Search results for: physical and mechanical variables
12286 Study of Mechanical Behavior of Unidirectional Composite Laminates According
Authors: Deliou Adel, Saadalah Younes, Belkaid Khmissi, Dehbi Meriem
Abstract:
Composite materials, in the most common sense of the term, are a set of synthetic materials designed and used mainly for structural applications; the mechanical function is dominant. The mechanical behaviors of the composite, as well as the degradation mechanisms leading to its rupture, depend on the nature of the constituents and on the architecture of the fiber preform. The profile is required because it guides the engineer in designing structures with precise properties in relation to the needs. This work is about studying the mechanical behavior of unidirectional composite laminates according to different failure criteria. Varying strength parameter values make it possible to compare the ultimate mechanical characteristics obtained by the criteria of Tsai-Hill, Fisher and maximum stress. The laminate is subjected to uniaxial tensile membrane forces. Estimates of their ultimate strengths and the plotting of the failure envelope constitute the principal axis of this study. Using the theory of maximum stress, we can determine the various modes of damage of the composite. The different components of the deformation are presented for different orientations of fibers.Keywords: unidirectional kevlar/epoxy composite, failure criterion, membrane stress, deformations, failure envelope
Procedia PDF Downloads 8912285 Optimization of 3D Printing Parameters Using Machine Learning to Enhance Mechanical Properties in Fused Deposition Modeling (FDM) Technology
Authors: Darwin Junnior Sabino Diego, Brando Burgos Guerrero, Diego Arroyo Villanueva
Abstract:
Additive manufacturing, commonly known as 3D printing, has revolutionized modern manufacturing by enabling the agile creation of complex objects. However, challenges persist in the consistency and quality of printed parts, particularly in their mechanical properties. This study focuses on addressing these challenges through the optimization of printing parameters in FDM technology, using Machine Learning techniques. Our aim is to improve the mechanical properties of printed objects by optimizing parameters such as speed, temperature, and orientation. We implement a methodology that combines experimental data collection with Machine Learning algorithms to identify relationships between printing parameters and mechanical properties. The results demonstrate the potential of this methodology to enhance the quality and consistency of 3D printed products, with significant applications across various industrial fields. This research not only advances understanding of additive manufacturing but also opens new avenues for practical implementation in industrial settings.Keywords: 3D printing, additive manufacturing, machine learning, mechanical properties
Procedia PDF Downloads 5312284 The Benefits of Mountain Climbing in the Physical Well-Being of Young People
Authors: Zylfi Shehu, Rozeta Shatku
Abstract:
The aim of this study is the identification of the goods and the consequences it brings up the mountain climbing to the youth, how mountain climbing influences in physical activity and the health of young people. Taken to study 37 young people aged 18-30 years, 25 males and 12 females. The selection was made at random and voluntary. Subjects were not professionals but amateurs climbing in the mountain. They were informed and instructed for the test to be carried out. The ascent was made in January 2016 in the Mount of Gjallica in Kukës, Albania, the height of the mountain is 2489 m above sea level. Backpack for each subject weighing 32 kg. Time of ascent, attitude and descent was 6 days. In 22 males, 2 of them did not afford the ascent on the first day and went back. Of the 12 women, 5 of them withdrew on the first day. During the descent on day six, 20 males 7 of them had minor injuries, three with serious injuries. While a total of 7 women, 4 of them had minor injuries and one with serious injuries. Most of the men and women who deal with physical activity throughout life faced the light and were not injured, and the rest that were not dealt with physical activity were more injured. Lack of experience and knowledge was one of the causes of injuries. The subjects had anxiety all the time, uncertainty and fear of avalanches of snow and difficult terrain.Keywords: climbing, physical activity, young people
Procedia PDF Downloads 34312283 Study of Properties of Concretes Made of Local Building Materials and Containing Admixtures, and Their Further Introduction in Construction Operations and Road Building
Authors: Iuri Salukvadze
Abstract:
Development of Georgian Economy largely depends on its effective use of its transit country potential. The value of Georgia as the part of Europe-Asia corridor has increased; this increases the interest of western and eastern countries to Georgia as to the country that laid on the transit axes that implies transit infrastructure creation and development in Georgia. It is important to use compacted concrete with the additive in modern road construction industry. Even in the 21-century, concrete remains as the main vital constructive building material, therefore innovative, economic and environmentally protected technologies are needed. Georgian construction market requires the use of concrete of new generation, adaptation of nanotechnologies to the local realities that will give the ability to create multifunctional, nano-technological high effective materials. It is highly important to research their physical and mechanical states. The study of compacted concrete with the additives is necessary to use in the road construction in the future and to increase hardness of roads in Georgia. The aim of the research is to study the physical-mechanical properties of the compacted concrete with the additives based on the local materials. Any experimental study needs large number of experiments from one side in order to achieve high accuracy and optimal number of the experiments with minimal charges and in the shortest period of time from the other side. To solve this problem in practice, it is possible to use experiments planning static and mathematical methods. For the materials properties research we will use distribution hypothesis, measurements results by normal law according to which divergence of the obtained results is caused by the error of method and inhomogeneity of the object. As the result of the study, we will get resistible compacted concrete with additives for the motor roads that will improve roads infrastructure and give us saving rate while construction of the roads and their exploitation.Keywords: construction, seismic protection systems, soil, motor roads, concrete
