Search results for: supervised dimension reduction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6167

Search results for: supervised dimension reduction

5567 A Classical Method of Optimizing Manufacturing Systems Using a Number of Industrial Engineering Techniques

Authors: John M. Ikome, Martha E. Ikome, Therese Van Wyk

Abstract:

Productivity optimization of a company can significantly increase the company’s output and productivity which can be in the form of corrective actions of ineffective activities, process simplification, and reduction of variations, responsiveness, and reduction of set-up-time which are all under the classification of waste within the manufacturing environment. Deriving a means to eliminate a number of these issues has a key importance for manufacturing organization. This paper focused on a number of industrial engineering techniques which include a cause and effect diagram, to identify and optimize the method or systems being used. Based on our results, it shows that there are a number of variations within the production processes that can significantly disrupt the expected output.

Keywords: optimization, fishbone, diagram, productivity

Procedia PDF Downloads 312
5566 Applied Methods for Lightweighting Structural Systems

Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi

Abstract:

With gravity load reduction in the structural and non-structural components, the lightweight construction will be achieved as well as the improvement of efficiency and functional specifications. The advantages of lightweight construction can be examined in two levels. The first is the mass reduction of load bearing structure which results in increasing internal useful space and the other one is the mass reduction of building which decreases the effects of seismic load as a result. In order to achieve this goal, the essential building materials specifications and also optimum load bearing geometry of structural systems and elements have to be considered, so lightweight materials selection particularly with lightweight aggregate for building components will be the first step of lightweight construction. In the next step, in addition to selecting the prominent samples of Iran's traditional architecture, the process of these works improvement is analyzed through the viewpoints of structural efficiency and lightweighting and also the practical methods of lightweight construction have been extracted. The optimum design of load bearing geometry of structural system has to be considered not only in the structural system elements, but also in their composition and the selection of dimensions, proportions, forms and optimum orientations, can lead to get a maximum materials efficiency for loads and stresses bearing.

Keywords: gravity load, lightweighting structural system, load bearing geometry, seismic behavior

Procedia PDF Downloads 521
5565 Effect of Short Chain Alcohols on Bending Rigidity of Lipid Bilayer

Authors: Buti Suryabrahmam, V. A. Raghunathan

Abstract:

We study the effect of short chain alcohols on mechanical properties of saturated lipid bilayers in the fluid phase. The Bending rigidity of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membrane was measured at 28 °C by employing Vesicle Fluctuation Analysis technique. The concentration and chain length (n) of alcohol in the buffer solution were varied from 0 to 1.5 M and from 2 to 8 respectively. We observed a non-linear reduction in the bending rigidity from ~17×10⁻²⁰ J to ~10×10⁻²⁰ J, for all chain lengths of alcohols used in our experiment. We observed approximately three orders of the concentration difference between ethanol and octanol, to show the similar reduction in the bending values. We attribute this phenomenon to thinning of the bilayer due to the adsorption of alcohols at the bilayer-water interface.

Keywords: alcohols, bending rigidity, DMPC, lipid bilayers

Procedia PDF Downloads 146
5564 Review on Rainfall Prediction Using Machine Learning Technique

Authors: Prachi Desai, Ankita Gandhi, Mitali Acharya

Abstract:

Rainfall forecast is mainly used for predictions of rainfall in a specified area and determining their future rainfall conditions. Rainfall is always a global issue as it affects all major aspects of one's life. Agricultural, fisheries, forestry, tourism industry and other industries are widely affected by these conditions. The studies have resulted in insufficient availability of water resources and an increase in water demand in the near future. We already have a new forecast system that uses the deep Convolutional Neural Network (CNN) to forecast monthly rainfall and climate changes. We have also compared CNN against Artificial Neural Networks (ANN). Machine Learning techniques that are used in rainfall predictions include ARIMA Model, ANN, LR, SVM etc. The dataset on which we are experimenting is gathered online over the year 1901 to 20118. Test results have suggested more realistic improvements than conventional rainfall forecasts.

Keywords: ANN, CNN, supervised learning, machine learning, deep learning

Procedia PDF Downloads 201
5563 Challenges to Change and Innovation in Educational System

Authors: Felicia Kikelomo Oluwalola

Abstract:

The study was designed to identify the challenges to change and innovation in educational system in Nigeria. Educational institutions, like all other organizations, require constant monitoring, to identify areas for potential improvement. However, educational reforms are often not well-implemented. This results in massive wastage of finances, human resources, and lost potential. Educational institutions are organised on many levels, from the individual classroom under the management of a single teacher, to groups of classrooms supervised by a Head Teacher or Executive Teacher, to a whole-school structure, under the guidance of the principal. Therefore, there is need for changes and innovation in our educational system since we are in the era of computer age. In doing so, this paper examined the psychology of change, concept of change and innovation with suggested view points. Educational administrators and individuals should be ready to have the challenge of monitoring changes in technologies. Educational planners/policy makers should be encouraged to involve in change process.

Keywords: challenges, change, education, innovation

Procedia PDF Downloads 612
5562 Some Basic Problems for the Elastic Material with Voids in the Case of Approximation N=1 of Vekua's Theory

Authors: Bakur Gulua

Abstract:

In this work, we consider some boundary value problems for the plate. The plate is the elastic material with voids. The state of plate equilibrium is described by the system of differential equations that is derived from three-dimensional equations of equilibrium of an elastic material with voids (Cowin-Nunziato model) by Vekua's reduction method. Its general solution is represented by means of analytic functions of a complex variable and solutions of Helmholtz equations. The problem is solved analytically by the method of the theory of functions of a complex variable.

