., vulnerable, endangered, critically endangered, etc.) based on the best available science. Over the past decade in Australia, there’s been a transition from almost solely terrestrial to the first aquatic threatened ecological community (TEC or ecosystem) listings (e.g., River Murray, Macquarie Marshes, Coastal Saltmarsh, Salt-wedge Estuaries). All constitute large areas, with some including multiple state jurisdictions. Development of these conservation and listing advices has enabled, for the first time, a more forensic analysis of three key factors across a range of aquatic and coastal ecosystems: -the contribution of invasive species to conservation status, -how to demonstrate and attribute decline in 'ecological integrity' to conservation status, and, -identification of related priority conservation actions for management. There is increasing global recognition of the disproportionate degree of biodiversity loss within aquatic ecosystems. In Australia, legislative protection at Commonwealth or State levels remains one of the strongest conservation measures. Such laws have associated compliance mechanisms for breaches to the protected status. They also trigger the need for environment impact statements during applications for major developments (which may be denied). However, not all jurisdictions have such laws in place. There remains much opposition to the listing of freshwater systems – for example, the River Murray (Australia's largest river) and Macquarie Marshes (an internationally significant wetland) were both disallowed by parliament four months after formal listing. This was mainly due to a change of government, dissent from a major industry sector, and a 'loophole' in the law. In Australia, at least in the immediate to medium-term time frames, invasive species (aliens, native pests, pathogens, etc.) appear to be the number one biotic threat to the biodiversity and ecological function and integrity of our aquatic ecosystems. Consequently, this should be considered a current priority for research, conservation, and management actions. Another key outcome from this analysis was the recognition that drawing together multiple lines of evidence to form a 'conservation narrative' is a more useful approach to assigning conservation status. This also helps to addresses a glaring gap in long-term ecological data sets in Australia, which often precludes a more empirical data-driven approach. An important lesson also emerged – the recognition that while conservation must be underpinned by the best available scientific evidence, it remains a 'social and policy' goal rather than a 'scientific' goal. Communication, engagement, and 'politics' necessarily play a significant role in achieving conservation goals and need to be managed and resourced accordingly.Keywords: aquatic ecosystem conservation, conservation law, ecological integrity, invasive species
Procedia PDF Downloads 1326844 Monitoring the Railways by Means of C-OTDR Technology
Authors: Andrey V. Timofeev
Abstract:
This paper presents development results of the method of seismoacoustic activity monitoring based on usage vibrosensitive properties of optical fibers. Analysis of Rayleigh backscattering radiation parameters changes, which take place due to microscopic seismoacoustic impacts on the optical fiber, allows to determine seismoacoustic emission sources positions and to identify their types. Results of using this approach are successful for complex monitoring of railways.Keywords: C-OTDR systems, monitoring of railways, Rayleigh backscattering, eismoacoustic activity
Procedia PDF Downloads 3956843 Assessing Gender Mainstreaming Practices in the Philippine Basic Education System
Authors: Michelle Ablian Mejica
Abstract:
Female drop-outs due to teenage pregnancy and gender-based violence in schools are two of the most contentious and current gender-related issues faced by the Department of Education (DepEd) in the Philippines. The country adopted gender mainstreaming as the main strategy to eliminate gender inequalities in all aspects of the society including education since 1990. This research examines the extent and magnitude by which gender mainstreaming is implemented in the basic education from the national to the school level. It seeks to discover the challenges faced by the central and field offices, particularly by the principals who served as decision-makers in the schools where teaching and learning take place and where opportunities that may aggravate, conform and transform gender inequalities and hierarchies exist. The author conducted surveys and interviews among 120 elementary and secondary principals in the Division of Zambales as well as selected gender division and regional focal persons within Region III- Central Luzon. The study argues that DepEd needs to review, strengthen and revitalize its gender mainstreaming because the efforts do not penetrate the schools and are not enough to lessen or eliminate gender inequalities within the schools. The study found out some of the major challenges in the implementation of gender mainstreaming as follows: absence of a national gender-responsive education policy framework, lack of gender responsive assessment and monitoring tools, poor quality of gender and development related training programs and poor data collection and analysis mechanism. Furthermore, other constraints include poor coordination mechanism among implementing agencies, lack of clear implementation strategy, ineffective or poor utilization of GAD budget and lack of teacher and learner centered GAD activities. The paper recommends the review of the department’s gender mainstreaming efforts to align with the mandate of the agency and provide gender responsive teaching and learning environment. It suggests that the focus must be on formulation of gender responsive policies and programs, improvement of the existing mechanism and conduct of trainings focused on gender analysis, budgeting and impact assessment not only for principals and GAD focal point system but also to parents and other school stakeholders.Keywords: curriculum and instruction, gender analysis, gender budgeting, gender impact assessment
Procedia PDF Downloads 3446842 Multi-Channel Information Fusion in C-OTDR Monitoring Systems: Various Approaches to Classify of Targeted Events
Authors: Andrey V. Timofeev
Abstract:
The paper presents new results concerning selection of optimal information fusion formula for ensembles of C-OTDR channels. The goal of information fusion is to create an integral classificator designed for effective classification of seismoacoustic target events. The LPBoost (LP-β and LP-B variants), the Multiple Kernel Learning, and Weighing of Inversely as Lipschitz Constants (WILC) approaches were compared. The WILC is a brand new approach to optimal fusion of Lipschitz Classifiers Ensembles. Results of practical usage are presented.Keywords: Lipschitz Classifier, classifiers ensembles, LPBoost, C-OTDR systems