Procedia PDF Downloads 24512282 Mechanical Properties of Hybrid Cement Based Mortars Containing Two Biopolymers
Authors: Z. Abdollahnejad, M. Kheradmand, F. Pacheco-Torgal
Abstract:
The use of bio-based admixtures on construction materials is a recent trend that is gaining momentum. However, to our knowledge, no studies have been reported concerning the use of biopolymers on hybrid cement based mortars. This paper reports experimental results regarding the study of the influence of mix design of 43 hybrid cement mortars containing two different biopolymers on its mechanical performance. The results show that the use of the biopolymer carrageenan is much more effective than the biopolymer xanthan concerning the increase in compressive strength. An optimum biopolymer content was found.Keywords: waste reuse, fly ash, waste glass, hybrid cement, biopolymers, mechanical strength
Procedia PDF Downloads 30212281 An Aesthetic Spatial Turn - AI and Aesthetics in the Physical, Psychological, and Symbolic Spaces of Brand Advertising
Authors: Yu Chen
Abstract:
In line with existing philosophical approaches, this research proposes a conceptual model with an innovative spatial vision and aesthetic principles for Artificial Intelligence (AI) application in brand advertising. The model first identifies the major constituencies in contemporary advertising on three spatial levels—physical, psychological, and symbolic. The model further incorporates the relationships among AI, aesthetics, branding, and advertising and their interactions with the major actors in all spaces. It illustrates that AI may follow the aesthetic principles-- beauty, elegance, and simplicity-- to reinforce brand identity and consistency in advertising, to collaborate with stakeholders, and to satisfy different advertising objectives on each level. It proposes that, with aesthetic guidelines, AI may assist consumers to emerge into the physical, psychological, and symbolic advertising spaces and helps transcend the tangible advertising messages to meaningful brand symbols. Conceptually, the research illustrates that even though consumers’ engagement with brand mostly begins with physical advertising and later moves to psychological-symbolic, AI-assisted advertising should start with the understanding of brand symbolic-psychological and consumer aesthetic preferences before the physical design to better resonate. Limits of AI and future AI functions in advertising are discussed.Keywords: AI, spatial, aesthetic, brand advertising
Procedia PDF Downloads 8012280 Simulation of Non-Crimp 3D Orthogonal Carbon Fabric Composite for Aerospace Applications Using Finite Element Method
Authors: Sh. Minapoor, S. Ajeli, M. Javadi Toghchi
Abstract:
Non-crimp 3D orthogonal fabric composite is one of the textile-based composite materials that are rapidly developing light-weight engineering materials. The present paper focuses on geometric and micro mechanical modeling of non-crimp 3D orthogonal carbon fabric and composites reinforced with it for aerospace applications. In this research meso-finite element (FE) modeling employs for stress analysis in different load conditions. Since mechanical testing of expensive textile carbon composites with specific application isn't affordable, simulation composite in a virtual environment is a helpful way to investigate its mechanical properties in different conditions.Keywords: woven composite, aerospace applications, finite element method, mechanical properties
Procedia PDF Downloads 46512279 The Associations between Self-Determined Motivation and Physical Activity in Patients with Coronary Heart Disease
Authors: I. Hua Chu, Hsiang-Chi Yu, Hsuan Su
Abstract:
Purpose: To examine the associations between self-determined motivation and physical activity in patients with coronary heart disease (CHD) in a longitudinal study. Methods: Patients with CHD were recruited for this study. Their motivations for exercise were measured by the Behavioral Regulation in Exercise Questionnaire-2 (BREQ-2). Physical activity was assessed using the 7-day physical activity recall questionnaire. Duration and energy expenditure of moderate to vigorous physical activity (MVPA) were used in data analysis. All outcome measures were assessed at baseline and 12 months follow up. Data were analyzed using Pearson correlation analysis and regression analysis. Results: The results of the 45 participants (mean age 60.24 yr; 90.2% male) revealed that there were significant negative correlations between amotivation at baseline and duration (r=-.295, p=.049) and energy expenditure (r=-.300, p=.045) of MVPA at 12 months. In contrast, there were significant positive correlations between calculated relative autonomy index (RAI) at baseline and duration (r=.377, p=.011) and energy expenditure (r=.382, p=.010) of MVPA at 12 months. There was no significant correlation between other subscales of the BREQ-2 and duration or energy expenditure of MVPA. Regression analyses revealed that RAI was a significant predictor of duration (p=.011) and energy expenditure (p=.010) of MVPA at 12 months follow-up. Conclusions: These results suggest that the relative degree of self-determined motivation could predict long-term MVPA behaviors in CHD patients. Physical activity interventions are recommended to target enhancing one’s identified and intrinsic motivation to increase the likelihood of physical activity participation in this population.Keywords: self-determined motivation, physical activity, coronary heart disease, relative autonomy index (RAI)
