Search results for: smart cities applications
2053 Control of Base Isolated Benchmark using Combined Control Strategy with Fuzzy Algorithm Subjected to Near-Field Earthquakes
Authors: Hashem Shariatmadar, Mozhgansadat Momtazdargahi
Abstract:
The purpose of control structure against earthquake is to dissipate earthquake input energy to the structure and reduce the plastic deformation of structural members. There are different methods for control structure against earthquake to reduce the structure response that they are active, semi-active, inactive and hybrid. In this paper two different combined control systems are used first system comprises base isolator and multi tuned mass dampers (BI & MTMD) and another combination is hybrid base isolator and multi tuned mass dampers (HBI & MTMD) for controlling an eight story isolated benchmark steel structure. Active control force of hybrid isolator is estimated by fuzzy logic algorithms. The influences of the combined systems on the responses of the benchmark structure under the two near-field earthquake (Newhall & Elcentro) are evaluated by nonlinear dynamic time history analysis. Applications of combined control systems consisting of passive or active systems installed in parallel to base-isolation bearings have the capability of reducing response quantities of base-isolated (relative and absolute displacement) structures significantly. Therefore in design and control of irregular isolated structures using the proposed control systems, structural demands (relative and absolute displacement and etc.) in each direction must be considered separately.Keywords: base-isolated benchmark structure, multi-tuned mass dampers, hybrid isolators, near-field earthquake, fuzzy algorithm
Procedia PDF Downloads 3042052 An Investigation into Mechanical Properties of Laser Fabricated 308LSi Stainless Steel Walls by Wire Feedstock
Authors: Taiwo Ebenezer Abioye, Alexis Medrano-Tellez, Peter Kayode Farayibi, Peter Kayode Oke,
Abstract:
Laser metal deposition by wire feedstock has been established as a process which can provide a high material deposition rate with good quality. Sound mechanical properties of the deposited parts are the pre-requisites for the real applications of this process. This paper investigates the laser metal deposition of 308LSi stainless steel wire within a process window. Single tracks and multiple layer thin-walls of 308LSi stainless steel wire were deposited on 304 stainless steel substrate. The grain structures of the built walls were examined using optical microscopy. The mechanical properties of the built walls including the micro-hardness and tensile properties along the transverse and longitudinal directions were investigated using Vickers hardness tester and tensile test machine. Long columnar grains were found growing in the wall building direction (transverse) and nucleation were observed at the boundary between two deposited layers due to remelting of the previously deposited layers. The results showed that the hardness values of the deposited walls (ranging between 194 HV and 167 HV) decreased from the track-substrate interface to the top of the wall. The ultimate tensile strength (UTS) of the wall (518 ± 7 MPa) showed dependence on wall building directions.Keywords: laser metal deposition, ultimate tensile strength, hardness, wall, microstructure
Procedia PDF Downloads 4102051 Development and Characterization of a Film Based on Hydroxypropyl Methyl Cellulose Incorporated by a Phenolic Extract of Fennel and Reinforced by Magnesium Oxide: In Vivo - in Vitro
Authors: Mazouzi Nourdjihane, K. Boutemak, A. Haddad, Y. Chegreouche
Abstract:
In the last decades, biodegradable polymers have been considered as one of the most popular options for the delivery of drugs and various conventional doses. The film forming system (FFS) can be used in topical, transdermal, ophthalmic, oral and gastric applications. Recently this system has focused on improving drug delivery, which can promote drug release. In this context, the aim of this study is to create polymeric film-forming systems for the stomach and to evaluate and test their gastroprotective effects, comparing the effects of changes in composition on film characteristics. It uses a plant-derived polyphenol extract extracted from fennel to demonstrate anti-inflammatory activity in the film. The films are made from hydroxypropyl methylcellulose polymer and different types of plastic, glycerol and polyethylene glycol. The ffs properties show that MgO-glycerol-reinforced hydroxypropylmethylcellulose (HPMC-MgO-Gly) is better than that based on MgO-PEG-reinforced hydroxypropylmethylcellulose (HPMC-MgO-PEG). It is durable, has a faster drying time and allows for maximum recovery. Water vapor strength and blowing speed and other additions show another advantage of HPMC-MgO-Gly compared to HPMC-MgO-PEG, indicating good adhesion between the support (top) and film production. In this study, the gastroprotective effect of fennel phenol extract was found, showing that this plant material has a gastroprotective effect on ulcers and that the film can absorb the active substance.Keywords: film formin system, hydroxypropyl methylcellulose, magnesium oxide, in vivo
Procedia PDF Downloads 662050 Phyto-Assisted Synthesis of Magnesium Oxide Nanoparticles: Characterization and Applications
Authors: Surendra Kumar Gautam, Mahesh Dhungana
Abstract:
Magnesium oxide nanoparticles (MgO NPs) are less toxic to humans and the environment as compared to other metal oxide nanoparticles. Various conventional chemical and physical methods are used for synthesis whose toxicity level is high and highly expensive. As the best alternative, phyto-assisted synthesis has emerged, which uses extracts from plant parts for the synthesis of nanoparticles. Here, we report the synthesis of MgO nanoparticles with the assistance of beetroot extract and leaf extract of P. guajava and A. adenophora. The synthesized MgO NPs were characterized by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), and UV-visible spectroscopy. X-ray analysis for the broadening of peaks was used to evaluate the crystallite size and lattice strain using Debye-Scherer and Williamson–Hall method. The results of crystallite size obtained by both methods are in close proximity. The crystallite size obtained by the Williamson-Hall method seems more accurate, with values being 8.1 nm and 13.2 nm for beetroot MgO NPs and P. guajava MgO NPs, respectively. The FT-IR spectroscopy revealed the dominance of chemical bonds as well as functional groups on MgO NPs surfaces. The UV-visible absorption spectra of MgO NPs were found to be 310 nm, 315 nm, and 315 nm for beetroot, P. guajava, and A. adenophora leaf extract, respectively. Among the three samples, beetroot-mediated MgO NPs were effective antibacterial against both gram-positive and Gram-negative bacteria. In addition, synthesized MgO NPs also show significant antioxidant efficacy against 1,1-diphenyl-2-picrylhydrazyl radical. Further, beetroot MgO NPs showed the highest photocatalytic activity of about 91% in comparison with other samples.Keywords: MgO NPs, XRD, FTIR, antibacterial, antioxidant and photocatalytic activity
Procedia PDF Downloads 842049 Green Electrochemical Nitration of Bioactive Compounds: Biological Evaluation with Molecular Modelling
Authors: Sara Torabi, Sadegh Khazalpour, Mahdi Jamshidi
Abstract:
Nitro aromatic compounds are valuable materials because of their applications in the preparation of chemical intermediates for the synthesis of dyes, plastics, perfumes, energetic materials, and pharmaceuticals. Chemical and electrochemical procedures are reported for nitration of aromatic compounds. Flavonoid derivatives are present in many vegetables and fruits and are constituent of many common pharmaceuticals and dietary supplements. Electrochemistry provides very versatile means for the electrosynthesis, mechanistic and kinetic studies. To the best of our knowledge, and despite the importance of these compounds in numerous scientific fields, there are no reports on the electrochemical nitration of Quercetin derivatives. Herein, we describe a green electrochemical synthesis of a nitro compound. In this work, electrochemical oxidation of Quercetin has been studied in the presence of nitrite ion as a nucleophile in acetate buffer solution (c = 0.2 M, pH = 6.0), by means of cyclic voltammetry and controlled-potential coulometry. The results indicate the participation of produced o-benzoquinones in Michael reaction with nitrite ion (in the divided cell) to form the corresponding nitro diol (EC mechanism). The purity of product and characterization was done using ¹H NMR, ¹³C NMR, FTIR spectroscopic techniques. The presented strategies use a water/ethanol mixture as solvent. Ethanol as cosolvent was also used in the previous studies because of its low cost, safety, easy availability, recyclability, bioproductability, and biodegradability. These strategies represent a one-pot and facile process for the synthesis of nitro compound in high yield and purity under green conditions.Keywords: electrochemical synthesis, green chemistry, cyclic voltammetry, molecular docking
Procedia PDF Downloads 1442048 Hybrid Energy Harvesting System with Energy Storage Management
Authors: Lucian Pîslaru-Dănescu, George-Claudiu Zărnescu, Laurențiu Constantin Lipan, Rareș-Andrei Chihaia
Abstract:
In recent years, the utilization of supercapacitors for energy storage (ES) devices that are designed for energy harvesting (EH) applications has increased substantially. The use of supercapacitors as energy storage devices in hybrid energy harvesting systems allows the miniaturization of electronic structures for energy storage. This study is concerned with the concept of energy management capacitors – supercapacitors and the new electronic structures for energy storage used for energy harvesting devices. Supercapacitors are low-voltage devices, and electronic overvoltage protection is needed for powering the source. The power management device that uses these proposed new electronic structures for energy storage is better than conventional electronic structures used for this purpose, like rechargeable batteries, supercapacitors, and hybrid systems. A hybrid energy harvesting system with energy storage management is able to simultaneously use several energy sources with recovery from the environment. The power management device uses a summing electronic block to combine the electric power obtained from piezoelectric composite plates and from a photovoltaic conversion system. Also, an overvoltage protection circuit used as a voltage detector and an improved concept of charging supercapacitors is presented. The piezoelectric composite plates are realized only by pressing two printed circuit boards together without damaging or prestressing the piezoceramic elements. The photovoltaic conversion system has the advantage that the modules are covered with glass plates with nanostructured film of ZnO with the role of anti-reflective coating and to improve the overall efficiency of the solar panels.Keywords: supercapacitors, energy storage, electronic overvoltage protection, energy harvesting
Procedia PDF Downloads 832047 Electrical Properties of Nanocomposite Fibres Based On Cellulose and Graphene Nanoplatelets Prepared Using Ionic Liquids
Authors: Shaya Mahmoudian, Mohammad Reza Sazegar, Nazanin Afshari
Abstract:
Graphene, a single layer of carbon atoms in a hexagonal lattice, has recently attracted great attention due to its unique mechanical, thermal and electrical properties. The high aspect ratio and unique surface features of graphene resulted in significant improvements of the nano composites properties. In this study, nano composite fibres made of cellulose and graphene nano platelets were wet spun from solution by using ionic liquid, 1-ethyl-3-methylimidazolium acetate (EMIMAc) as solvent. The effect of graphene loading on the thermal and electrical properties of the nanocomposite fibres was investigated. The nano composite fibres characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. XRD analysis revealed a cellulose II crystalline structure for regenerated cellulose and the nano composite fibres. SEM images showed a homogenous morphology and round cross section for the nano composite fibres along with well dispersion of graphene nano platelets in regenerated cellulose matrix. The incorporation of graphene into cellulose matrix generated electrical conductivity. At 6 wt. % of graphene, the electrical conductivity was 4.7 × 10-4 S/cm. The nano composite fibres also showed considerable improvements in thermal stability and char yield compared to pure regenerated cellulose fibres. This work provides a facile and environmentally friendly method of preparing nano composite fibres based on cellulose and graphene nano platelets that can find several applications in cellulose-based carbon fibres, conductive fibres, apparel, etc.Keywords: nanocomposite, graphene nanoplatelets, regenerated cellulose, electrical properties
Procedia PDF Downloads 3502046 A Boundary-Fitted Nested Grid Model for Modeling Tsunami Propagation of 2004 Indonesian Tsunami along Southern Thailand
Authors: Fazlul Karim, Esa Al-Islam
Abstract:
Many problems in oceanography and environmental sciences require the solution of shallow water equations on physical domains having curvilinear coastlines and abrupt changes of ocean depth near the shore. Finite-difference technique for the shallow water equations representing the boundary as stair step may give inaccurate results near the coastline where results are of greatest interest for various applications. This suggests the use of methods which are capable of incorporating the irregular boundary in coastal belts. At the same time, large velocity gradient is expected near the beach and islands as water depth vary abruptly near the coast. A nested numerical scheme with fine resolution is the best resort to enhance the numerical accuracy with the least grid numbers for the region of interests where the velocity changes rapidly and which is unnecessary for the away of the region. This paper describes the development of a boundary fitted nested grid (BFNG) model to compute tsunami propagation of 2004 Indonesian tsunami in Southern Thailand coastal waters. In this paper, we develop a numerical model employing the shallow water nested model and an orthogonal boundary fitted grid to investigate the tsunami impact on the Southern Thailand due to the Indonesian tsunami of 2004. Comparisons of water surface elevation obtained from numerical simulations and field measurements are made.Keywords: Indonesian tsunami of 2004, Boundary-fitted nested grid model, Southern Thailand, finite difference method
Procedia PDF Downloads 4412045 Catalytic Hydrodesulfurization of Dibenzothiophene Coupled with Ionic Liquids over Low Pd Incorporated Co-Mo@Al₂O₃ and Ni-Mo@Al₂O₃ Catalysts at Mild Operating Conditions
Authors: Yaseen Muhammad, Zhenxia Zhao, Zhangfa Tong
Abstract:
A key problem with hydrodesulfurization (HDS) process of fuel oils is the application of severe operating conditions. In this study, we proposed the catalytic HDS of dibenzothiophene (DBT) integrated with ionic liquids (ILs) application at mild temperature and pressure over low loaded (0.5 wt.%) Pd promoted Co-Mo@Al₂O₃ and Ni-Mo@Al₂O₃ catalysts. Among the thirteen ILs tested, [BMIM]BF₄, [(CH₃)₄N]Cl, [EMIM]AlCl₄, and [(C₈H₁₇)(C₃H₇)₃P]Br enhanced the catalytic HDS efficiency while the latest ranked the top of activity list as confirmed by DFT studies as well. Experimental results revealed that Pd incorporation greatly enhanced the HDS activity of classical Co or Ni based catalysts. At mild optimized experimental conditions of 1 MPa H₂ pressure, 120 oC, IL:oil ratio of 1:3 and 4 h reaction time, the % DBT conversion (21 %) by Ni-Mo@Al₂O₃ was enhanced to 69 % (over Pd-Ni-Mo@ Al₂O₃) using [(C₈H₁₇) (C₃H₇)₃P]Br. The fresh and spent catalysts were characterized for textural properties using XPS, SEM, EDX, XRD and BET surface area techniques. An overall catalytic HDS activity followed the order of: Pd-Ni-Mo@Al₂O₃ > Pd-Co-Mo@Al₂O₃ > Ni-Mo@Al₂O₃ > Co-Mo@Al₂O₃. [(C₈H₁₇) (C₃H₇)₃P]Br.could be recycled four times with minimal decrease in HDS activity. Reaction products were analyzed by GC-MS which helped in proposing reaction mechanism for the IL coupled HDS process. The present approach attributed to its cost-effective nature, ease of operation with less mechanical requirements in terms of mild operating conditions, and high efficiency could be deemed as an alternative approach for the HDS of DBT on industrial level applications.Keywords: DFT simulation, GC-MS and reaction mechanism, Ionic liquid coupled HDS of DBT, low Pd loaded catalyst, mild operating condition
Procedia PDF Downloads 1532044 Preserving Digital Arabic Text Integrity Using Blockchain Technology
Authors: Zineb Touati Hamad, Mohamed Ridda Laouar, Issam Bendib
Abstract:
With the massive development of technology today, the Arabic language has gained a prominent position among the languages most used for writing articles, expressing opinions, and also for citing in many websites, defying its growing sensitivity in terms of structure, language skills, diacritics, writing methods, etc. In the context of the spread of the Arabic language, the Holy Quran represents the most prevalent Arabic text today in many applications and websites for citation purposes or for the reading and learning rituals. The Quranic verses / surahs are published quickly and without cost, which may cause great concern to ensure the safety of the content from tampering and alteration. To protect the content of texts from distortion, it is necessary to refer to the original database and conduct a comparison process to extract the percentage of distortion. The disadvantage of this method is that it takes time, in addition to the lack of any guarantee on the integrity of the database itself as it belongs to one central party. Blockchain technology today represents the best way to maintain immutable content. Blockchain is a distributed database that stores information in blocks linked to each other through encryption, where the modification of each block can be easily known. To exploit these advantages, we seek in this paper to justify the use of this technique in preserving the integrity of Arabic texts sensitive to change by building a decentralized framework to authenticate and verify the integrity of the digital Quranic verses/surahs spread on websites.Keywords: arabic text, authentication, blockchain, integrity, quran, verification
Procedia PDF Downloads 1642043 Entrepreneurial Venture Creation through Anchor Event Activities: Pop-Up Stores as On-Site Arenas
Authors: Birgit A. A. Solem, Kristin Bentsen
Abstract:
Scholarly attention in entrepreneurship is currently directed towards understanding entrepreneurial venture creation as a process -the journey of new economic activities from nonexistence to existence often studied through flow- or network models. To complement existing research on entrepreneurial venture creation with more interactivity-based research of organized activities, this study examines two pop-up stores as anchor events involving on-site activities of fifteen participating entrepreneurs launching their new ventures. The pop-up stores were arranged in two middle-sized Norwegian cities and contained different brand stores that brought together actors of sub-networks and communities executing venture creation activities. The pop-up stores became on-site arenas for the entrepreneurs to create, maintain, and rejuvenate their networks, at the same time as becoming venues for temporal coordination of activities involving existing and potential customers in their venture creation. In this work, we apply a conceptual framework based on frequently addressed dilemmas within entrepreneurship theory (discovery/creation, causation/effectuation) to further shed light on the broad aspect of on-site anchor event activities and their venture creation outcomes. The dilemma-based concepts are applied as an analytic toolkit to pursue answers regarding the nature of anchor event activities typically found within entrepreneurial venture creation and how these anchor event activities affect entrepreneurial venture creation outcomes. Our study combines researcher participation with 200 hours of observation and twenty in-depth interviews. Data analysis followed established guidelines for hermeneutic analysis and was intimately intertwined with ongoing data collection. Data was coded and categorized in NVivo 12 software, and iterated several times as patterns were steadily developing. Our findings suggest that core anchor event activities typically found within entrepreneurial venture creation are; a concept- and product experimentation with visitors, arrangements to socialize (evening specials, auctions, and exhibitions), store-in-store concepts, arranged meeting places for peers and close connection with municipality and property owners. Further, this work points to four main entrepreneurial venture creation outcomes derived from the core anchor event activities; (1) venture attention, (2) venture idea-realization, (3) venture collaboration, and (4) venture extension. Our findings show that, depending on which anchor event activities are applied, the outcomes vary. Theoretically, this study offers two main implications. First, anchor event activities are both discovered and created, following the logic of causation, at the same time as being experimental, based on “learning by doing” principles of effectuation during the execution. Second, our research enriches prior studies on venture creation as a process. In this work, entrepreneurial venture creation activities and outcomes are understood through pop-up stores as on-site anchor event arenas, particularly suitable for interactivity-based research requested by the entrepreneurship field. This study also reveals important managerial implications, such as that entrepreneurs should allow themselves to find creative physical venture creation arenas (e.g., pop-up stores, showrooms), as well as collaborate with partners when discovering and creating concepts and activities based on new ideas. In this way, they allow themselves to both strategically plan for- and continually experiment with their venture.Keywords: anchor event, interactivity-based research, pop-up store, entrepreneurial venture creation
Procedia PDF Downloads 912042 Fungicidal Action of the Mycogenic Silver Nanoparticles Against Aspergillus niger Inciting Collar Rot Disease in Groundnut (Arachis hypogaea L.)