Procedia PDF Downloads 4616841 The Impact of Task Type and Group Size on Dialogue Argumentation between Students
Authors: Nadia Soledad Peralta
Abstract:
Within the framework of socio-cognitive interaction, argumentation is understood as a psychological process that supports and induces reasoning and learning. Most authors emphasize the great potential of argumentation to negotiate with contradictions and complex decisions. So argumentation is a target for researchers who highlight the importance of social and cognitive processes in learning. In the context of social interaction among university students, different types of arguments are analyzed according to group size (dyads and triads) and the type of task (reading of frequency tables, causal explanation of physical phenomena, the decision regarding moral dilemma situations, and causal explanation of social phenomena). Eighty-nine first-year social sciences students of the National University of Rosario participated. Two groups were formed from the results of a pre-test that ensured the heterogeneity of points of view between participants. Group 1 consisted of 56 participants (performance in dyads, total: 28), and group 2 was formed of 33 participants (performance in triads, total: 11). A quasi-experimental design was performed in which effects of the two variables (group size and type of task) on the argumentation were analyzed. Three types of argumentation are described: authentic dialogical argumentative resolutions, individualistic argumentative resolutions, and non-argumentative resolutions. The results indicate that individualistic arguments prevail in dyads. That is, although people express their own arguments, there is no authentic argumentative interaction. Given that, there are few reciprocal evaluations and counter-arguments in dyads. By contrast, the authentically dialogical argument prevails in triads, showing constant feedback between participants’ points of view. It was observed that, in general, the type of task generates specific types of argumentative interactions. However, it is possible to emphasize that the authentically dialogic arguments predominate in the logical tasks, whereas the individualists or pseudo-dialogical are more frequent in opinion tasks. Nerveless, these relationships between task type and argumentative mode are best clarified in an interactive analysis based on group size. Finally, it is important to stress the value of dialogical argumentation in educational domains. Argumentative function not only allows a metacognitive reflection about their own point of view but also allows people to benefit from exchanging points of view in interactive contexts.Keywords: sociocognitive interaction, argumentation, university students, size of the grup
Procedia PDF Downloads 836840 The Communicative Nature of Linguistic Interference in Learning and Teaching of Slavic Languages
Authors: Kseniia Fedorova
Abstract:
The article is devoted to interlinguistic homonymy and enantiosemy analysis. These phenomena belong to the process of linguistic interference, which leads to violation of the communicative utterances integrity and causes misunderstanding between foreign interlocutors - native speakers of different Slavic languages. More attention is paid to investigation of non-typical speech situations, which occurred spontaneously or created by somebody intentionally being based on described phenomenon mechanism. The classification of typical students' mistakes connected with the paradox of interference is being represented in the article. The survey contributes to speech act theory, contemporary linguodidactics, translation science and comparative lexicology of Slavonic languages.Keywords: adherent enantiosemy, interference, interslavonic homonymy, speech act
Procedia PDF Downloads 2446839 Brain Age Prediction Based on Brain Magnetic Resonance Imaging by 3D Convolutional Neural Network
Authors: Leila Keshavarz Afshar, Hedieh Sajedi
Abstract:
Estimation of biological brain age from MR images is a topic that has been much addressed in recent years due to the importance it attaches to early diagnosis of diseases such as Alzheimer's. In this paper, we use a 3D Convolutional Neural Network (CNN) to provide a method for estimating the biological age of the brain. The 3D-CNN model is trained by MRI data that has been normalized. In addition, to reduce computation while saving overall performance, some effectual slices are selected for age estimation. By this method, the biological age of individuals using selected normalized data was estimated with Mean Absolute Error (MAE) of 4.82 years.Keywords: brain age estimation, biological age, 3D-CNN, deep learning, T1-weighted image, SPM, preprocessing, MRI, canny, gray matter
Procedia PDF Downloads 1486838 Data Science/Artificial Intelligence: A Possible Panacea for Refugee Crisis
Authors: Avi Shrivastava
Abstract:
In 2021, two heart-wrenching scenes, shown live on television screens across countries, painted a grim picture of refugees. One of them was of people clinging onto an airplane's wings in their desperate attempt to flee war-torn Afghanistan. They ultimately fell to their death. The other scene was the U.S. government authorities separating children from their parents or guardians to deter migrants/refugees from coming to the U.S. These events show the desperation refugees feel when they are trying to leave their homes in disaster zones. However, data paints a grave picture of the current refugee situation. It also indicates that a bleak future lies ahead for the refugees across the globe. Data and information are the two threads that intertwine to weave the shimmery fabric of modern society. Data and information are often used interchangeably, but they differ considerably. For example, information analysis reveals rationale, and logic, while data analysis, on the other hand, reveals a pattern. Moreover, patterns revealed by data can enable us to create the necessary tools to combat huge problems on our hands. Data analysis paints a clear picture so that the decision-making process becomes simple. Geopolitical and economic data can be used to predict future refugee hotspots. Accurately predicting the next refugee hotspots will allow governments and relief agencies to prepare better for future refugee crises. The refugee crisis does not have binary answers. Given the emotionally wrenching nature of the ground realities, experts often shy away from realistically stating things as they are. This hesitancy can cost lives. When decisions are based solely on data, emotions can be removed from the decision-making process. Data also presents irrefutable evidence and tells whether there is a solution or not. Moreover, it also responds to a nonbinary crisis with a binary answer. Because of all that, it becomes easier to tackle a problem. Data science and A.I. can predict future refugee crises. With the recent explosion of data due to the rise of social media platforms, data and insight into data has solved many social and political problems. Data science can also help solve many issues refugees face while staying in refugee camps or adopted countries. This paper looks into various ways data science can help solve refugee problems. A.I.