Procedia PDF Downloads 42812278 Study of the Nanostructured Fe₅₀Cr₃₅Ni₁₅ Powder Alloy Developed by Mechanical Alloying
Authors: Salim Triaa, Fella Kali-Ali
Abstract:
Nanostructured Fe₅₀Cr3₃₅Ni₁₅ alloys were prepared from pure elemental powders using high energy mechanical alloying. The mixture powders obtained are characterized by several techniques. X-ray diffraction analysis revelated the formation of the Fe₁Cr₁ compound with BBC structure after one hour of milling. A second compound Fe₃Ni₂ with FCC structure was observed after 12 hours of milling. The size of crystallite determined by Williamson Hall method was about 5.1 nm after 48h of mill. SEM observations confirmed the growth of crushed particles as a function of milling time, while the homogenization of our powders into different constituent elements was verified by the EDX analysis.Keywords: Fe-Cr-Ni alloy, mechanical alloying, nanostructure, SEM, XRD
Procedia PDF Downloads 17612277 Effects of Al on Microstructure and Magnetic Properties of (Nd,Pr)-(Fe,Co)-B Alloys Prepared by Mechanical Alloying
Authors: Rahim Sabbaghizadeh, Mansor Hashim, Nooshin Shourcheh
Abstract:
Nanocrystalline Nd8Pr2Fe79-xCo5B6Alx (x=0, 1, 2, 3) magnets were prepared by mechanical alloying and respective heat treatment, and the effects of the addition of Al on the microstructure and magnetic properties of Nd-Fe-Co-B alloy were studied. The changes in the nanostructure and magnetic properties were examined by X-Ray diffraction, combined with Field Emission Scanning electron microscopy (FeSEM) and vibrating sample magnetometer (VSM). Addition of Al was found to be effective for improving the coercivity and the hysteresis squareness in Nd–Fe–Co–B magnets without decreasing much the remanent magnetization.Keywords: mechanical alloying, nanocrystalline, Nd-Fe-B, vibrating sample magnetomete
Procedia PDF Downloads 51512276 Mechanisms in Regulating Language Practices in Electronics Engineering: A Program Plan for Outcomes-Based Education
Authors: Analiza Acuña-Villacorte
Abstract:
The underlying principle behind the harmonization in international education does not solely aim for the comparability but also the compatibility of outputs produced. The international standard in the different professions particularly in engineering defines the required graduate attributes to attain suitable qualifications and recognitions. This study described the language practices of the Electronics Engineering students of Bulacan State University, Philippines who will be deployed for their internship program. The purpose of the study was achieved by determining the language proficiency of the students in terms of speaking, listening, reading, and writing, and checking the adherence of the University to the commitment of intensifying community building for the Association of Southeast Asian Nation Vision 2020. The analysis of variance of the variables defined the significance between the causal variables and dependent variables. Thus, this study identified the mechanism that would regulate language practices in the Electronics Engineering program.Keywords: communicative competence, language practices, mechanisms, outcomes-based education
Procedia PDF Downloads 29612275 Magnetic (Ethylene-Octene) Polymer Composites Reinforced With Carbon Black
Authors: Marcin Maslowski, Marian Zaborski
Abstract:
The aim of the study was to receive magnetorheological elastomer composites (MRE) with the best mechanical characteristics. MRE based on different magnetoactive fillers in ethylene-octene rubber are reported and studied. To improve mechanical properties of polymer mixtures, also carbon black (N550) was added during the composites preparation process. Micro and nan-sized magnetites (Fe3O4), as well as gamma iron oxide (gamma-Fe2O3) and carbonyl iron powder (CIP) are added together with carbon black (N550) were found to be an active fillers systems improving both static and dynamic mechanical properties of elastomers. They also changed magnetic properties of composites. Dynamic-mechanical analysis (DMA) indicates the presence of strongly developed secondary structure in vulcanizates. Reinforcing character of applied different fillers systems results in an increased stress at 100% elongation, tensile strength and cross-linking density of the vulcanizates. Studies investigated by vibration sample magnetometer (VSM) proved that all composites exhibit good magnetic properties.Keywords: carbon black, mechanical properties, magnetorheological composites, magnetic fillers
Procedia PDF Downloads 34112274 An Approach to Physical Performance Analysis for Judo
Authors: Stefano Frassinelli, Alessandro Niccolai, Riccardo E. Zich
Abstract:
Sport performance analysis is a technique that is becoming every year more important for athletes of every level. Many techniques have been developed to measure and analyse efficiently the performance of athletes in some sports, but in combat sports these techniques found in many times their limits, due to the high interaction between the two opponents during the competition. In this paper the problem will be framed. Moreover the physical performance measurement problem will be analysed and three different techniques to manage it will be presented. All the techniques have been used to analyse the performance of 22 high level Judo athletes.Keywords: sport performance, physical performance, judo, performance coefficients
Procedia PDF Downloads 41512273 The Effects of Various Curing Compounds on the Mechanical Characteristics of Roller Compacted Concrete Pavements (RCCP)
Authors: Azadeh Askarinejad, Parmida Hayati, Parham Hayati, Reza Parchami
Abstract:
Curing is a very important factor in the ultimate strength and durability of roller compacted concrete pavements (RCCP). Curing involves keeping the concrete is saturated or close to saturation point. Since maintaining concrete moisture has a significant impact on its mechanical properties, permeability and durability, curing is important. The most common procedure for curing of roller compacted concrete is using a white pigmented curing compound. This method is effective, economical and fast. In the present study, different curing compounds were applied on concrete specimens and the results of their effects on the mechanical properties were compared with each other and usual methods of curing in order to select appropriate materials and methods of curing for RCCP construction.Keywords: curing compounds, roller compacted concrete pavements, mechanical properties, durability