Authors: R. Sarada Jayalakshmi Devi B. Bhaskar, S. Khayum Ahammed, T. N. V. K. V. Prasad
Abstract:
Use of bioagents and biofungicides is safe to manage the plant diseases and to avoid human health hazards which improves food security. Myconanotechnology is the study of nanoparticles synthesis using fungi and their applications. The present work reports on preparation, characterization and antifungal activity of biogenic silver nanoparticles produced by the fungus Trichoderma sp. which was collected from groundnut rhizosphere. The culture filtrate of Trichoderma sp. was used for the reduction of silver ions (Ag+) in AgNO3 solution to the silver (Ag0) nanoparticles. The different ages (4 days, 6 days, 8 days, 12 days, and 15 days) of culture filtrates were screened for the synthesis of silver nanoparticles. Synthesized silver nanoparticles were characterized using UV-Vis spectrophotometer, particle size and zeta potential analyzer, Fourier Transform Infrared Spectrophotometer (FTIR) and Transmission Electron Microscopy. Among all the treatments the silver nitrate solution treated with six days aged culture filtrate of Trichoderma sp. showed the UV absorption peak at 440 nm with maximum intensity (0.59) after 24 hrs incubation. The TEM micrographs showed the spherical shaped silver nanoparticles with an average size of 30 nm. The antifungal activity of silver nanoparticles against Aspergillus niger causing collar rot disease in groundnut and aspergillosis in humans showed the highest per cent inhibition at 100 ppm concentration (74.8%). The results points to the usage of these mycogenic AgNPs in agriculture to control plant diseases.Keywords: groundnut rhizosphere, Trichoderma sp., silver nanoparticles synthesis, antifungal activity
Procedia PDF Downloads 4992041 An Engineer-Oriented Life Cycle Assessment Tool for Building Carbon Footprint: The Building Carbon Footprint Evaluation System in Taiwan
Authors: Hsien-Te Lin
Abstract:
The purpose of this paper is to introduce the BCFES (building carbon footprint evaluation system), which is a LCA (life cycle assessment) tool developed by the Low Carbon Building Alliance (LCBA) in Taiwan. A qualified BCFES for the building industry should fulfill the function of evaluating carbon footprint throughout all stages in the life cycle of building projects, including the production, transportation and manufacturing of materials, construction, daily energy usage, renovation and demolition. However, many existing BCFESs are too complicated and not very designer-friendly, creating obstacles in the implementation of carbon reduction policies. One of the greatest obstacle is the misapplication of the carbon footprint inventory standards of PAS2050 or ISO14067, which are designed for mass-produced goods rather than building projects. When these product-oriented rules are applied to building projects, one must compute a tremendous amount of data for raw materials and the transportation of construction equipment throughout the construction period based on purchasing lists and construction logs. This verification method is very cumbersome by nature and unhelpful to the promotion of low carbon design. With a view to provide an engineer-oriented BCFE with pre-diagnosis functions, a component input/output (I/O) database system and a scenario simulation method for building energy are proposed herein. Most existing BCFESs base their calculations on a product-oriented carbon database for raw materials like cement, steel, glass, and wood. However, data on raw materials is meaningless for the purpose of encouraging carbon reduction design without a feedback mechanism, because an engineering project is not designed based on raw materials but rather on building components, such as flooring, walls, roofs, ceilings, roads or cabinets. The LCBA Database has been composited from existing carbon footprint databases for raw materials and architectural graphic standards. Project designers can now use the LCBA Database to conduct low carbon design in a much more simple and efficient way. Daily energy usage throughout a building's life cycle, including air conditioning, lighting, and electric equipment, is very difficult for the building designer to predict. A good BCFES should provide a simplified and designer-friendly method to overcome this obstacle in predicting energy consumption. In this paper, the author has developed a simplified tool, the dynamic Energy Use Intensity (EUI) method, to accurately predict energy usage with simple multiplications and additions using EUI data and the designed efficiency levels for the building envelope, AC, lighting and electrical equipment. Remarkably simple to use, it can help designers pre-diagnose hotspots in building carbon footprint and further enhance low carbon designs. The BCFES-LCBA offers the advantages of an engineer-friendly component I/O database, simplified energy prediction methods, pre-diagnosis of carbon hotspots and sensitivity to good low carbon designs, making it an increasingly popular carbon management tool in Taiwan. To date, about thirty projects have been awarded BCFES-LCBA certification and the assessment has become mandatory in some cities.Keywords: building carbon footprint, life cycle assessment, energy use intensity, building energy
Procedia PDF Downloads 1392040 Effect of Different Parameters on the Swelling Behaviour of Thermo-Responsive Elastomers in a Nematogenic Solvent
Authors: Nouria Bouchikhi, Soufiane Bedjaoui, C. Tewfik Bouchaour, Lamia Alachaher Bedjaoui, Ulrich Maschke
Abstract:
Swelling properties and phase diagrams of binary systems composed of liquid crystalline networks and a low molecular mass liquid crystal (LMWLC) have been investigated. The networks were prepared by ultraviolet (UV) irradiation of reactive mixtures including a monomer, a cross-linking agent and a photo-initiator. These networks were prepared using two cross-linking agents: 1,6 hexanedioldiacrylate (HDDA) and a mesogenic acrylic acid 6-(4’-(6-acryloyloxy-hexyloxy) biphenyl-4-yl oxy) hexyl ester (AHBH). The obtained dry networks were characterized by differential scanning calorimetry, and immersed in an excess of a LMWLC solvent 4-cyano-4’-pentylbiphenyl (5CB), forming polymer gels. A detailed study by polarized optical microscopy allowed to determine the swelling degree of the gels and to follow the phase behavior of the solvent inside the polymer matrix in a wide range of temperature. It has been found that the gels undergo a sharp decrease of their swelling degree in response to an infinitesimal change of temperature. This finding adds new and interesting aspects on the actuators applications. We have subsequently explored the effect of different parameters on volume phase transition of these liquid crystalline materials. Such as the cross-linking density (CD), a nature of cross-linking agent and the photo initiator concentration.Keywords: cross-linking density, liquid crystalline elastomers, phase diagrams, swelling
Procedia PDF Downloads 3312039 Seaworthiness and Liability Risks Involving Technology and Cybersecurity in Transport and Logistics
Authors: Eugene Wong, Felix Chan, Linsey Chen, Joey Cheung
Abstract:
The widespread use of technologies and cyber/digital means for complex maritime operations have led to a sharp rise in global cyber-attacks. They have generated an increasing number of liability disputes, insurance claims, and legal proceedings. An array of antiquated case law, regulations, international conventions, and obsolete contractual clauses drafted in the pre-technology era have become grossly inadequate in addressing the contemporary challenges. This paper offers a critique of the ambiguity of cybersecurity liabilities under the obligation of seaworthiness entailed in the Hague-Visby Rules, which apply either by law in a large number of jurisdictions or by express incorporation into the shipping documents. This paper also evaluates the legal and technological criteria for assessing whether a vessel is properly equipped with the latest offshore technologies for navigation and cargo delivery operations. Examples include computer applications, networks and servers, enterprise systems, global positioning systems, and data centers. A critical analysis of the carriers’ obligations to exercise due diligence in preventing or mitigating cyber-attacks is also conducted in this paper. It is hoped that the present study will offer original and crucial insights to policymakers, regulators, carriers, cargo interests, and insurance underwriters closely involved in dispute prevention and resolution arising from cybersecurity liabilities.Keywords: seaworthiness, cybersecurity, liabilities, risks, maritime, transport