-based chatbots can help refugees seek legal help to find asylum in the country they want to settle in. These chatbots can help them find a marketplace where they can find help from the people willing to help. Data science and technology can also help solve refugees' many problems, including food, shelter, employment, security, and assimilation. The refugee problem seems to be one of the most challenging for social and political reasons. Data science and machine learning can help prevent the refugee crisis and solve or alleviate some of the problems that refugees face in their journey to a better life. With the explosion of data in the last decade, data science has made it possible to solve many geopolitical and social issues.Keywords: refugee crisis, artificial intelligence, data science, refugee camps, Afghanistan, Ukraine
Procedia PDF Downloads 736837 Anti-Diabetic Effect of High Purity Epigallocatechin Gallate from Green Tea
Authors: Hye Jin Choi, Mirim Jin, Jeong June Choi
Abstract:
Green tea, which is one of the most popular of tea, contains various ingredients that help health. Epigallocatechin gallate (EGCG) is one of the main active polyphenolic compound possessing diverse biologically beneficial effects such as anti-oxidation, anti-cancer founding in green tea. This study was performed to investigate the anti-diabetic effect of high-purity EGCG ( > 98%) in a spontaneous diabetic mellitus animal model, db/db mouse. Four-week-old male db/db mice, which was induced to diabetic mellitus by the high-fat diet, were orally administered with high-purity EGCG (10, 50 and 100 mg/kg) for 4 weeks. Daily weight and diet efficiency were examined, and blood glucose level was assessed once a week. After 4 weeks of EGCG administration, fasting blood glucose level was measured. Then, the mice were sacrificed and total abdominal fat was sampled to examine the change in fat weight. Plasma was separated from the blood and the levels of aspartate amino-transferase (ALT) and alanine amino-transferase (AST) were investigated. As results, blood glucose and body weight were significantly decreased by EGCG treatment compared to the control group. Also, the amount of abdominal fat was down-regulated by EGCG. However, ALT and AST levels, which are indicators of liver function, were similar to those of control group. Taken together, our study suggests that high purity EGCG is capable of treating diabetes mellitus based in db / db mice with safety and has a potent to develop a therapeutics for metabolic disorders. This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry (IPET) through High Value-added Food Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (317034-03-2-HD030)Keywords: anti-diabetic effect, db/db mouse, diabetes mellitus, green tea, epigallocatechin gallate
Procedia PDF Downloads 1876836 The Guideline of Overall Competitive Advantage Promotion with Key Success Paths
Authors: M. F. Wu, F. T. Cheng, C. S. Wu, M. C. Tan
Abstract:
It is a critical time to upgrade technology and increase value added with manufacturing skills developing and management strategies that will highly satisfy the customers need in the precision machinery global market. In recent years, the supply side, each precision machinery manufacturers in each country are facing the pressures of price reducing from the demand side voices that pushes the high-end precision machinery manufacturers adopts low-cost and high-quality strategy to retrieve the market. Because of the trend of the global market, the manufacturers must take price reducing strategies and upgrade technology of low-end machinery for differentiations to consolidate the market. By using six key success factors (KSFs), customer perceived value, customer satisfaction, customer service, product design, product effectiveness and machine structure quality are causal conditions to explore the impact of competitive advantage of the enterprise, such as overall profitability and product pricing power. This research uses key success paths (KSPs) approach and f/s QCA software to explore various combinations of causal relationships, so as to fully understand the performance level of KSFs and business objectives in order to achieve competitive advantage. In this study, the combination of a causal relationships, are called Key Success Paths (KSPs). The key success paths guide the enterprise to achieve the specific outcomes of business. The findings of this study indicate that there are thirteen KSPs to achieve the overall profitability, sixteen KSPs to achieve the product pricing power and seventeen KSPs to achieve both overall profitability and pricing power of the enterprise. The KSPs provide the directions of resources integration and allocation, improve utilization efficiency of limited resources to realize the continuous vision of the enterprise.Keywords: precision machinery industry, key success factors (KSFs), key success paths (KSPs), overall profitability, product pricing power, competitive advantages
Procedia PDF Downloads 2676835 Health Status Monitoring of COVID-19 Patient's through Blood Tests and Naïve-Bayes
Authors: Carlos Arias-Alcaide, Cristina Soguero-Ruiz, Paloma Santos-Álvarez, Adrián García-Romero, Inmaculada Mora-Jiménez
Abstract:
Analysing clinical data with computers in such a way that have an impact on the practitioners’ workflow is a challenge nowadays. This paper provides a first approach for monitoring the health status of COVID-19 patients through the use of some biomarkers (blood tests) and the simplest Naïve Bayes classifier. Data of two Spanish hospitals were considered, showing the potential of our approach to estimate reasonable posterior probabilities even some days before the event.Keywords: Bayesian model, blood biomarkers, classification, health tracing, machine learning, posterior probability
Procedia PDF Downloads 2336834 Developing Computational Thinking in Early Childhood Education
Authors: Kalliopi Kanaki, Michael Kalogiannakis
Abstract:
Nowadays, in the digital era, the early acquisition of basic programming skills and knowledge is encouraged, as it facilitates students’ exposure to computational thinking and empowers their creativity, problem-solving skills, and cognitive development. More and more researchers and educators investigate the introduction of computational thinking in K-12 since it is expected to be a fundamental skill for everyone by the middle of the 21st century, just like reading, writing and arithmetic are at the moment. In this paper, a doctoral research in the process is presented, which investigates the infusion of computational thinking into science curriculum in early childhood education. The whole attempt aims to develop young children’s computational thinking by introducing them to the fundamental concepts of object-oriented programming in an enjoyable, yet educational framework. The backbone of the research is the digital environment PhysGramming (an abbreviation of Physical Science Programming), which provides children the opportunity to create their own digital games, turning them from passive consumers to active creators of technology. PhysGramming deploys an innovative hybrid schema of visual and text-based programming techniques, with emphasis on object-orientation. Through PhysGramming, young students are familiarized with basic object-oriented programming concepts, such as classes, objects, and attributes, while, at the same time, get a view of object-oriented programming syntax. Nevertheless, the most noteworthy feature of PhysGramming is that children create their own digital games within the context of physical science courses, in a way that provides familiarization with the basic principles of object-oriented programming and computational thinking, even though no specific reference is made to these principles. Attuned to the ethical guidelines of educational research, interventions were conducted in two classes of second grade. The interventions were designed with respect to the thematic units of the curriculum of physical science courses, as a part of the learning activities of the class. PhysGramming was integrated into the classroom, after short introductory sessions. During the interventions, 6-7 years old children worked in pairs on computers and created their own digital games (group games, matching games, and puzzles). The authors participated in these interventions as observers in order to achieve a realistic evaluation of the proposed educational framework concerning its applicability in the classroom and its educational and pedagogical perspectives. To better examine if the objectives of the research are met, the investigation was focused on six criteria; the educational value of PhysGramming, its engaging and enjoyable characteristics, its child-friendliness, its appropriateness for the purpose that is proposed, its ability to monitor the user’s progress and its individualizing features. In this paper, the functionality of PhysGramming and the philosophy of its integration in the classroom are both described in detail. Information about the implemented interventions and the results obtained is also provided. Finally, several limitations of the research conducted that deserve attention are denoted.Keywords: computational thinking, early childhood education, object-oriented programming, physical science courses
Procedia PDF Downloads 1206833 Evaluation of Two DNA Extraction Methods for Minimal Porcine (Pork) Detection in Halal Food Sample Mixture Using Taqman Real-time PCR Technique
Authors: Duaa Mughal, Syeda Areeba Nadeem, Shakil Ahmed, Ishtiaq Ahmed Khan
Abstract:
The identification of porcine DNA in Halal food items is critical to ensuring compliance with dietary restrictions and religious beliefs. In Islam, Porcine is prohibited as clearly mentioned in Quran (Surah Al-Baqrah, Ayat 173). The purpose of this study was to compare two DNA extraction procedures for detecting 0.001% of porcine DNA in processed Halal food sample mixtures containing chicken, camel, veal, turkey and goat meat using the TaqMan Real-Time PCR technology. In this research, two different commercial kit protocols were compared. The processed sample mixtures were prepared by spiking known concentration of porcine DNA to non-porcine food matrices. Afterwards, TaqMan Real-Time PCR technique was used to target a particular porcine gene from the extracted DNA samples, which was quantified after extraction. The results of the amplification were evaluated for sensitivity, specificity, and reproducibility. The results of the study demonstrated that two DNA extraction techniques can detect 0.01% of porcine DNA in mixture of Halal food samples. However, as compared to the alternative approach, Eurofins| GeneScan GeneSpin DNA Isolation kit showed more effective sensitivity and specificity. Furthermore, the commercial kit-based approach showed great repeatability with minimal variance across repeats. Quantification of DNA was done by using fluorometric assay. In conclusion, the comparison of DNA extraction methods for detecting porcine DNA in Halal food sample mixes using the TaqMan Real-Time PCR technology reveals that the commercial kit-based approach outperforms the other methods in terms of sensitivity, specificity, and repeatability. This research helps to promote the development of reliable and standardized techniques for detecting porcine DNA in Halal food items, religious conformity and assuring nutritional.Keywords: real time PCR (qPCR), DNA extraction, porcine DNA, halal food authentication, religious conformity
Procedia PDF Downloads 786832 Dialogue, Agency and Appropriation in Peer Interactions
Authors: Mohammad Naseh Nasrollahi Shahri
Abstract:
The article draws on Michael Bakhtin’s theory of language to examine peer interactions. It represents an analysis of other-repetition in student interactions. Several recent studies have explored various aspects of repetition in multiple contexts. However, other-repetition in peer interactions has not received enough attention. Building on previous studies, this study examines patterns of other-repetition or appropriation in the context of discussion activities performed by EFL learners. The analysis highlights the meaningfulness of other-repetition in a way that distinguishes them from rote-repetition. It is suggested that instances of repetition constitute third spaces between the self and other which provide ideal settings for language learning and demonstrate student agency and engagement.Keywords: repetition, agency, Bakhtin, dialogue
Procedia PDF Downloads 6356831 The Revitalization of South-south Cooperation: Evaluation of South African Direct Investment in Cameroon
Authors: Albert Herve Nkolo Mpoko
Abstract:
The Foreign Direct Investment (FDI) landscape in Cameroon has garnered significant attention from both European and Asian nations due to perceived benefits such as capital infusion, technology transfer, and potential for economic expansion. However, it is noteworthy that South Africa's investment presence remains comparatively subdued in Cameroon, lagging behind that of Europe and Asia. Equally surprising is the limited footprint of Africa's economic powerhouse within other African economies. This study delved into four specific facets of South African investment in Cameroon. Initially, it focused on identifying South African companies operating within Cameroon. Subsequently, the analysis encompassed assessing the correlation between South African investment and poverty alleviation. Additionally, the study examined the nexus between South African investment and technological advancement, and underscored the significance of investment incentives in both countries Key findings of the research shed light on several crucial points. South Africa ought to reassess its economic engagement with Francophone Africa, particularly Cameroon. Despite existing policies aimed at fostering investment, there remains substantial ground to cover in this realm. The proliferation of South African enterprises in Cameroon holds the potential to ameliorate poverty and foster employment opportunities across both nations. The advent of South African firms in Cameroon can catalyse technological advancements within the region. Data collection involved surveying 100 executives from the respective administrations and conducting ten interviews. The gathered data underwent triangulation, wherein quantitative findings were juxtaposed with qualitative insights. In conclusion, the study underscores the underutilization of Cameroon by South Africa, emphasizing the untapped potential for mutual economic growth. Furthermore, it posits that the success of South Africa's multinational corporations abroad could serve as a pivotal pillar for sustaining its domestic economy.Keywords: FDI, transfer of technology, South-South cooperation, mutual economic growth
Procedia PDF Downloads 466830 Undersea Communications Infrastructure: Risks, Opportunities, and Geopolitical Considerations
Authors: Lori W. Gordon, Karen A. Jones
Abstract:
Today’s high-speed data connectivity depends on a vast global network of infrastructure across space, air, land, and sea, with undersea cable infrastructure (UCI) serving as the primary means for intercontinental and ‘long-haul’ communications. The UCI landscape is changing and includes an increasing variety of state actors, such as the growing economies of Brazil, Russia, India, China, and South Africa. Non-state commercial actors, such as hyper-scale content providers including Google, Facebook, Microsoft, and Amazon, are also seeking to control their data and networks through significant investments in submarine cables. Active investments by both state and non-state actors will invariably influence the growth, geopolitics, and security of this sector. Beyond these hyper-scale content providers, there are new commercial satellite communication providers. These new players include traditional geosynchronous (GEO) satellites that offer broad coverage, high throughput GEO satellites offering high capacity with spot beam technology, low earth orbit (LEO) ‘mega constellations’ – global broadband services. And potential new entrants such as High Altitude Platforms (HAPS) offer low latency connectivity, LEO constellations offer high-speed optical mesh networks, i.e., ‘fiber in the sky.’ This paper focuses on understanding the role of submarine cables within the larger context of the global data commons, spanning space, terrestrial, air, and sea networks, including an analysis of national security policy and geopolitical implications. As network operators and commercial and government stakeholders plan for emerging technologies and architectures, hedging risks for future connectivity will ensure that our data backbone will be secure for years to come.Keywords: communications, global, infrastructure, technology
Procedia PDF Downloads 876829 The BETA Module in Action: An Empirical Study on Enhancing Entrepreneurial Skills through Kearney's and Bloom's Guiding Principles
Authors: Yen Yen Tan, Lynn Lam, Cynthia Lam, Angela Koh, Edwin Seng
Abstract:
Entrepreneurial education plays a crucial role in nurturing future innovators and change-makers. Over time, significant progress has been made in refining instructional approaches to develop the necessary skills among learners effectively. Two highly valuable frameworks, Kearney's "4 Principles of Entrepreneurial Pedagogy" and Bloom's "Three Domains of Learning," serve as guiding principles in entrepreneurial education. Kearney's principles align with experiential and student-centric learning, which are crucial for cultivating an entrepreneurial mindset. The potential synergies between these frameworks hold great promise for enhancing entrepreneurial acumen among students. However, despite this potential, their integration remains largely unexplored. This study aims to bridge this gap by building upon the Business Essentials through Action (BETA) module and investigating its contributions to nurturing the entrepreneurial mindset. This study employs a quasi-experimental mixed-methods approach, combining quantitative and qualitative elements to ensure comprehensive and insightful data. A cohort of 235 students participated, with 118 enrolled in the BETA module and 117 in a traditional curriculum. Their Personal Entrepreneurial Competencies (PECs) were assessed before admission (pre-Y1) and one year into the course (post-Y1) using a comprehensive 55-item PEC questionnaire, enabling measurement of critical traits such as opportunity-seeking, persistence, and risk-taking. Rigorous computations of individual entrepreneurial competencies and overall PEC scores were performed, including a correction factor to mitigate potential self-assessment bias. The orchestration of Kearney's principles and Bloom's domains within the BETA module necessitates a granular examination. Here, qualitative revelations surface, courtesy of structured interviews aligned with contemporary research methodologies. These interviews act as a portal, ushering us into the transformative journey undertaken by students. Meanwhile, the study pivots to explore the BETA module's influence on students' entrepreneurial competencies from the vantage point of faculty members. A symphony of insights emanates from intimate focus group discussions featuring six dedicated lecturers, who share their perceptions, experiences, and reflective narratives, illuminating the profound impact of pedagogical practices embedded within the BETA module. Preliminary findings from ongoing data analysis indicate promising results, showcasing a substantial improvement in entrepreneurial skills among students participating in the BETA module. This study promises not only to elevate students' entrepreneurial competencies but also to illuminate the broader canvas of applicability for Kearney's principles and Bloom's domains. The dynamic interplay of quantitative analyses, proffering precise competency metrics, and qualitative revelations, delving into the nuanced narratives of transformative journeys, engenders a holistic understanding of this educational endeavour. Through a rigorous quasi-experimental mixed-methods approach, this research aims to establish the BETA module's effectiveness in fostering entrepreneurial acumen among students at Singapore Polytechnic, thereby contributing valuable insights to the broader discourse on educational methodologies.Keywords: entrepreneurial education, experiential learning, pedagogical frameworks, innovative competencies