Keywords: the elastic material with voids, boundary value problems, Vekua's reduction method, a complex variable

Procedia PDF Downloads 127
5561 Monitoring of Forest Cover Dynamics in the High Atlas of Morocco (Zaouit Ahansal) Using Remote Sensing Techniques and GIS

Authors: Abdelaziz Moujane, Abedelali Boulli, Abdellah Ouigmane

Abstract:

The present work focuses on the assessment of forestlandscape changes in the region of ZaouitAhansal, usingmultitemporal satellite images at high spatial resolution.Severalremotesensingmethodswereappliednamely: The supervised classification algorithm and NDVI whichwerecombined in a GIS environment to quantify the extent and change in density of forest stands (holmoak, juniper, thya, Aleppo pine, crops, and others).The resultsobtainedshowedthat the forest of ZaouitAhansal has undergonesignificantdegradationresulting in a decrease in the area of juniper, cedar, and zeenoak, as well as an increase in the area of baresoil and agricultural land. The remotesensing data providedsatisfactoryresults for identifying and quantifying changes in forestcover. In addition, thisstudycould serve as a reference for the development of management strategies and restoration programs.

Keywords: remote sensing, GIS, satellite image, NDVI, deforestation, zaouit ahansal

Procedia PDF Downloads 153
5560 Development of an EEG-Based Real-Time Emotion Recognition System on Edge AI

Authors: James Rigor Camacho, Wansu Lim

Abstract:

Over the last few years, the development of new wearable and processing technologies has accelerated in order to harness physiological data such as electroencephalograms (EEGs) for EEG-based applications. EEG has been demonstrated to be a source of emotion recognition signals with the highest classification accuracy among physiological signals. However, when emotion recognition systems are used for real-time classification, the training unit is frequently left to run offline or in the cloud rather than working locally on the edge. That strategy has hampered research, and the full potential of using an edge AI device has yet to be realized. Edge AI devices are computers with high performance that can process complex algorithms. It is capable of collecting, processing, and storing data on its own. It can also analyze and apply complicated algorithms like localization, detection, and recognition on a real-time application, making it a powerful embedded device. The NVIDIA Jetson series, specifically the Jetson Nano device, was used in the implementation. The cEEGrid, which is integrated to the open-source brain computer-interface platform (OpenBCI), is used to collect EEG signals. An EEG-based real-time emotion recognition system on Edge AI is proposed in this paper. To perform graphical spectrogram categorization of EEG signals and to predict emotional states based on input data properties, machine learning-based classifiers were used. Until the emotional state was identified, the EEG signals were analyzed using the K-Nearest Neighbor (KNN) technique, which is a supervised learning system. In EEG signal processing, after each EEG signal has been received in real-time and translated from time to frequency domain, the Fast Fourier Transform (FFT) technique is utilized to observe the frequency bands in each EEG signal. To appropriately show the variance of each EEG frequency band, power density, standard deviation, and mean are calculated and employed. The next stage is to identify the features that have been chosen to predict emotion in EEG data using the K-Nearest Neighbors (KNN) technique. Arousal and valence datasets are used to train the parameters defined by the KNN technique.Because classification and recognition of specific classes, as well as emotion prediction, are conducted both online and locally on the edge, the KNN technique increased the performance of the emotion recognition system on the NVIDIA Jetson Nano. Finally, this implementation aims to bridge the research gap on cost-effective and efficient real-time emotion recognition using a resource constrained hardware device, like the NVIDIA Jetson Nano. On the cutting edge of AI, EEG-based emotion identification can be employed in applications that can rapidly expand the research and implementation industry's use.

Keywords: edge AI device, EEG, emotion recognition system, supervised learning algorithm, sensors

Procedia PDF Downloads 105
5559 Modeling and Optimization of a Microfluidic Electrochemical Cell for the Electro-Reduction of CO₂ to CH₃OH

Authors: Barzin Rajabloo, Martin Desilets

Abstract:

First, an electrochemical model for the reduction of CO₂ into CH₃OH is developed in which mass and charge transfer, reactions at the surface of the electrodes and fluid flow of the electrolyte are considered. This mathematical model is developed in COMSOL Multiphysics® where both secondary and tertiary current distribution interfaces are coupled to consider concentrations and potentials inside different parts of the cell. Constant reaction rates are assumed as the fitted parameters to minimize the error between experimental data and modeling results. The model is validated through a comparison with experimental data in terms of faradaic efficiency for production of CH₃OH, the current density in different applied cathode potentials as well as current density in different electrolyte flow rates. The comparison between model outputs and experimental measurements shows a good agreement. The model indicates the higher hydrogen evolution in comparison with CH₃OH production as well as mass transfer limitation caused by CO₂ concentration, which are consistent with findings in the literature. After validating the model, in the second part of the study, some design parameters of the cell, such as cathode geometry and catholyte/anolyte channel widths, are modified to reach better performance and higher faradaic efficiency of methanol production.