Procedia PDF Downloads 1342038 Influence of Sr(BO2)2 Doping on Superconducting Properties of (Bi,Pb)-2223 Phase
Authors: N. G. Margiani, I. G. Kvartskhava, G. A. Mumladze, Z. A. Adamia
Abstract:
Chemical doping with different elements and compounds at various amounts represents the most suitable approach to improve the superconducting properties of bismuth-based superconductors for technological applications. In this paper, the influence of partial substitution of Sr(BO2)2 for SrO on the phase formation kinetics and transport properties of (Bi,Pb)-2223 HTS has been studied for the first time. Samples with nominal composition Bi1.7Pb0.3Sr2-xCa2Cu3Oy[Sr(BO2)2]x, x=0, 0.0375, 0.075, 0.15, 0.25, were prepared by the standard solid state processing. The appropriate mixtures were calcined at 845 oC for 40 h. The resulting materials were pressed into pellets and annealed at 837 oC for 30 h in air. Superconducting properties of undoped (reference) and Sr(BO2)2-doped (Bi,Pb)-2223 compounds were investigated through X-ray diffraction (XRD), resistivity (ρ) and transport critical current density (Jc) measurements. The surface morphology changes in the prepared samples were examined by scanning electron microscope (SEM). XRD and Jc studies have shown that the low level Sr(BO2)2 doping (x=0.0375-0.075) to the Sr-site promotes the formation of high-Tc phase and leads to the enhancement of current carrying capacity in (Bi,Pb)-2223 HTS. The doped sample with x=0.0375 has the best performance compared to other prepared samples. The estimated volume fraction of (Bi,Pb)-2223 phase increases from ~25 % for reference specimen to ~70 % for x=0.0375. Moreover, strong increase in the self-field Jc value was observed for this dopant amount (Jc=340 A/cm2), compared to an undoped sample (Jc=110 A/cm2). Pronounced enhancement of superconducting properties of (Bi,Pb)-2223 superconductor can be attributed to the acceleration of high-Tc phase formation as well as the improvement of inter-grain connectivity by small amounts of Sr(BO2)2 dopant.Keywords: bismuth-based superconductor, critical current density, phase formation, Sr(BO₂)₂ doping
Procedia PDF Downloads 2442037 Big Data in Telecom Industry: Effective Predictive Techniques on Call Detail Records
Authors: Sara ElElimy, Samir Moustafa
Abstract:
Mobile network operators start to face many challenges in the digital era, especially with high demands from customers. Since mobile network operators are considered a source of big data, traditional techniques are not effective with new era of big data, Internet of things (IoT) and 5G; as a result, handling effectively different big datasets becomes a vital task for operators with the continuous growth of data and moving from long term evolution (LTE) to 5G. So, there is an urgent need for effective Big data analytics to predict future demands, traffic, and network performance to full fill the requirements of the fifth generation of mobile network technology. In this paper, we introduce data science techniques using machine learning and deep learning algorithms: the autoregressive integrated moving average (ARIMA), Bayesian-based curve fitting, and recurrent neural network (RNN) are employed for a data-driven application to mobile network operators. The main framework included in models are identification parameters of each model, estimation, prediction, and final data-driven application of this prediction from business and network performance applications. These models are applied to Telecom Italia Big Data challenge call detail records (CDRs) datasets. The performance of these models is found out using a specific well-known evaluation criteria shows that ARIMA (machine learning-based model) is more accurate as a predictive model in such a dataset than the RNN (deep learning model).Keywords: big data analytics, machine learning, CDRs, 5G
Procedia PDF Downloads 1392036 Mechanical and Optical Properties of Doped Aluminum Nitride Thin Films
Authors: Padmalochan Panda, R. Ramaseshan
Abstract:
Aluminum nitride (AlN) is a potential candidate for semiconductor industry due to its wide band gap (6.2 eV), high thermal conductivity and low thermal coefficient of expansion. A-plane oriented AlN film finds an important role in deep UV-LED with higher isotropic light extraction efficiency. Also, Cr-doped AlN films exhibit dilute magnetic semiconductor property with high Curie temperature (300 K), and thus compatible with modern day microelectronics. In this work, highly a-axis oriented wurtzite AlN and Al1-xMxN (M = Cr, Ti) films have synthesized by reactive co-sputtering technique at different concentration. Crystal structure of these films is studied by Grazing incidence X-ray diffraction (GIXRD) and Transmission electron microscopy (TEM). Identification of binding energy and concentration (x) in these films is carried out by X-ray photoelectron spectroscopy (XPS). Local crystal structure around the Cr and Ti atom of these films are investigated by X-ray absorption spectroscopy (XAS). It is found that Cr and Ti replace the Al atom in AlN lattice and the bond lengths in first and second coordination sphere with N and Al, respectively, decrease concerning doping concentration due to strong p-d hybridization. The nano-indentation hardness of Cr and Ti-doped AlN films seems to increase from 17.5 GPa (AlN) to around 23 and 27.5 GPa, respectively. An-isotropic optical properties of these films are studied by the Spectroscopic Ellipsometry technique. Refractive index and extinction coefficient of these films are enhanced in normal dispersion region as compared to the parent AlN film. The optical band gap energies also seem to vary between deep UV to UV regions with the addition of Cr, thus by bringing out the usefulness of these films in the area of optoelectronic device applications.Keywords: ellipsometry, GIXRD, hardness, XAS
Procedia PDF Downloads 1142035 On the Development of Medical Additive Manufacturing in Egypt
Authors: Khalid Abdelghany
Abstract:
Additive Manufacturing (AM) is the manufacturing technology that is used to fabricate fast products direct from CAD models in very short time and with minimum operation steps. Jointly with the advancement in medical computer modeling, AM proved to be a very efficient tool to help physicians, orthopedic surgeons and dentists design and fabricate patient-tailored surgical guides, templates and customized implants from the patient’s CT / MRI images. AM jointly with computer-assisted designing/computer-assisted manufacturing (CAD/CAM) technology have enabled medical practitioners to tailor physical models in a patient-and purpose-specific fashion and helped to design and manufacture of templates, appliances and devices with a high range of accuracy using biocompatible materials. In developing countries, there are some technical and financial limitations of implementing such advanced tools as an essential portion of medical applications. CMRDI institute in Egypt has been working in the field of Medical Additive Manufacturing since 2003 and has assisted in the recovery of hundreds of poor patients using these advanced tools. This paper focuses on the surgical and dental use of 3D printing technology in Egypt as a developing country. The presented case studies have been designed and processed using the software tools and additive manufacturing machines in CMRDI through cooperative engineering and medical works. Results showed that the implementation of the additive manufacturing tools in developed countries is successful and could be economical comparing to long treatment plans.Keywords: additive manufacturing, dental and orthopeadic stents, patient specific surgical tools, titanium implants