Procedia PDF Downloads 646828 College Faculty Perceptions of Instructional Strategies That Are Effective for Students with Dyslexia
Authors: Samantha R. Dutra
Abstract:
There are many issues that students face in college, such as academic-based struggles, financial issues, family responsibilities, and vocational problems. Students with dyslexia struggle even more with these problems compared to other students. This qualitative study examines faculty perceptions of instructing students with dyslexia. This study is important to the human services and post-secondary educational fields due to the increase in disabled students enrolled in college. This study is also substantial because of the reported bias faced by students with dyslexia and their academic failure. When students with LDs such as dyslexia experience bias, discrimination, and isolation, they are more apt to not seek accommodations, lack communication with faculty, and are more likely to drop out or fail. College students with dyslexia often take longer to complete their post-secondary education and are more likely to withdraw or drop out without earning a degree. Faculty attitudes and academic cultures are major barriers to the success and use of accommodations as well as modified instruction for students with disabilities, which leads to student success. Faculty members are often uneducated or misinformed regarding students with dyslexia. More importantly, many faculty members are unaware of the many ethical and legal implications that they face regarding accommodating students with dyslexia. Instructor expectations can generally be defined as the understanding and perceptions of students regarding their academic success. Skewed instructor expectations can affect how instructors interact with their students and can also affect student success. This is true for students with dyslexia in that instructors may have lower and biased expectations of these students and, therefore, directly impact students’ academic successes and failures. It is vital to understand how instructor attitudes affect the academic achievement of dyslexic students. This study will examine faculty perceptions of instructing students with dyslexia and faculty attitudes towards accommodations and institutional support. The literature concludes that students with dyslexia have many deficits and several learning needs. Furthermore, these are the students with the highest dropout and failure rates, as well as the lowest retention rates. Disabled students generally have many reasons why accommodations and supports just do not help. Some research suggests that accommodations do help students and show positive outcomes. Many improvements need to be made between student support service personnel, faculty, and administrators regarding providing access and adequate supports for students with dyslexia. As the research also suggests, providing more efficient and effective accommodations may increase positive student as well as faculty attitudes in college, and may improve student outcomes overall.Keywords: dyslexia, faculty perception, higher education, learning disability
Procedia PDF Downloads 1396827 Auto Surgical-Emissive Hand
Authors: Abhit Kumar
Abstract:
The world is full of master slave Telemanipulator where the doctor’s masters the console and the surgical arm perform the operations, i.e. these robots are passive robots, what the world needs to focus is that in use of these passive robots we are acquiring doctors for operating these console hence the utilization of the concept of robotics is still not fully utilized ,hence the focus should be on active robots, Auto Surgical-Emissive Hand use the similar concept of active robotics where this anthropomorphic hand focuses on the autonomous surgical, emissive and scanning operation, enabled with the vision of 3 way emission of Laser Beam/-5°C < ICY Steam < 5°C/ TIC embedded in palm of the anthropomorphic hand and structured in a form of 3 way disc. Fingers of AS-EH (Auto Surgical-Emissive Hand) as called, will have tactile, force, pressure sensor rooted to it so that the mechanical mechanism of force, pressure and physical presence on the external subject can be maintained, conversely our main focus is on the concept of “emission” the question arises how all the 3 non related methods will work together that to merged in a single programmed hand, all the 3 methods will be utilized according to the need of the external subject, the laser if considered will be emitted via a pin sized outlet, this radiation is channelized via a thin channel which further connect to the palm of the surgical hand internally leading to the pin sized outlet, here the laser is used to emit radiation enough to cut open the skin for removal of metal scrap or any other foreign material while the patient is in under anesthesia, keeping the complexity of the operation very low, at the same time the TIC fitted with accurate temperature compensator will be providing us the real time feed of the surgery in the form of heat image, this gives us the chance to analyze the level, also ATC will help us to determine the elevated body temperature while the operation is being proceeded, the thermal imaging camera in rooted internally in the AS-EH while also being connected to the real time software externally to provide us live feedback. The ICY steam will provide the cooling effect before and after the operation, however for more utilization of this concept we can understand the working of simple procedure in which If a finger remain in icy water for a long time it freezes the blood flow stops and the portion become numb and isolated hence even if you try to pinch it will not provide any sensation as the nerve impulse did not coordinated with the brain hence sensory receptor did not got active which means no sense of touch was observed utilizing the same concept we can use the icy stem to be emitted via a pin sized hole on the area of concern ,temperature below 273K which will frost the area after which operation can be done, this steam can also be use to desensitized the pain while the operation in under process. The mathematical calculation, algorithm, programming of working and movement of this hand will be installed in the system prior to the procedure, since this AS-EH is a programmable hand it comes with the limitation hence this AS-EH robot will perform surgical process of low complexity only.Keywords: active robots, algorithm, emission, icy steam, TIC, laser
Procedia PDF Downloads 3566826 Walking the Talk? Thinking and Acting – Teachers' and Practitioners' Perceptions about Physical Activity, Health and Well-Being, Do They 'Walk the Talk' ?