Keywords: carbon dioxide, electrochemical reduction, methanol, modeling

Procedia PDF Downloads 109
5558 Structural Analysis of Polymer Thin Films at Single Macromolecule Level

Authors: Hiroyuki Aoki, Toru Asada, Tomomi Tanii

Abstract:

The properties of a spin-cast film of a polymer material are different from those in the bulk material because the polymer chains are frozen in an un-equilibrium state due to the rapid evaporation of the solvent. However, there has been little information on the un-equilibrated conformation and dynamics in a spin-cast film at the single chain level. The real-space observation of individual chains would provide direct information to discuss the morphology and dynamics of single polymer chains. The recent development of super-resolution fluorescence microscopy methods allows the conformational analysis of single polymer chain. In the current study, the conformation of a polymer chain in a spin-cast film by the super-resolution microscopy. Poly(methyl methacrylate) (PMMA) with the molecular weight of 2.2 x 10^6 was spin-cast onto a glass substrate from toluene and chloroform. For the super-resolution fluorescence imaging, a small amount of the PMMA labeled by rhodamine spiroamide dye was added. The radius of gyration (Rg) was evaluated from the super-resolution fluorescence image of each PMMA chain. The mean-square-root of Rg was 48.7 and 54.0 nm in the spin-cast films prepared from the toluene and chloroform solutions, respectively. On the other hand, the chain dimension in a bulk state (a thermally annealed 10- μm-thick sample) was observed to be 43.1 nm. This indicates that the PMMA chain in the spin-cast film takes an expanded conformation compared to the unperturbed chain and that the chain dimension is dependent on the solvent quality. In a good solvent, the PMMA chain has an expanded conformation by the excluded volume effect. The polymer chain is frozen before the relaxation from an un-equilibrated expanded conformation to an unperturbed one by the rapid solvent evaporation.

Keywords: chain conformation, polymer thin film, spin-coating, super-resolution optical microscopy

Procedia PDF Downloads 287
5557 Community Empowerment: The Contribution of Network Urbanism on Urban Poverty Reduction

Authors: Lucia Antonela Mitidieri

Abstract:

This research analyzes the application of a model of settlements management based on networks of territorial integration that advocates planning as a cyclical and participatory process that engages early on with civic society, the private sector and the state. Through qualitative methods such as participant observation, interviews with snowball technique and an active research on territories, concrete results of community empowerment are obtained from the promotion of productive enterprises and community spaces of encounter and exchange. Studying the cultural and organizational dimensions of empowerment allows building indicators such as increase of capacities or community cohesion that can lead to support local governments in achieving sustainable urban development for a reduction of urban poverty.

Keywords: community spaces, empowerment, network urbanism, participatory process

Procedia PDF Downloads 331
5556 Quasi-Photon Monte Carlo on Radiative Heat Transfer: An Importance Sampling and Learning Approach

Authors: Utkarsh A. Mishra, Ankit Bansal

Abstract:

At high temperature, radiative heat transfer is the dominant mode of heat transfer. It is governed by various phenomena such as photon emission, absorption, and scattering. The solution of the governing integrodifferential equation of radiative transfer is a complex process, more when the effect of participating medium and wavelength properties are taken into consideration. Although a generic formulation of such radiative transport problem can be modeled for a wide variety of problems with non-gray, non-diffusive surfaces, there is always a trade-off between simplicity and accuracy of the problem. Recently, solutions of complicated mathematical problems with statistical methods based on randomization of naturally occurring phenomena have gained significant importance. Photon bundles with discrete energy can be replicated with random numbers describing the emission, absorption, and scattering processes. Photon Monte Carlo (PMC) is a simple, yet powerful technique, to solve radiative transfer problems in complicated geometries with arbitrary participating medium. The method, on the one hand, increases the accuracy of estimation, and on the other hand, increases the computational cost. The participating media -generally a gas, such as CO₂, CO, and H₂O- present complex emission and absorption spectra. To model the emission/absorption accurately with random numbers requires a weighted sampling as different sections of the spectrum carries different importance. Importance sampling (IS) was implemented to sample random photon of arbitrary wavelength, and the sampled data provided unbiased training of MC estimators for better results. A better replacement to uniform random numbers is using deterministic, quasi-random sequences. Halton, Sobol, and Faure Low-Discrepancy Sequences are used in this study. They possess better space-filling performance than the uniform random number generator and gives rise to a low variance, stable Quasi-Monte Carlo (QMC) estimators with faster convergence. An optimal supervised learning scheme was further considered to reduce the computation costs of the PMC simulation. A one-dimensional plane-parallel slab problem with participating media was formulated. The history of some randomly sampled photon bundles is recorded to train an Artificial Neural Network (ANN), back-propagation model. The flux was calculated using the standard quasi PMC and was considered to be the training target. Results obtained with the proposed model for the one-dimensional problem are compared with the exact analytical and PMC model with the Line by Line (LBL) spectral model. The approximate variance obtained was around 3.14%. Results were analyzed with respect to time and the total flux in both cases. A significant reduction in variance as well a faster rate of convergence was observed in the case of the QMC method over the standard PMC method. However, the results obtained with the ANN method resulted in greater variance (around 25-28%) as compared to the other cases. There is a great scope of machine learning models to help in further reduction of computation cost once trained successfully. Multiple ways of selecting the input data as well as various architectures will be tried such that the concerned environment can be fully addressed to the ANN model. Better results can be achieved in this unexplored domain.