Procedia PDF Downloads 3152034 Obtaining Bioactive Mg-hydroxyapatite Composite Ceramics From Phosphate Rock For Medical Applications
Authors: Sara Mercedes Barroso Pinzón, Antonio Javier Sanchéz Herencia, Begoña Ferrari, Álvaro Jesús Castro
Abstract:
The current need for durable implants and bone substitutes characterised by biocompatibility, bioactivity and mechanical properties, without immunological rejection, is a major challenge for scientists. Hydroxyapatite (HAp) has been considered for decades as an ideal biomaterial for bone regeneration due to its chemical and crystallographic similarity to the mineral structure bioapatites. However, the lack of trace elements in the hydroxyapatite structure gives it very low mechanical and biological properties. In this sense, the objective of the research is to address the synthesis of hydroxyapatite with Mg from phosphate rock from sedimentary deposits in the central-eastern region of Colombia, taking advantage of the release of the species contained as natural precursors of Ca, P and Mg. The minerals present were studied, fluorapatite as the mineral of interest associated with mineralogical species of magnesium carbonates and quartz. The chemical and mineralogical composition was determined by X-ray fluorescence (XRF) and X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX); as well as the evaluation of the surface physicochemical properties of zeta potential (PZC), with the aim of studying the surface behaviour of the microconstituents present in the phosphate rock and to elucidate the synergistic mechanism between the minerals and establish the optimum conditions for the wet concentration process. From the products obtained and characterised by XRD, XRF, SEM, FTIR, RAMAN, HAp-Mg biocomposite scaffolds are fabricated and the influence of Mg on the morphometric parameters, mechanical and biological properties of the designed materials is evaluated.Keywords: phosphate rock, hydroxyapatite, magnesium, biomaterials
Procedia PDF Downloads 502033 Design Optimization of Chevron Nozzles for Jet Noise Reduction
Authors: E. Manikandan, C. Chilambarasan, M. Sulthan Ariff Rahman, S. Kanagaraj, V. R. Sanal Kumar
Abstract:
The noise regulations around the major airports and rocket launching stations due to the environmental concern have made jet noise a crucial problem in the present day aero-acoustics research. The three main acoustic sources in jet nozzles are aerodynamics noise, noise from craft systems and engine and mechanical noise. Note that the majority of engine noise is due to the jet noise coming out from the exhaust nozzle. The previous studies reveal that the potential of chevron nozzles for aircraft engines noise reduction is promising owing to the fact that the jet noise continues to be the dominant noise component, especially during take-off. In this paper parametric analytical studies have been carried out for optimizing the number of chevron lobes, the lobe length and tip shape, and the level of penetration of the chevrons into the flow over a variety of flow conditions for various aerospace applications. The numerical studies have been carried out using a validated steady 3D density based, SST k-ω turbulence model with enhanced wall functions. In the numerical study, a fully implicit finite volume scheme of the compressible, Navier–Stokes equations is employed. We inferred that the geometry optimization of an environmental friendly chevron nozzle with a suitable number of chevron lobes with aerodynamically efficient tip contours for facilitating silent exit flow will enable a commendable sound reduction without much thrust penalty while comparing with the conventional supersonic nozzles with same area ratio.Keywords: chevron nozzle, jet acoustic level, jet noise suppression, shape optimization of chevron nozzles
Procedia PDF Downloads 3112032 Waste-Based Surface Modification to Enhance Corrosion Resistance of Aluminium Bronze Alloy
Authors: Wilson Handoko, Farshid Pahlevani, Isha Singla, Himanish Kumar, Veena Sahajwalla
Abstract:
Aluminium bronze alloys are well known for their superior abrasion, tensile strength and non-magnetic properties, due to the co-presence of iron (Fe) and aluminium (Al) as alloying elements and have been commonly used in many industrial applications. However, continuous exposure to the marine environment will accelerate the risk of a tendency to Al bronze alloys parts failures. Although a higher level of corrosion resistance properties can be achieved by modifying its elemental composition, it will come at a price through the complex manufacturing process and increases the risk of reducing the ductility of Al bronze alloy. In this research, the use of ironmaking slag and waste plastic as the input source for surface modification of Al bronze alloy was implemented. Microstructural analysis conducted using polarised light microscopy and scanning electron microscopy (SEM) that is equipped with energy dispersive spectroscopy (EDS). An electrochemical corrosion test was carried out through Tafel polarisation method and calculation of protection efficiency against the base-material was determined. Results have indicated that uniform modified surface which is as the result of selective diffusion process, has enhanced corrosion resistance properties up to 12.67%. This approach has opened a new opportunity to access various industrial utilisations in commercial scale through minimising the dependency on natural resources by transforming waste sources into the protective coating in environmentally friendly and cost-effective ways.Keywords: aluminium bronze, waste-based surface modification, tafel polarisation, corrosion resistance
Procedia PDF Downloads 2362031 Reimagine and Redesign: Augmented Reality Digital Technologies and 21st Century Education
Authors: Jasmin Cowin
Abstract:
Augmented reality digital technologies, big data, and the need for a teacher workforce able to meet the demands of a knowledge-based society are poised to lead to major changes in the field of education. This paper explores applications and educational use cases of augmented reality digital technologies for educational organizations during the Fourth Industrial Revolution. The Fourth Industrial Revolution requires vision, flexibility, and innovative educational conduits by governments and educational institutions to remain competitive in a global economy. Educational organizations will need to focus on teaching in and for a digital age to continue offering academic knowledge relevant to 21st-century markets and changing labor force needs. Implementation of contemporary disciplines will need to be embodied through learners’ active knowledge-making experiences while embracing ubiquitous accessibility. The power of distributed ledger technology promises major streamlining for educational record-keeping, degree conferrals, and authenticity guarantees. Augmented reality digital technologies hold the potential to restructure educational philosophies and their underpinning pedagogies thereby transforming modes of delivery. Structural changes in education and governmental planning are already increasing through intelligent systems and big data. Reimagining and redesigning education on a broad scale is required to plan and implement governmental and institutional changes to harness innovative technologies while moving away from the big schooling machine.Keywords: fourth industrial revolution, artificial intelligence, big data, education, augmented reality digital technologies, distributed ledger technology
Procedia PDF Downloads 2772030 A Study of Laminar Natural Convection in Annular Spaces between Differentially Heated Horizontal Circular Cylinders Filled with Non-Newtonian Nano Fluids