Authors: Kristy Howells, Catherine Meehan
Abstract:
This position paper presents current research findings into the proposed gap between teachers’ and practitioners’ thinking and acting about physical activity health and well-being in childhood. Within the new Primary curriculum, there is a focus on sustained physical activity within a Physical Education and healthy lifestyles in Personal, Health, Social and Emotional lessons, but there is no curriculum guidance about what sustained physical activity is and how it is defined. The current health guidance on birth to five suggests that children should not be inactive for long periods and specify light and energetic activities, however there is the a suggested period of time per day for young children to achieve, but the guidance does not specify how this should be measured. The challenge therefore for teachers and practitioners is their own confidence and understanding of what “good / moderate intensity” physical activity and healthy living looks like for children and the children understanding what they are doing. There is limited research about children from birth to eight years and also the perceptions and attitudes of those who work with this age group of children, however it was found that children at times can identify different levels of activity and it has been found that children can identify healthy foods and good choices for healthy living at a basic level. Authors have also explored teachers’ beliefs about teaching and learning and found that teachers could act in accordance to their beliefs about their subject area only when their subject knowledge, understanding and confidence of that area is high. It has been proposed that confidence and competence of practitioners and teachers to integrate ‘well-being’ within the learning settings has been reported as being low. This may be due to them not having high subject knowledge. It has been suggested that children’s life chances are improved by focusing on well-being in their earliest years. This includes working with parents and families, and being aware of the environmental contexts that may impact on children’s wellbeing. The key is for practitioners and teachers to know how to implement these ideas effectively as these key workers have a profound effect on young children as role models and due to the time of waking hours spent with them. The position paper is part of a longitudinal study at Canterbury Christ Church University and currently we will share the research findings from the initial questionnaire (online, postal, and in person) that explored and evaluated the knowledge, competence and confidence levels of practitioners and teachers as to the structure and planning of sustained physical activity and healthy lifestyles and how this progresses with the children’s age.Keywords: health, perceptions, physical activity, well-being
Procedia PDF Downloads 4036825 Segmented Pupil Phasing with Deep Learning
Authors: Dumont Maxime, Correia Carlos, Sauvage Jean-François, Schwartz Noah, Gray Morgan
Abstract:
Context: The concept of the segmented telescope is unavoidable to build extremely large telescopes (ELT) in the quest for spatial resolution, but it also allows one to fit a large telescope within a reduced volume of space (JWST) or into an even smaller volume (Standard Cubesat). Cubesats have tight constraints on the computational burden available and the small payload volume allowed. At the same time, they undergo thermal gradients leading to large and evolving optical aberrations. The pupil segmentation comes nevertheless with an obvious difficulty: to co-phase the different segments. The CubeSat constraints prevent the use of a dedicated wavefront sensor (WFS), making the focal-plane images acquired by the science detector the most practical alternative. Yet, one of the challenges for the wavefront sensing is the non-linearity between the image intensity and the phase aberrations. Plus, for Earth observation, the object is unknown and unrepeatable. Recently, several studies have suggested Neural Networks (NN) for wavefront sensing; especially convolutional NN, which are well known for being non-linear and image-friendly problem solvers. Aims: We study in this paper the prospect of using NN to measure the phasing aberrations of a segmented pupil from the focal-plane image directly without a dedicated wavefront sensing. Methods: In our application, we take the case of a deployable telescope fitting in a CubeSat for Earth observations which triples the aperture size (compared to the 10cm CubeSat standard) and therefore triples the angular resolution capacity. In order to reach the diffraction-limited regime in the visible wavelength, typically, a wavefront error below lambda/50 is required. The telescope focal-plane detector, used for imaging, will be used as a wavefront-sensor. In this work, we study a point source, i.e. the Point Spread Function [PSF] of the optical system as an input of a VGG-net neural network, an architecture designed for image regression/classification. Results: This approach shows some promising results (about 2nm RMS, which is sub lambda/50 of residual WFE with 40-100nm RMS of input WFE) using a relatively fast computational time less than 30 ms which translates a small computation burder. These results allow one further study for higher aberrations and noise.Keywords: wavefront sensing, deep learning, deployable telescope, space telescope
Procedia PDF Downloads 1056824 Measures for Conflict Management in Nigerian Higher Institutions
Authors: Oyelade Oluwatoyin
Abstract:
The phenomenon of crises in educational sector in Nigeria has reached its peak in the 21st century. Thus, this paper examines the strategies that can be used in managing the conflict situation in Nigeria Higher Institution of learning. The causes of conflicts such as inadequate funding, insufficient school facilities, poor working condition, poor enrolment, proliferation of higher institutions and unfavourable administrative decision are the major detriment of law and order i.e. strike action, destruction of property and programmes coupled with the student unrest. This write-up will make use of the available information and with the aim of adding value to existing knowledge. It was recommend that steps should be taken by policy maker to prevent scourge of conflicts in tertiary institutions in NigeriaKeywords: conflicts, higher institutions, management, measures
Procedia PDF Downloads 3696823 A Machine Learning-Assisted Crime and Threat Intelligence Hunter
Authors: Mohammad Shameel, Peter K. K. Loh, James H. Ng
Abstract:
Cybercrime is a new category of crime which poses a different challenge for crime investigators and incident responders. Attackers can mask their identities using a suite of tools and with the help of the deep web, which makes them difficult to track down. Scouring the deep web manually takes time and is inefficient. There is a growing need for a tool to scour the deep web to obtain useful evidence or intel automatically. In this paper, we will explain the background and motivation behind the research, present a survey of existing research on related tools, describe the design of our own crime/threat intelligence hunting tool prototype, demonstrate its capability with some test cases and lastly, conclude with proposals for future enhancements.Keywords: cybercrime, deep web, threat intelligence, web crawler
Procedia PDF Downloads 1736822 Mood Recognition Using Indian Music
Authors: Vishwa Joshi
Abstract:
The study of mood recognition in the field of music has gained a lot of momentum in the recent years with machine learning and data mining techniques and many audio features contributing considerably to analyze and identify the relation of mood plus music. In this paper we consider the same idea forward and come up with making an effort to build a system for automatic recognition of mood underlying the audio song’s clips by mining their audio features and have evaluated several data classification algorithms in order to learn, train and test the model describing the moods of these audio songs and developed an open source framework. Before classification, Preprocessing and Feature Extraction phase is necessary for removing noise and gathering features respectively.Keywords: music, mood, features, classification
Procedia PDF Downloads 4996821 Teaching the Binary System via Beautiful Facts from the Real Life
Authors: Salem Ben Said
Abstract:
In recent times the decimal number system to which we are accustomed has received serious competition from the binary number system. In this note, an approach is suggested to teaching and learning the binary number system using examples from the real world. More precisely, we will demonstrate the utility of the binary system in describing the optimal strategy to win the Chinese Nim game, and in telegraphy by decoding the hidden message on Perseverance’s Mars parachute written in the language of binary system. Finally, we will answer the question, “why do modern computers prefer the ternary number system instead of the binary system?”. All materials are provided in a format that is conductive to classroom presentation and discussion.Keywords: binary number system, Nim game, telegraphy, computers prefer the ternary system
Procedia PDF Downloads 1876820 Blockchain-Based Decentralized Architecture for Secure Medical Records Management
Authors: Saeed M. Alshahrani
Abstract:
This research integrated blockchain technology to reform medical records management in healthcare informatics. It was aimed at resolving the limitations of centralized systems by establishing a secure, decentralized, and user-centric platform. The system was architected with a sophisticated three-tiered structure, integrating advanced cryptographic methodologies, consensus algorithms, and the Fast Healthcare Interoperability Resources (HL7 FHIR) standard to ensure data security, transaction validity, and semantic interoperability. The research has profound implications for healthcare delivery, patient care, legal compliance, operational efficiency, and academic advancements in blockchain technology and healthcare IT sectors. The methodology adapted in this research comprises of Preliminary Feasibility Study, Literature Review, Design and Development, Cryptographic Algorithm Integration, Modeling the data and testing the system. The research employed a permissioned blockchain with a Practical Byzantine Fault Tolerance (PBFT) consensus algorithm and Ethereum-based smart contracts. It integrated advanced cryptographic algorithms, role-based access control, multi-factor authentication, and RESTful APIs to ensure security, regulate access, authenticate user identities, and facilitate seamless data exchange between the blockchain and legacy healthcare systems. The research contributed to the development of a secure, interoperable, and decentralized system for managing medical records, addressing the limitations of the centralized systems that were in place. Future work will delve into optimizing the system further, exploring additional blockchain use cases in healthcare, and expanding the adoption of the system globally, contributing to the evolution of global healthcare practices and policies.Keywords: healthcare informatics, blockchain, medical records management, decentralized architecture, data security, cryptographic algorithms
Procedia PDF Downloads 55