Keywords: radiative heat transfer, Monte Carlo Method, pseudo-random numbers, low discrepancy sequences, artificial neural networks

Procedia PDF Downloads 223
5555 Unsupervised Images Generation Based on Sloan Digital Sky Survey with Deep Convolutional Generative Neural Networks

Authors: Guanghua Zhang, Fubao Wang, Weijun Duan

Abstract:

Convolution neural network (CNN) has attracted more and more attention on recent years. Especially in the field of computer vision and image classification. However, unsupervised learning with CNN has received less attention than supervised learning. In this work, we use a new powerful tool which is deep convolutional generative adversarial networks (DCGANs) to generate images from Sloan Digital Sky Survey. Training by various star and galaxy images, it shows that both the generator and the discriminator are good for unsupervised learning. In this paper, we also took several experiments to choose the best value for hyper-parameters and which could help to stabilize the training process and promise a good quality of the output.

Keywords: convolution neural network, discriminator, generator, unsupervised learning

Procedia PDF Downloads 268
5554 Applying a Noise Reduction Method to Reveal Chaos in the River Flow Time Series

Authors: Mohammad H. Fattahi

Abstract:

Chaotic analysis has been performed on the river flow time series before and after applying the wavelet based de-noising techniques in order to investigate the noise content effects on chaotic nature of flow series. In this study, 38 years of monthly runoff data of three gauging stations were used. Gauging stations were located in Ghar-e-Aghaj river basin, Fars province, Iran. The noise level of time series was estimated with the aid of Gaussian kernel algorithm. This step was found to be crucial in preventing removal of the vital data such as memory, correlation and trend from the time series in addition to the noise during de-noising process.

Keywords: chaotic behavior, wavelet, noise reduction, river flow

Procedia PDF Downloads 468
5553 Digital Adoption of Sales Support Tools for Farmers: A Technology Organization Environment Framework Analysis

Authors: Sylvie Michel, François Cocula

Abstract:

Digital agriculture is an approach that exploits information and communication technologies. These encompass data acquisition tools like mobile applications, satellites, sensors, connected devices, and smartphones. Additionally, it involves transfer and storage technologies such as 3G/4G coverage, low-bandwidth terrestrial or satellite networks, and cloud-based systems. Furthermore, embedded or remote processing technologies, including drones and robots for process automation, along with high-speed communication networks accessible through supercomputers, are integral components of this approach. While farm-level adoption studies regarding digital agricultural technologies have emerged in recent years, they remain relatively limited in comparison to other agricultural practices. To bridge this gap, this study delves into understanding farmers' intention to adopt digital tools, employing the technology, organization, environment framework. A qualitative research design encompassed semi-structured interviews, totaling fifteen in number, conducted with key stakeholders both prior to and following the 2020-2021 COVID-19 lockdowns in France. Subsequently, the interview transcripts underwent thorough thematic content analysis, and the data and verbatim were triangulated for validation. A coding process aimed to systematically organize the data, ensuring an orderly and structured classification. Our research extends its contribution by delineating sub-dimensions within each primary dimension. A total of nine sub-dimensions were identified, categorized as follows: perceived usefulness for communication, perceived usefulness for productivity, and perceived ease of use constitute the first dimension; technological resources, financial resources, and human capabilities constitute the second dimension, while market pressure, institutional pressure, and the COVID-19 situation constitute the third dimension. Furthermore, this analysis enriches the TOE framework by incorporating entrepreneurial orientation as a moderating variable. Managerial orientation emerges as a pivotal factor influencing adoption intention, with producers acknowledging the significance of utilizing digital sales support tools to combat "greenwashing" and elevate their overall brand image. Specifically, it illustrates that producers recognize the potential of digital tools in time-saving and streamlining sales processes, leading to heightened productivity. Moreover, it highlights that the intent to adopt digital sales support tools is influenced by a market mimicry effect. Additionally, it demonstrates a negative association between the intent to adopt these tools and the pressure exerted by institutional partners. Finally, this research establishes a positive link between the intent to adopt digital sales support tools and economic fluctuations, notably during the COVID-19 pandemic. The adoption of sales support tools in agriculture is a multifaceted challenge encompassing three dimensions and nine sub-dimensions. The research delves into the adoption of digital farming technologies at the farm level through the TOE framework. This analysis provides significant insights beneficial for policymakers, stakeholders, and farmers. These insights are instrumental in making informed decisions to facilitate a successful digital transition in agriculture, effectively addressing sector-specific challenges.

Keywords: adoption, digital agriculture, e-commerce, TOE framework

Procedia PDF Downloads 60
5552 Compost Bioremediation of Oil Refinery Sludge by Using Different Manures in a Laboratory Condition

Authors: O. Ubani, H. I. Atagana, M. S. Thantsha

Abstract:

This study was conducted to measure the reduction in polycyclic aromatic hydrocarbons (PAHs) content in oil sludge by co-composting the sludge with pig, cow, horse and poultry manures under laboratory conditions. Four kilograms of soil spiked with 800 g of oil sludge was co-composted differently with each manure in a ratio of 2:1 (w/w) spiked soil:manure and wood-chips in a ratio of 2:1 (w/v) spiked soil:wood-chips. Control was set up similar as the one above but without manure. Mixtures were incubated for 10 months at room temperature. Compost piles were turned weekly and moisture level was maintained at between 50% and 70%. Moisture level, pH, temperature, CO2 evolution and oxygen consumption were measured monthly and the ash content at the end of experimentation. Bacteria capable of utilizing PAHs were isolated, purified and characterized by molecular techniques using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), amplification of the 16S rDNA gene using the specific primers (16S-P1 PCR and 16S-P2 PCR) and the amplicons were sequenced. Extent of reduction of PAHs was measured using automated soxhlet extractor with dichloromethane as the extraction solvent coupled with gas chromatography/mass spectrometry (GC/MS). Temperature did not exceed 27.5O°C in all compost heaps, pH ranged from 5.5 to 7.8 and CO2 evolution was highest in poultry manure at 18.78 µg/dwt/day. Microbial growth and activities were enhanced. Bacteria identified were Bacillus, Arthrobacter and Staphylococcus species. Results from PAH measurements showed reduction between 77 and 99%. The results from the control experiments may be because it was invaded by fungi. Co-composting of spiked soils with animal manures enhanced the reduction in PAHs. Interestingly, all bacteria isolated and identified in this study were present in all treatments, including the control.