Procedia PDF Downloads 62512272 Role of Macro and Technical Indicators in Equity Risk Premium Prediction: A Principal Component Analysis Approach
Authors: Naveed Ul Hassan, Bilal Aziz, Maryam Mushtaq, Imran Ameen Khan
Abstract:
Equity risk premium (ERP) is the stock return in excess of risk free return. Even though it is an essential topic of finance but still there is no common consensus upon its forecasting. For forecasting ERP, apart from the macroeconomic variables attention is devoted to technical indicators as well. For this purpose, set of 14 technical and 14 macro-economic variables is selected and all forecasts are generated based on a standard predictive regression framework, where ERP is regressed on a constant and a lag of a macroeconomic variable or technical indicator. The comparative results showed that technical indicators provide better indications about ERP estimates as compared to macro-economic variables. The relative strength of ERP predictability is also investigated by using National Bureau of Economic Research (NBER) data of business cycle expansion and recessions and found that ERP predictability is more than twice for recessions as compared to expansions.Keywords: equity risk premium, forecasting, macroeconomic indicators, technical indicators
Procedia PDF Downloads 30712271 An Alternative and Complementary Medicine Method in Vulnerable Pediatric Cancer Patients: Yoga
Authors: Ç. Erdoğan, T. Turan
Abstract:
Pediatric cancer patients experience multiple distressing, challenges, physical symptom such as fatigue, pain, sleep disturbance, and balance impairment that continue years after treatment completion. In recent years, yoga is often used in children with cancer to cope with these symptoms. Yoga practice is defined as a unique physical activity that combines physical practice, breath work and mindfulness/meditation. Yoga is an increasingly popular mind-body practice also characterized as a mindfulness mode of exercise. This study aimed to evaluate the impact of yoga intervention of children with cancer. This article planned searching the literature in this field. It has been determined that individualized yoga is feasible and provides benefits for inpatient children, improves health-related quality of life, physical activity levels, physical fitness. After yoga program, children anxiety score decreases significantly. Additionally, individualized yoga is feasible for inpatient children receiving intensive chemotherapy. As a result, yoga is an alternative and complementary medicine that can be safely used in children with cancer.Keywords: cancer treatment, children, nursing, yoga
Procedia PDF Downloads 22612270 Synthesis and Analytical Characterisation of Polymer-Silica Nanoparticles Composite for the Protection and Preservation of Stone Monuments
Authors: Sayed M. Ahmed, Sawsan S. Darwish, Nagib A. Elmarzugi, Mohammad A. Al-Dosari, Mahmoud A. Adam, Nadia A. Al-Mouallimi
Abstract:
Historical stone surfaces and architectural heritage may undergo unwanted changes due to the exposure to many physical and chemical deterioration factors, the innovative properties of the nano - materials can have advantageous application in the restoration and conservation of the cultural heritage with relation to the tailoring of new products for protection and consolidation of stone. The current work evaluates the effectiveness of inorganic compatible treatments; based on nanosized particles of silica (SiO2) dispersed in silicon based product, commonly used as a water-repellent/ consolidation for the construction materials affected by different kinds of decay. The nanocomposites obtained by dispersing the silica nanoparticles in polymeric matrices SILRES® BS OH 100 (solventless mixtures of ethyl silicates), in order to obtain a new nanocomposite, with hydrophobic and consolidation properties, to improve the physical and mechanical properties of the stone material. The nanocomposites obtained and pure SILRES® BS OH 100 were applied by brush Experimental stone blocks. The efficacy of the treatments has been evaluated after consolidation and artificial Thermal aging, through capillary water absorption measurements, Ultraviolet-light exposure to evaluate photo-induced and the hydrophobic effects of the treated surface, Scanning electron microscopy (SEM) examination is performed to evaluate penetration depth, re-aggregating effects of the deposited phase and the surface morphology before and after artificialaging. Sterio microscopy investigation is performed to evaluate the resistant to the effects of the erosion, acids and salts. Improving of stone mechanical properties were evaluated by compressive strength tests, colorimetric measurements were used to evaluate the optical appearance. All the results get together with the apparent effect that, silica/polymer nanocomposite is efficient material for the consolidation of artistic and architectural sandstone monuments, completely compatible, enhanced the durability of sandstone toward thermal and UV aging. In addition, the obtained nanocomposite improved the stone mechanical properties and the resistant to the effects of the erosion, acids and salts compared to the samples treated with pure SILRES® BS OH 100 without silica nanoparticles.Keywords: colorimetric measurements, compressive strength, nanocomposites, porous stone consolidation, silica nanoparticles, sandstone
Procedia PDF Downloads 25212269 Online Formative Assessment Challenges Experienced by Grade 10 Physical Sciences Teachers during Remote Teaching and Learning
Authors: Celeste Labuschagne, Sam Ramaila, Thasmai Dhurumraj
Abstract:
Although formative assessment is acknowledged as crucial for teachers to gauge students’ understanding of subject content, applying formative assessment in an online context is more challenging than in a traditional Physical Sciences classroom. This study examines challenges experienced by Grade 10 Physical Sciences teachers when enacting online formative assessment. The empirical investigation adopted a generic qualitative design and involved three purposively selected Grade 10 Physical Sciences teachers from three different schools and quintiles within the Tshwane North District in South Africa. Data were collected through individual and focus group interviews. Technological, pedagogical, and content knowledge (TPACK) was utilised as a theoretical framework underpinning the study. The study identified a myriad of challenges experienced by Grade 10 Physical Sciences teachers when enacting online formative assessment. These challenges include the utilisation of Annual Teaching Plans, lack of technological knowledge, and internet connectivity. The Department of Basic Education faces the key imperative to provide continuous teacher professional development and concomitant online learning materials that can facilitate meaningful enactment of online formative assessment in various educational settings.Keywords: COVID-19, challenges, online formative assessment, physical sciences, TPACK
Procedia PDF Downloads 6712268 Influence of Cure Degree in GO and CNT-Epoxy Nanocomposites
Authors: Marina Borgert Moraes, Wesley Francisco, Filipe Vargas, Gilmar Patrocínio Thim
Abstract:
In recent years, carbon nanotubes (CNT) and graphene oxide (GO), especially the functionalized ones, have been added to epoxy resin in order to increase the mechanical, electrical and thermal properties of nanocomposites. However, it's still unknown how the presence of these nanoparticles influences the curing process and the final mechanical properties as well. In this work, kinetic and mechanical properties of the nanocomposites were analyzed, where the kinetic process was followed by DSC and the mechanical properties by DMA. Initially, CNT was annealed at high temperature (1800 °C) under vacuum atmosphere, followed by a chemical treatment using acids and ethylenediamine. GO was synthesized through chemical route, washed clean, dried and ground to #200. The presence of functional groups on CNT and GO surface was confirmed by XPS spectra and FT-IR. Then, epoxy resin, nanoparticles and acetone were mixed by sonication in order to obtain the composites. DSC analyses were performed on samples with different curing cycles (1h 80°C + 2h 120°C; 3h 80°C + 2h 120°C; 5h 80°C) and samples with different times at constant temperature (120°C). Results showed that the kinetic process and the mechanical strength are very dependent on the presence of graphene and functionalized-CNT in the nanocomposites.Keywords: carbon nanotube, epoxy resin, Graphene oxide, nanocomposite
Procedia PDF Downloads 31912267 The Impact of Physical Activity for Recovering Cancer Patients
Authors: Martyn Queen, Diane Crone, Andrew Parker, Saul Bloxham
Abstract:
Rationale: There is a growing body of evidence that supports the use of physical activity during and after cancer treatment. However, activity levels for patients remain low. As more cancer patients are treated successfully, and treatment costs continue to escalate, physical activity may be a promising adjunct to a person-centred healthcare approach to recovery. Aim: The aim was to further understand how physical activity may enhance the recovery process for a group of mixed-site cancer patients. Objectives: The research investigated longitudinal changes in physical activity and perceived the quality of life between two and six month’s post-exercise interventions. It also investigated support systems that enabled patients to sustain these perceived changes. Method: The respondent cohort comprised 14 mixed-site cancer patients aged 43-70 (11 women, 3 men), who participated in a two-phase physical activity intervention that took place at a university in the South West of England. Phase 1 consisted of an eight-week structured physical activity programme; Phase 2 consisted of four months of non-supervised physical activity. Semi-structured interviews took place three times over six months with each participant. Grounded theory informed the data collection and analysis which, in turn, facilitated theoretical development. Findings: Our findings propose three theories on the impact of physical activity for recovering cancer patients: 1) Knowledge gained through a structured exercise programme can enable recovering cancer patients to independently sustain physical activity to four-month follow-up. 2) Sustaining physical activity for six months promotes positive changes in the quality of life indicators of chronic fatigue, self-efficacy, the ability to self-manage and energy levels. 3) Peer support from patients facilitates adherence to a structured exercise programme and support from a spouse, or life partner facilitates independently sustained physical activity to four-month follow-up. Conclusions: This study demonstrates that qualitative research can provide an evidence base that could be used to support future care plans for cancer patients. Findings also demonstrate that a physical activity intervention can be effective at helping cancer patients recover from the side effects of their treatment, and recommends that physical activity should become an adjunct therapy alongside traditional cancer treatments.Keywords: physical activity, health, cancer recovery, quality of life, support systems, qualitative, grounded theory, person-centred healthcare
Procedia PDF Downloads 29412266 The Nexus between Child Marriage and Women Empowerment with Physical Violence in Two Culturally Distinct States of India
Authors: Jayakant Singh, Enu Anand
Abstract:
Background: Child marriage is widely prevalent in India. It is a form of gross human right violation that succumbs a child bride to be subservient to her husband within a marital relation. We investigated the relationship between age at marriage of women and her level of empowerment with physical violence experienced 12 months preceding the survey among young women aged 20-24 in two culturally distinct states- Bihar and Tamil Nadu of India. Methods: We used the information collected from 10514 young married women (20-24 years) at all India level, 373 in Bihar and 523 in Tamil Nadu from the third round of National Family Health Survey. Empowerment index was calculated using different parameters such as mobility, economic independence and decision making power of women using Principal Component Analysis method. Bivariate analysis was performed primarily using chi square for the test of significance. Logistic regression was carried out to assess the effect of age at marriage and empowerment on physical violence. Results: Lower level of women empowerment was significantly associated with physical violence in Tamil Nadu (OR=2.38, p<0.01) whereas child marriage (marriage before age 15) was associated with physical violence in Bihar (OR=3.27, p<0.001). The mean difference in age at marriage between those who experienced physical violence and those who did not experience varied by 7 months in Bihar and 10 months in Tamil Nadu. Conclusion: Culture specific intervention may be a key to reduction of violence against women as the results showed association of different factors contributing to physical violence in Bihar and Tamil Nadu. Marrying at an appropriate age perhaps is protective of abuse because it equips a woman to assert her rights effectively. It calls for an urgent consideration to curb both violence and child marriage with stricter involvement of family, civil society and the government. In the meanwhile physical violence may be recognized as a public health problem and integrate appropriate treatment to the victims within the health care institution.Keywords: child marriage, empowerment, India, physical violence
Procedia PDF Downloads 31312265 Peculiarities of Internal Friction and Shear Modulus in 60Co γ-Rays Irradiated Monocrystalline SiGe Alloys
Authors: I. Kurashvili, G. Darsavelidze, T. Kimeridze, G. Chubinidze, I. Tabatadze
Abstract:
At present, a number of modern semiconductor devices based on SiGe alloys have been created in which the latest achievements of high technologies are used. These devices might cause significant changes to networking, computing, and space technology. In the nearest future new materials based on SiGe will be able to restrict the A3B5 and Si technologies and firmly establish themselves in medium frequency electronics. Effective realization of these prospects requires the solution of prediction and controlling of structural state and dynamical physical –mechanical properties of new SiGe materials. Based on these circumstances, a complex investigation of structural defects and structural-sensitive dynamic mechanical characteristics of SiGe alloys under different external impacts (deformation, radiation, thermal cycling) acquires great importance. Internal friction (IF) and shear modulus temperature and amplitude dependences of the monocrystalline boron-doped Si1-xGex(x≤0.05) alloys grown by Czochralski technique is studied in initial and 60Co gamma-irradiated states. In the initial samples, a set of dislocation origin relaxation processes and accompanying modulus defects are revealed in a temperature interval of 400-800 ⁰C. It is shown that after gamma-irradiation intensity of relaxation internal friction in the vicinity of 280 ⁰C increases and simultaneously activation parameters of high temperature relaxation processes reveal clear rising. It is proposed that these changes of dynamical mechanical characteristics might be caused by a decrease of the dislocation mobility in the Cottrell atmosphere enriched by the radiation defects.Keywords: internal friction, shear modulus, gamma-irradiation, SiGe alloys
Procedia PDF Downloads 14412264 Effect of Yttrium Doping on Properties of Bi2Sr1.9Ca0.1-xYxCu2O7+δ (Bi-2202) Cuprate Ceramics
Authors: Y. Boudjadja, A. Amira, A. Saoudel, A. Varilci, S. P. Altintas, C. Terzioglu
Abstract:
In this work, we report the effect of Y3+ doping on structural, mechanical and electrical properties of Bi-2202 phase. Samples of Bi2Sr1.9Ca0.1-xYxCu2O7+δ with x = 0, 0.025, 0.05, 0.075 and 0.1 are elaborated in air by conventional solid state reaction and characterized by X-Ray Diffraction (XRD), Scanning Electronic Microscopy (SEM) combined with EDS spectroscopy, density, Vickers micro-hardness and resistivity measurements. A good correlation between the variations of the bulk density and the Vickers micro-hardness with doping is obtained. The SEM photograph shows that the samples are composed of grains with a flat shape that characterizes the Bi-based cuprates. Quantitative EDS analysis confirms the reduction of Ca content and the increase of Y content when x is increased. The variation of resistivity with temperature shows that only samples with x = 0, 0.025 and 0.05 present an onset transition to the superconducting state. The higher onset transition temperature is obtained for x = 0.025 and is about 93.62 K. The transition is wide and is realized in two steps confirming then the presence of the low Tc Bi-2201 phase in the samples. For x = 0.075 and 0.1, a transition to a semiconducting state is seen at low temperatures. Some physical parameters are extracted from these curves and discussed.Keywords: Bi-2202 phase, doping, structure, mechanical and electrical properties
Procedia PDF Downloads 32312263 Outdoor Physical Play as Critical to Early Childhood Development: Findings from Saudi Arabia
Authors: Rana S. Alghamdi
Abstract:
Play in early childhood education has been stifled across the world due to an overemphasis on academic achievement and a reduced focus on physical play and motor development. In Saudi Arabia, teachers reticent to allocate more time to play for fear of retribution from parents and administrators that children are losing academic seat time. This practice has proven to be detrimental to the social, emotional, physical, and cognitive development of children. Teachers are pressured to prioritize Arabic, math, and science while providing minimal time for physical activities. Administrators tend to push for an ever-increasing emphasis on academia in order to achieve higher test scores. However, young children often find it difficult to concentrate if they are not able to get out energy through physical play. Furthermore, many youth educators are not qualified to oversee physical activities, and many facilities are unprepared for safe, outdoor play. This results in children getting little to no outdoor activity. They are stuck in a strict academic regimen that may dampen the creativity and imagination easily fostered through cooperative play. For a stronger educational system and more well-rounded students, Saudi schools should enact policies that extend the number of required hours dedicated to outdoor and physical play. They should also offer training for unqualified teachers. This training should focus on the benefits of physical play and instruct them on how to facilitate these activities safely and effectively. School administrators must focus on providing adequate equipment and safe environments for the purpose of outdoor play and education. In doing so, they will be setting their students up for a successful future and improving their abilities in all aspects of education.Keywords: early childhood education, play, outdoor, Saudi Arabia
Procedia PDF Downloads 15112262 Rd-PLS Regression: From the Analysis of Two Blocks of Variables to Path Modeling
Authors: E. Tchandao Mangamana, V. Cariou, E. Vigneau, R. Glele Kakai, E. M. Qannari
Abstract:
A new definition of a latent variable associated with a dataset makes it possible to propose variants of the PLS2 regression and the multi-block PLS (MB-PLS). We shall refer to these variants as Rd-PLS regression and Rd-MB-PLS respectively because they are inspired by both Redundancy analysis and PLS regression. Usually, a latent variable t associated with a dataset Z is defined as a linear combination of the variables of Z with the constraint that the length of the loading weights vector equals 1. Formally, t=Zw with ‖w‖=1. Denoting by Z' the transpose of Z, we define herein, a latent variable by t=ZZ’q with the constraint that the auxiliary variable q has a norm equal to 1. This new definition of a latent variable entails that, as previously, t is a linear combination of the variables in Z and, in addition, the loading vector w=Z’q is constrained to be a linear combination of the rows of Z. More importantly, t could be interpreted as a kind of projection of the auxiliary variable q onto the space generated by the variables in Z, since it is collinear to the first PLS1 component of q onto Z. Consider the situation in which we aim to predict a dataset Y from another dataset X. These two datasets relate to the same individuals and are assumed to be centered. Let us consider a latent variable u=YY’q to which we associate the variable t= XX’YY’q. Rd-PLS consists in seeking q (and therefore u and t) so that the covariance between t and u is maximum. The solution to this problem is straightforward and consists in setting q to the eigenvector of YY’XX’YY’ associated with the largest eigenvalue. For the determination of higher order components, we deflate X and Y with respect to the latent variable t. Extending Rd-PLS to the context of multi-block data is relatively easy. Starting from a latent variable u=YY’q, we consider its ‘projection’ on the space generated by the variables of each block Xk (k=1, ..., K) namely, tk= XkXk'YY’q. Thereafter, Rd-MB-PLS seeks q in order to maximize the average of the covariances of u with tk (k=1, ..., K). The solution to this problem is given by q, eigenvector of YY’XX’YY’, where X is the dataset obtained by horizontally merging datasets Xk (k=1, ..., K). For the determination of latent variables of order higher than 1, we use a deflation of Y and Xk with respect to the variable t= XX’YY’q. In the same vein, extending Rd-MB-PLS to the path modeling setting is straightforward. Methods are illustrated on the basis of case studies and performance of Rd-PLS and Rd-MB-PLS in terms of prediction is compared to that of PLS2 and MB-PLS.Keywords: multiblock data analysis, partial least squares regression, path modeling, redundancy analysis
Procedia PDF Downloads 14712261 Environmental Modeling of Storm Water Channels
Authors: L. Grinis
Abstract:
Turbulent flow in complex geometries receives considerable attention due to its importance in many engineering applications. It has been the subject of interest for many researchers. Some of these interests include the design of storm water channels. The design of these channels requires testing through physical models. The main practical limitation of physical models is the so called “scale effect”, that is, the fact that in many cases only primary physical mechanisms can be correctly represented, while secondary mechanisms are often distorted. These observations form the basis of our study, which centered on problems associated with the design of storm water channels near the Dead Sea, in Israel. To help reach a final design decision we used different physical models. Our research showed good coincidence with the results of laboratory tests and theoretical calculations, and allowed us to study different effects of fluid flow in an open channel. We determined that problems of this nature cannot be solved only by means of theoretical calculation and computer simulation. This study demonstrates the use of physical models to help resolve very complicated problems of fluid flow through baffles and similar structures. The study applies these models and observations to different construction and multiphase water flows, among them, those that include sand and stone particles, a significant attempt to bring to the testing laboratory a closer association with reality.Keywords: open channel, physical modeling, baffles, turbulent flow
Procedia PDF Downloads 28512260 Characterization and Predictors of Community Integration of People with Psychiatric Problems: Comparisons with the General Population
Authors: J. Cabral, C. Barreto Carvalho, C. da Motta, M. Sousa
Abstract:
Community integration is a construct that an increasing body of research has shown to have a significant impact in well-being and recovery of people with psychiatric problems. However, there are few studies that explore which factors can be associated and predict community integration. Moreover, community integration has been mostly studied in minority groups, and currently literature on the definition and manifestation of community integration in the more general population is scarce. Thus, the current study aims to characterize community integration and explore possible predictor variables in a sample of participants with psychiatric problems (PP, N=183) and a sample of participants from the general population (GP, N=211). Results show that people with psychiatric problems present above average values of community integration, but are significantly lower than their healthy counterparts. It was also possible to observe that community integration does not vary in terms of the socio-demographic characteristics of both groups in this study. Correlation and multiple regression showed that, among several variables that literature present as relevant in the community integration process, only three variables emerged as having the most explanatory value in community integration of both groups: sense of community, basic needs satisfaction and submission. These results also shown that those variables have increased explanatory power in the PP sample, which leads us to emphasize the need to address this issue in future studies and increase the understanding of the factors that can be involved in the promotion of community integration, in order to devise more effective interventions in this field.Keywords: community integration, mental illness, predictors, psychiatric problems
Procedia PDF Downloads 48712259 Individual Physiological and Psycho-Physical Response on Predicting Thermal Comfort in Transient Environments: A Literature Review
Authors: Fatemeh Deldarabdolmaleki, Nur Dalilah Dahlan, Farzad Hejazi
Abstract:
Human individual physiological and psycho-physical responses widely affect thermal comfort and preferences. They should be carefully researched to help improve the design and comfort of indoor environments. This paper aims to explore and test the degree and importance of individual physiological and psycho-physical differences, reviewing the most preferred, neutral, and comfortable temperature in previous studies conducted across the world. Basic individual physiological differences like gender, age, BMI and etc., have been the focus of this research. There is no unique consensus in the literature to date in regard to providing a universal thermal comfort formula that meets all individual physiological and psycho-physical needs. In order to achieve a balanced, thermally comfortable indoor environment, studying and evaluating individual needs in different parts of the world could be helpful. Even though personalized comfort systems in indoor environments sound promising, they might not be easily achieved in bigger office interiors, considering the cost and current open-plan office trends.Keywords: thermal comfort, indoor environments, occupants' physiological response, occupants psycho-physical response
Procedia PDF Downloads 7312258 The Effect of Supercritical Carbon Dioxide Process Variables on The Recovery of Extracts from Bentong Ginger: Study on Process Variables
Authors: Muhamad Syafiq Hakimi Kamaruddin, Norhidayah Suleiman
Abstract:
Ginger extracts (Zingiber officinale Rosc.) have been attributed therapeutic properties primarily as antioxidant, anticancer, and anti-inflammatory properties. Conventional extractions including Soxhlet and maceration are commonly used to extract the bioactive compounds from plant material. Nevertheless, high energy consumption and being non-environmentally friendly are the predominant limitations of the conventional extractions method. Herein, green technology, namely supercritical carbon dioxide (scCO2) extraction, is used to study process variables' effects on extract yields. Herein, green technology, namely supercritical carbon dioxide (scCO2) extraction, is used to study process variables' effects on extract yields. A pressure (10-30 MPa), temperature (40-60 °C), and median particle size (300-600 µm) were conducted at a CO2 flow rate of 0.9 ± 0.2 g/min for 120 mins. The highest overall yield was 4.58% obtained by the scCO2 extraction conditions of 300 bar and 60 °C with 300µm of ginger powder for 120 mins. In comparison, the yield of the extract was increased considerably within a short extraction time. The results show that scCO2 has a remarkable ability over ginger extract and is a promising technology for extracting bioactive compounds from plant material.Keywords: conventional, ginger, non-environmentally, supercritical carbon dioxide, technology
Procedia PDF Downloads 11712257 Resilience Assessment for Power Distribution Systems
Authors: Berna Eren Tokgoz, Mahdi Safa, Seokyon Hwang
Abstract:
Power distribution systems are essential and crucial infrastructures for the development and maintenance of a sustainable society. These systems are extremely vulnerable to various types of natural and man-made disasters. The assessment of resilience focuses on preparedness and mitigation actions under pre-disaster conditions. It also concentrates on response and recovery actions under post-disaster situations. The aim of this study is to present a methodology to assess the resilience of electric power distribution poles against wind-related events. The proposed methodology can improve the accuracy and rapidity of the evaluation of the conditions and the assessment of the resilience of poles. The methodology provides a metric for the evaluation of the resilience of poles under pre-disaster and post-disaster conditions. The metric was developed using mathematical expressions for physical forces that involve various variables, such as physical dimensions of the pole, the inclination of the pole, and wind speed. A three-dimensional imaging technology (photogrammetry) was used to determine the inclination of poles. Based on expert opinion, the proposed metric was used to define zones to visualize resilience. Visual representation of resilience is helpful for decision makers to prioritize their resources before and after experiencing a wind-related disaster. Multiple electric poles in the City of Beaumont, TX were used in a case study to evaluate the proposed methodology.Keywords: photogrammetry, power distribution systems, resilience metric, system resilience, wind-related disasters
Procedia PDF Downloads 221