Authors: Behzad Ahdiharab, Senol Baskaya, Tamer Calisir
Abstract:
Heat exchangers are one of the most widely used systems in factories, refineries etc. In this study, natural convection heat transfer using nano-fluids in between two cylinders is numerically investigated. The inner and outer cylinders are kept at constant temperatures. One of the most important assumptions in the project is that the working fluid is non-Newtonian. In recent years, the use of nano-fluids in industrial applications has increased profoundly. In this study, nano-Newtonian fluids containing metal particles with high heat transfer coefficients have been used. All fluid properties such as homogeneity has been calculated. In the present study, solutions have been obtained under unsteady conditions, base fluid was water, and effects of various parameters on heat transfer have been investigated. These parameters are Rayleigh number (103 < Ra < 106), power-law index (0.6 < n < 1.4), aspect ratio (0 < AR < 0.8), nano-particle composition, horizontal and vertical displacement of the inner cylinder, rotation of the inner cylinder, and volume fraction of nanoparticles. Results such as the internal cylinder average and local Nusselt number variations, contours of temperature, flow lines are presented. The results are also discussed in detail. From the validation study performed it was found that a very good agreement exists between the present results and those from the open literature. It was found out that the heat transfer is always affected by the investigated parameters. However, the degree to which the heat transfer is affected does change in a wide range.Keywords: heat transfer, circular space, non-Newtonian, nano fluid, computational fluid dynamics.
Procedia PDF Downloads 4152029 Condensation Heat Transfer and Pressure Drop of R-134a Flowing inside Dimpled Tubes
Authors: Kanit Aroonrat, Somchai Wongwises
Abstract:
A heat exchanger is one of the vital parts in a wide variety of applications. The tube with surface modification is generally referred to as an enhanced tube. With this, the thermal performance of the heat exchanger is improved. A dimpled tube is one of many kinds of enhanced tube. The heat transfer and pressure drop of two-phase flow inside dimpled tubes have received little attention in the literature, despite of having an important role in the development of refrigeration and air conditioning systems. As a result, the main aim of this study is to investigate the condensation heat transfer and pressure drop of refrigerant-134a flowing inside dimpled tubes. The test section is a counter-flow double-tube heat exchanger, which the refrigerant flows in the inner tube and water flows in the annulus. The inner tubes are one smooth tube and three dimpled tubes with different helical pitches. All test tubes are made from copper with an inside diameter of 8.1 mm and length of 1500 mm. The experiments are conducted over mass fluxes ranging from 300 to 500 kg/m²s, heat flux ranging from 10 to 20 kW/m², and condensing temperature ranging from 40 to 50 ˚C. The results show that all dimpled tubes provide higher heat transfer coefficient and frictional pressure drop compared to the smooth tube. In addition, the heat transfer coefficient and frictional pressure drop increase with decreasing of helical pitch. It can be observed that the dimpled tube with lowest helical pitch yields the heat transfer enhancement in the range of 60-89% with the frictional pressure drop increase of 289-674% in comparison to the smooth tube.Keywords: condensation, dimpled tube, heat transfer, pressure drop
Procedia PDF Downloads 2152028 The Corrosion Resistance of P/M Alumix 431D Compacts
Authors: J. Kazior, A. Szewczyk-Nykiel, T. Pieczonka, M. Laska
Abstract:
Aluminium alloys are an important class of engineering materials for structural applications. This is due to the fact that these alloys have many interesting properties, namely, low density, high ratio of strength to density, good thermal and electrical conductivity, good corrosion resistance as well as extensive capabilities for shaping processes. In case of classical PM technology a particular attention should be paid to the selection of appropriate parameters of compacting and sintering processes and to keeping them. The latter need arises from the high sensitivity of aluminium based alloy powders on any fluctuation of technological parameters, in particular those related to the temperature-time profile and gas flow. Only then the desired sintered compacts with residual porosity may be produced. Except high mechanical properties, the other profitable properties of almost fully dense sintered components could be expected. Among them is corrosion resistance, rarely investigated on PM aluminium alloys. Thus, in the current study the Alumix 431/D commercial, press-ready grade powder was used for this purpose. Sintered compacts made of it in different conditions (isothermal sintering temperature, gas flow rate) were subjected to corrosion experiments in 0,1 M and 0,5 M NaCl solutions. The potentiodynamic curves were used to establish parameters characterising the corrosion resistance of sintered Alumix 431/D powder, namely, the corrosion potential, the corrosion current density, the polarization resistance, the breakdown potential. The highest value of polarization resistance, the lowest value of corrosion current density and the most positive corrosion potential was obtained for Alumix431/D powder sintered at 600°C and for highest protective gas flow rate.Keywords: aluminium alloys, sintering, corrosion resistance, industry
Procedia PDF Downloads 3462027 Android-Based Edugame Application for Earthquakes Disaster Mitigation Education
Authors: Endina P. Purwandari, Yolanda Hervianti, Feri Noperman, Endang W. Winarni
Abstract:
The earthquakes disaster is an event that can threaten at any moment and cause damage and loss of life. Game earthquake disaster mitigation is a useful educational game to enhance children insight, knowledge, and understanding in the response to the impact of the earthquake. This study aims to build an educational games application on the Android platform as a learning media for earthquake mitigation education and to determine the effect of the application toward children understanding of the earthquake disaster mitigation. The methods were research and development. The development was to develop edugame application for earthquakes mitigation education. The research involved elementary students as a research sample to test the developed application. The research results were valid android-based edugame application, and its the effect of application toward children understanding. The application contains an earthquake simulation video, an earthquake mitigation video, and a game consisting three stages, namely before the earthquake, when the earthquake occur, and after the earthquake. The results of the feasibility test application showed that this application was included in the category of 'Excellent' which the average percentage of the operation of applications by 76%, view application by 67% and contents of application by 74%. The test results of students' responses were 80% that showed that a positive their responses toward the application. The student understanding test results show that the average score of children understanding pretest was 71,33, and post-test was 97,00. T-test result showed that t value by 8,02 more than table t by 2,001. This indicated that the earthquakes disaster mitigation edugame application based on Android platform affects the children understanding about disaster earthquake mitigation.Keywords: android, edugame, mitigation, earthquakes
Procedia PDF Downloads 3642026 Characterizing the Spatially Distributed Differences in the Operational Performance of Solar Power Plants Considering Input Volatility: Evidence from China
Authors: Bai-Chen Xie, Xian-Peng Chen
Abstract:
China has become the world's largest energy producer and consumer, and its development of renewable energy is of great significance to global energy governance and the fight against climate change. The rapid growth of solar power in China could help achieve its ambitious carbon peak and carbon neutrality targets early. However, the non-technical costs of solar power in China are much higher than at international levels, meaning that inefficiencies are rooted in poor management and improper policy design and that efficiency distortions have become a serious challenge to the sustainable development of the renewable energy industry. Unlike fossil energy generation technologies, the output of solar power is closely related to the volatile solar resource, and the spatial unevenness of solar resource distribution leads to potential efficiency spatial distribution differences. It is necessary to develop an efficiency evaluation method that considers the volatility of solar resources and explores the mechanism of the influence of natural geography and social environment on the spatially varying characteristics of efficiency distribution to uncover the root causes of managing inefficiencies. The study sets solar resources as stochastic inputs, introduces a chance-constrained data envelopment analysis model combined with the directional distance function, and measures the solar resource utilization efficiency of 222 solar power plants in representative photovoltaic bases in northwestern China. By the meta-frontier analysis, we measured the characteristics of different power plant clusters and compared the differences among groups, discussed the mechanism of environmental factors influencing inefficiencies, and performed statistical tests through the system generalized method of moments. Rational localization of power plants is a systematic project that requires careful consideration of the full utilization of solar resources, low transmission costs, and power consumption guarantee. Suitable temperature, precipitation, and wind speed can improve the working performance of photovoltaic modules, reasonable terrain inclination can reduce land cost, and the proximity to cities strongly guarantees the consumption of electricity. The density of electricity demand and high-tech industries is more important than resource abundance because they trigger the clustering of power plants to result in a good demonstration and competitive effect. To ensure renewable energy consumption, increased support for rural grids and encouraging direct trading between generators and neighboring users will provide solutions. The study will provide proposals for improving the full life-cycle operational activities of solar power plants in China to reduce high non-technical costs and improve competitiveness against fossil energy sources.Keywords: solar power plants, environmental factors, data envelopment analysis, efficiency evaluation
Procedia PDF Downloads 912025 Performance Analysis and Multi-Objective Optimization of a Kalina Cycle for Low-Temperature Applications
Authors: Sadegh Sadeghi, Negar Shabani
Abstract:
From a thermal point of view, zeotropic mixtures are likely to be more efficient than azeotropic fluids in low-temperature thermodynamic cycles due to their suitable boiling characteristics. In this study, performance of a low-temperature Kalina cycle with R717/water working fluid used in different existing power plants is mathematically investigated. To analyze the behavior of the cycle, mass conservation, energy conservation, and exergy balance equations are presented. With regard to the similarity in molar mass of R717 (17.03 gr/mol) and water (18.01 gr/mol), there is no need to alter the size of Kalina system components such as turbine and pump. To optimize the cycle energy and exergy efficiencies simultaneously, a constrained multi-objective optimization is carried out applying an Artificial Bee Colony algorithm. The main motivation behind using this algorithm lies on its robustness, reliability, remarkable precision and high–speed convergence rate in dealing with complicated constrained multi-objective problems. Convergence rates of the algorithm for calculating the optimal energy and exergy efficiencies are presented. Subsequently, due to the importance of exergy concept in Kalina cycles, exergy destructions occurring in the components are computed. Finally, the impacts of pressure, temperature, mass fraction and mass flow rate on the energy and exergy efficiencies are elaborately studied.Keywords: artificial bee colony algorithm, binary zeotropic mixture, constrained multi-objective optimization, energy efficiency, exergy efficiency, Kalina cycle
Procedia PDF Downloads 1532024 Narratives of Cultural Encounters Revisited: Moroccan Entertainers beyond Borders (1840-1920)
Authors: Lhoussain Simour
Abstract:
This paper discusses the reordering and reorientation Moroccan Oossified and frozen histories in national and colonial archives. It attempts to reexamine Moroccan non-canonical voices beyond borders, their forgotten experiences and itineraries, with the aim of uncovering cultural discourses pertaining to early cultural and artistic interactions between Morocco and the western countries, namely Britain and America. In fact, less attention has been given to the presence of Moroccan entertainers beyond borders in the archives of history. Moroccan historians and cultural critics seem to have paid little critical consideration to Moroccan artistic encounters with the west, Europe and America as a case in point. They have overlooked to deal with travel performances, professional entertainments, and artistic spectacles, initiated by acrobats, as instances of visual cross-cultural encounters between Morocco and the west. The narratives of these professional artists have hardly found their ways into historiographical writing. This contribution attempts to locate the contesting beginnings of Moroccan professional entertainers in western show business in the nineteenth century which witnessed intricate artistic, discursive and cultural junctures by emphasizing connections between theatrical performances, ethnic exhibition and world fair expositions. Moroccan professional performances grew in Europe and America within a zealous context marked by the rise of a paradigmatic racial consciousness that sought to authenticate and legitimate ethnic discourses of power and exclusion. The ethnic taxonomies and racial hierarchies governed by ethnographic and anthropological documentation fueled up entertainment venues and popular theatrical performances and helped in developing a distinctive view about Self and Other paradigms. Moroccan travelers started their journeys to visit European and American countries to exhibit their acrobatics acts. They, in a certain sense, continued, albeit in varying degrees and circumstances, the whole tradition of travel initiated previously by their ancestor diplomats and ambassadors. Professional entertainers embarked on daring journeys across the Mediterranean and the Atlantic to discover new geographies and cultural spaces, and perform their spectacles beyond borders. These travelers left rich archival documents that reflect important cultural and historical moments. The routes of travel started from the margins of the empire towards metropolitan centers of nineteenth century Europe and America included Moroccan women travelers as acrobats and dancing professional artists as well. These also crossed the straits of Gibraltar and journeyed through the Atlantic Ocean to visit western countries. Moroccan women travelers took part in various Euro-American theatre performances and in circus shows as early as 1850 according to newspapers archives and passengers shipping lists. Najat Amburg, Zahar Ben Tahar, Torquia, Fadma, and many more whose names are now lost to us, moved freely in various western capital cities to entertain nineteenth century western audiences.Keywords: archives, cultural encounters, self and other, Morocco, travel, Moroccan acrobats, Moorish dancing women
Procedia PDF Downloads 172