Keywords: bioremediation, co-composting, oil refinery sludge, PAHs, bacteria spp, animal manures, molecular techniques

Procedia PDF Downloads 475
5551 Reduction of Toxic Matter from Marginal Water Using Sludge Recycling from Combination of Stepped Cascade Weir with Limestone Trickling Filter

Authors: Dheyaa Wajid Abbood, Eitizaz Awad Jasim

Abstract:

The aim of this investigation is to confirm the activity of a sludge recycling process in trickling filter filled with limestone as an alternative biological process over conventional high-cost treatment process with regard to toxic matter reduction from marginal water. The combination system of stepped cascade weir with limestone trickling filter has been designed and constructed in the environmental hydraulic laboratory, Al-Mustansiriya University, College of Engineering. A set of experiments has been conducted during the period from August 2013 to July 2014. Seven days of continuous operation with different continuous flow rates (0.4m3/hr, 0.5 m3/hr, 0.6 m3/hr, 0.7m3/hr,0.8 m3/hr, 0.9 m3/hr, and 1m3/hr) after ten days of acclimatization experiments were carried out. Results indicate that the concentrations of toxic matter were decreasing with increasing of operation time, sludge recirculation ratio, and flow rate. The toxic matter measured includes (Mineral oils, Petroleum products, Phenols, Biocides, Polychlorinated biphenyls (PCBs), and Surfactants) which are used in these experiments were ranged between (0.074 nm-0.156 nm). Results indicated that the overall reduction efficiency after 4, 28, 52, 76, 100, 124, and 148 hours of operation were (55%, 48%, 42%, 50%, 59%, 61%, and 64%) when the combination of stepped cascade weir with limestone trickling filter is used.

Keywords: toxic matter, marginal water, trickling filter, stepped cascade weir, removal efficiency

Procedia PDF Downloads 297
5550 Defect Detection for Nanofibrous Images with Deep Learning-Based Approaches

Authors: Gaokai Liu

Abstract:

Automatic defect detection for nanomaterial images is widely required in industrial scenarios. Deep learning approaches are considered as the most effective solutions for the great majority of image-based tasks. In this paper, an edge guidance network for defect segmentation is proposed. First, the encoder path with multiple convolution and downsampling operations is applied to the acquisition of shared features. Then two decoder paths both are connected to the last convolution layer of the encoder and supervised by the edge and segmentation labels, respectively, to guide the whole training process. Meanwhile, the edge and encoder outputs from the same stage are concatenated to the segmentation corresponding part to further tune the segmentation result. Finally, the effectiveness of the proposed method is verified via the experiments on open nanofibrous datasets.

Keywords: deep learning, defect detection, image segmentation, nanomaterials

Procedia PDF Downloads 149
5549 Treatment of Grey Water from Different Restaurants in FUTA Using Fungi

Authors: F. A. Ogundolie, F. Okogue, D. V. Adegunloye

Abstract:

Greywater samples were obtained from three restaurants in the Federal University of Technology; Akure coded SSR, MGR and GGR. Fungi isolates obtained include Rhizopus stolonifer, Aspergillus niger, Mucor mucedo, Aspergillus flavus, Saccharomyces cerevisiae. Of these fungi isolates obtained, R. stolonifer, A. niger and A. flavus showed significant degradation ability on grey water and was used for this research. A simple bioreactor was constructed using biodegradation process in purification of waste water samples. Waste water undergoes primary treatment; secondary treatment involves the introduction of the isolated organisms into the waste water sample and the tertiary treatment which involved the use of filter candle and the sand bed filtration process to achieve the end product without the use of chemicals. A. niger brought about significant reduction in both the bacterial load and the fungi load of the greywater samples of the three respective restaurants with a reduction of (1.29 × 108 to 1.57 × 102 cfu/ml; 1.04 × 108 to 1.12 × 102 cfu/ml and 1.72 × 108 to 1.60 × 102 cfu/ml) for bacterial load in SSR, MGR and GGR respectively. Reduction of 2.01 × 104 to 1.2 × 101; 1.72 × 104 to 1.1 × 101, and 2.50 × 104 to 1.5 × 101 in fungi load from SSR, MGR and GGR respectively. Result of degradation of these selected waste water by the fungi showed that A. niger was probably more potent in the degradation of organic matter and hence, A. niger could be used in the treatment of wastewater.

Keywords: Aspergillus niger, greywater, bacterial, fungi, microbial load, bioreactor, biodegradation, purification, organic matter and filtration

Procedia PDF Downloads 312
5548 Activity of Commonly Used Intravenous Nutrient and Bisolvon in Neonatal Intensive Care Units against Biofilm Cells and Their Synergetic Effect with Antibiotics

Authors: Marwa Fady Abozed, Hemat Abd El Latif, Fathy Serry, Lotfi El Sayed

Abstract:

The purpose of this study was to investigate the efficacy of intravenous nutrient(soluvit, vitalipid, aminoven infant, lipovenos) and bisolvon commonly used in neonatal intensive care units against biofilm cells of staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aerguinosa and klebseilla pneumonia as they are the most commonly isolated organisms and are biofilm producers. Also, the synergetic acticity of soluvit, heparin, bisolvon with antibiotics and its effect on minimum biofilm eradication concentration(MBEC) was tested. Intravenous nutrient and bromohexine are widely used in newborns. Numbers of viable cell count released from biofilm after treatment with intravenous nutrient and bromohexine were counted to compare the efficacy. The percentage of reduction in biofilm regrowth in case of using soluvit was 43-51% and 36-42 % for Gram positive and Gram negative respectively, on adding the vitalipid the percentage was 45-50 %and 37-41% for Gram positive and Gram negative respectively. While, in case of using bisolvon the percentage was 46-52% and 47-48% for Gram positive and Gram negative respectively. Adding lipovenos had a reduction percentage of 48-52% and 48-49% for Gram positive and Gram negative respectively. While, adding aminoven infant the percentage was 10-15% and 9-11% for Gram positive and Gram negative respectively. Adding soluvit, heparin and bisolvon to antibiotics had synergic effect. soluvit with ciprofloxacin has 8-16 times decrease than minimum biofilm eradication concentration (MBEC) for ciprofloxacin alone. While, by adding soluvit to vancomycin the MBEC reduced by 16 times than MBEC of vancomycin alone. In case of combination soluvit with cefotaxime, amikacin and gentamycin the reduction in MBEC was 16, 8 and 6-32 times respectively. The synergetic effect of adding heparin to ciprofloxacin, vancomycin, cefotaxime, amikacin and gentamicin was 2 times reduction with all except in case of gram negative the range of reduction was 0-2 with both gentamycin and ciprofloxacin. Bisolvon exihited synergetic effect with ciprofloxacin, vancomycin, cefotaxime, amikacin and gentamicin by 16, 32, 32, 8, 32-64 and 32 times decrease in MBEC respectively.

Keywords: biofilm, neonatal intensive care units, antibiofilm agents, intravenous nutrient

Procedia PDF Downloads 327
5547 Reduction Shrinkage of Concrete without Use Reinforcement

Authors: Martin Tazky, Rudolf Hela, Lucia Osuska, Petr Novosad

Abstract:

Concrete’s volumetric changes are natural process caused by silicate minerals’ hydration. These changes can lead to cracking and subsequent destruction of cementitious material’s matrix. In most cases, cracks can be assessed as a negative effect of hydration, and in all cases, they lead to an acceleration of degradation processes. Preventing the formation of these cracks is, therefore, the main effort. Once of the possibility how to eliminate this natural concrete shrinkage process is by using different types of dispersed reinforcement. For this application of concrete shrinking, steel and polymer reinforcement are preferably used. Despite ordinarily used reinforcement in concrete to eliminate shrinkage it is possible to look at this specific problematic from the beginning by itself concrete mix composition. There are many secondary raw materials, which are helpful in reduction of hydration heat and also with shrinkage of concrete during curing. The new science shows the possibilities of shrinkage reduction also by the controlled formation of hydration products, which could act by itself morphology as a traditionally used dispersed reinforcement. This contribution deals with the possibility of controlled formation of mono- and tri-sulfate which are considered like degradation minerals. Mono- and tri- sulfate's controlled formation in a cementitious composite can be classified as a self-healing ability. Its crystal’s growth acts directly against the shrinking tension – this reduces the risk of cracks development. Controlled formation means that these crystals start to grow in the fresh state of the material (e.g. concrete) but stop right before it could cause any damage to the hardened material. Waste materials with the suitable chemical composition are very attractive precursors because of their added value in the form of landscape pollution’s reduction and, of course, low cost. In this experiment, the possibilities of using the fly ash from fluidized bed combustion as a mono- and tri-sulphate formation additive were investigated. The experiment itself was conducted on cement paste and concrete and specimens were subjected to a thorough analysis of physicomechanical properties as well as microstructure from the moment of mixing up to 180 days. In cement composites, were monitored the process of hydration and shrinkage. In a mixture with the used admixture of fluidized bed combustion fly ash, possible failures were specified by electronic microscopy and dynamic modulus of elasticity. The results of experiments show the possibility of shrinkage concrete reduction without using traditionally dispersed reinforcement.

Keywords: shrinkage, monosulphates, trisulphates, self-healing, fluidized fly ash

Procedia PDF Downloads 186
5546 Determination of Unsaturated Soil Permeability Based on Geometric Factor Development of Constant Discharge Model

Authors: A. Rifa’i, Y. Takeshita, M. Komatsu

Abstract:

After Yogyakarta earthquake in 2006, the main problem that occurred in the first yard of Prambanan Temple is ponding area that occurred after rainfall. Soil characterization needs to be determined by conducting several processes, especially permeability coefficient (k) in both saturated and unsaturated conditions to solve this problem. More accurate and efficient field testing procedure is required to obtain permeability data that present the field condition. One of the field permeability test equipment is Constant Discharge procedure to determine the permeability coefficient. Necessary adjustments of the Constant Discharge procedure are needed to be determined especially the value of geometric factor (F) to improve the corresponding value of permeability coefficient. The value of k will be correlated with the value of volumetric water content (θ) of an unsaturated condition until saturated condition. The principle procedure of Constant Discharge model provides a constant flow in permeameter tube that flows into the ground until the water level in the tube becomes constant. Constant water level in the tube is highly dependent on the tube dimension. Every tube dimension has a shape factor called the geometric factor that affects the result of the test. Geometric factor value is defined as the characteristic of shape and radius of the tube. This research has modified the geometric factor parameters by using empty material tube method so that the geometric factor will change. Saturation level is monitored by using soil moisture sensor. The field test results were compared with the results of laboratory tests to validate the results of the test. Field and laboratory test results of empty tube material method have an average difference of 3.33 x 10-4 cm/sec. The test results showed that modified geometric factor provides more accurate data. The improved methods of constant discharge procedure provide more relevant results.

Keywords: constant discharge, geometric factor, permeability coefficient, unsaturated soils

Procedia PDF Downloads 294
5545 Pose-Dependency of Machine Tool Structures: Appearance, Consequences, and Challenges for Lightweight Large-Scale Machines

Authors: S. Apprich, F. Wulle, A. Lechler, A. Pott, A. Verl

Abstract:

Large-scale machine tools for the manufacturing of large work pieces, e.g. blades, casings or gears for wind turbines, feature pose-dependent dynamic behavior. Small structural damping coefficients lead to long decay times for structural vibrations that have negative impacts on the production process. Typically, these vibrations are handled by increasing the stiffness of the structure by adding mass. That is counterproductive to the needs of sustainable manufacturing as it leads to higher resource consumption both in material and in energy. Recent research activities have led to higher resource efficiency by radical mass reduction that rely on control-integrated active vibration avoidance and damping methods. These control methods depend on information describing the dynamic behavior of the controlled machine tools in order to tune the avoidance or reduction method parameters according to the current state of the machine. The paper presents the appearance, consequences and challenges of the pose-dependent dynamic behavior of lightweight large-scale machine tool structures in production. The paper starts with the theoretical introduction of the challenges of lightweight machine tool structures resulting from reduced stiffness. The statement of the pose-dependent dynamic behavior is corroborated by the results of the experimental modal analysis of a lightweight test structure. Afterwards, the consequences of the pose-dependent dynamic behavior of lightweight machine tool structures for the use of active control and vibration reduction methods are explained. Based on the state of the art on pose-dependent dynamic machine tool models and the modal investigation of an FE-model of the lightweight test structure, the criteria for a pose-dependent model for use in vibration reduction are derived. The description of the approach for a general pose-dependent model of the dynamic behavior of large lightweight machine tools that provides the necessary input to the aforementioned vibration avoidance and reduction methods to properly tackle machine vibrations is the outlook of the paper.

Keywords: dynamic behavior, lightweight, machine tool, pose-dependency

Procedia PDF Downloads 459
5544 Device for Thermal Depolymerisation of Organic Substrates Prior to Methane Fermentation

Authors: Marcin Dębowski, Mirosław Krzemieniewski, Marcin Zieliński

Abstract:

This publication presents a device designed to depolymerise and structurally change organic substrate, for use in agricultural biogas plants or sewage treatment plants. The presented device consists of a heated tank equipped with an inlet valve for the crude substrate and an outlet valve for the treated substrate. The system also includes a gas conduit, which is at its tip equipped with a high-pressure solenoid valve and a vacuum relief solenoid valve. A conduit behind the high-pressure solenoid valve connects to the vacuum tank equipped with the outlet valve. The substrate introduced into the device is exposed to agents such as high temperature and cavitation produced by abrupt, short-term reduction of pressure within the heated tank. The combined effect of these processes is substrate destruction rate increase of about 20% when compared to using high temperature alone, and about 30% when compared to utilizing only cavitation. Energy consumption is greatly reduced, as the pressure increase is generated by heating the substrate. Thus, there is a 18% reduction of energy consumption when compared to a device designed to destroy substrate through high temperature alone, and a 35% reduction if compared to using cavitation as the only means of destruction.

Keywords: thermal depolymerisation, organic substrate, biogas, pre-treatment

Procedia PDF Downloads 565
5543 Exploring the Effect of Nursing Students’ Self-Directed Learning and Technology Acceptance through the Use of Digital Game-Based Learning in Medical Terminology Course

Authors: Hsin-Yu Lee, Ming-Zhong Li, Wen-Hsi Chiu, Su-Fen Cheng, Shwu-Wen Lin

Abstract:

Background: The use of medical terminology is essential to professional nurses on clinical practice. However, most nursing students consider traditional lecture-based teaching of medical terminology as boring and overly conceptual and lack motivation to learn. It is thus an issue to be discussed on how to enhance nursing students’ self-directed learning and improve learning outcomes of medical terminology. Digital game-based learning is a learner-centered way of learning. Past literature showed that the most common game-based learning for language education has been immersive games and teaching games. Thus, this study selected role-playing games (RPG) and digital puzzle games for observation and comparison. It is interesting to explore whether digital game-based learning has positive impact on nursing students’ learning of medical terminology and whether students can adapt well on this type of learning. Results can be used to provide references for institutes and teachers on teaching medical terminology. These instructions give you guidelines for preparing papers for the conference. Use this document as a template if you are using Microsoft Word. Otherwise, use this document as an instruction set. The electronic file of your paper will be formatted further at WASET. Define all symbols used in the abstract. Do not cite references in the abstract. Do not delete the blank line immediately above the abstract; it sets the footnote at the bottom of this column. Page margins are 1,78 cm top and down; 1,65 cm left and right. Each column width is 8,89 cm and the separation between the columns is 0,51 cm. Objective: The purpose of this research is to explore respectively the impact of RPG and puzzle game on nursing students’ self-directed learning and technology acceptance. The study further discusses whether different game types bring about different influences on students’ self-directed learning and technology acceptance. Methods: A quasi-experimental design was adopted in this study so that repeated measures between two groups could be conveniently conducted. 103 nursing students from a nursing college in Northern Taiwan participated in the study. For three weeks of experiment, the experiment group (n=52) received “traditional teaching + RPG” while the control group (n=51) received “traditional teaching + puzzle games”. Results: 1. On self-directed learning: For each game type, there were significant differences for the delayed tests of both groups as compared to the pre and post-tests of each group. However, there were no significant differences between the two game types. 2. On technology acceptance: For the experiment group, after the intervention of RPG, there were no significant differences concerning technology acceptance. For the control group, after the intervention of puzzle games, there were significant differences regarding technology acceptance. Pearson-correlation coefficient and path analysis conducted on the results of the two groups revealed that the dimension were highly correlated and reached statistical significance. Yet, the comparison of technology acceptance between the two game types did not reach statistical significance. Conclusion and Recommend: This study found that through using different digital games on learning, nursing students have effectively improved their self-directed learning. Students’ technology acceptances were also high for the two different digital game types and each dimension was significantly correlated. The results of the experimental group showed that through the scenarios of RPG, students had a deeper understanding of medical terminology, which reached the ‘Understand’ dimension of Bloom’s taxonomy. The results of the control group indicated that digital puzzle games could help students memorize and review medical terminology, which reached the ‘Remember’ dimension of Bloom’s taxonomy. The findings suggest that teachers of medical terminology could use digital games to assist their teaching according to their goals on cognitive learning. Adequate use of those games could help improve students’ self-directed learning and further enhance their learning outcome on medical terminology.

Keywords: digital game-based learning, medical terminology, nursing education, self-directed learning, technology acceptance model

Procedia PDF Downloads 167
5542 Using Surface Entropy Reduction to Improve the Crystallization Properties of a Recombinant Antibody Fragment RNA Crystallization Chaperone

Authors: Christina Roman, Deepak Koirala, Joseph A. Piccirilli

Abstract:

Phage displaying synthetic Fab libraries have been used to obtain Fabs that bind to specific RNA targets with high affinity and specificity. These Fabs have been demonstrated to facilitate RNA crystallization. However, the antibody framework used in the construction of these phage display libraries contains numerous bulky, flexible, and charged residues, which facilitate solubility and hinder aggregation. These residues can interfere with crystallization due to the entropic cost associated with burying them within crystal contacts. To systematically reduce the surface entropy of the Fabs and improve their crystallization properties, a protein engineering strategy termed surface entropy reduction (SER) is being applied to the Fab framework. In this approach, high entropy residues are mutated to smaller ones such as alanine or serine. Focusing initially on Fab BL3-6, which binds an RNA AAACA pentaloop with 20nM affinity, the SER P server (http://services.mbi.ucla.edu/SER/) was used and analysis was performed on existing RNA-Fab BL3-6 co-crystal structures. From this analysis twelve surface entropy reduced mutants were designed. These SER mutants were expressed and are now being measured for their crystallization and diffraction performance with various RNA targets. So far, one mutant has generated 3.02 angstrom diffraction with the yjdF riboswitch RNA. Ultimately, the most productive mutations will be combined into a new Fab framework to be used in a optimized phage displayed Fab library.

Keywords: antibody fragment, crystallography, RNA, surface entropy reduction

Procedia PDF Downloads 194
5541 Soil-Cement Floor Produced with Alum Water Treatment Residues

Authors: Flavio Araujo, Paulo Scalize, Julio Lima, Natalia Vieira, Antonio Albuquerque, Isabela Santos

Abstract:

From a concern regarding the environmental impacts caused by the disposal of residues generated in Water Treatment Plants (WTP's), alternatives ways have been studied to use these residues as raw material for manufacture of building materials, avoiding their discharge on water streams, disposal on sanitary landfills or incineration. This paper aims to present the results of a research work, which is using WTR for replacing the soil content in the manufacturing of soil-cement floor with proportions of 0, 5, 10 and 15%. The samples tests showed a reduction mechanical strength in so far as has increased the amount of waste. The water absorption was below the maximum of 6% required by the standard. The application of WTR contributes to the reduction of the environmental damage in the water treatment industry.

Keywords: residue, soil-cement floor, sustainable, WTP

Procedia PDF Downloads 570
5540 Local Pricing Strategy Should Be the Entry Point of Equitable Benefit Sharing and Poverty Reduction in Community Based Forest Management: Some Evidences from Lowland Community Forestry in Nepal

Authors: Dhruba Khatri

Abstract:

Despite the short history of community based forest management, the community forestry program of Nepal has produced substantial positive effects to organize the local people at a local level institution called Community Forest User Group and manage the local forest resources in the line of poverty reduction since its inception in 1970s. Moreover, each CFUG has collected a community fund from the sale of forest products and non-forestry sources as well and the fund has played a vital role to improve the livelihood of user households living in and around the forests. The specific study sites were selected based on the criteria of i) community forests having dominancy of Sal forests, and ii) forests having 3-5 years experience of community forest management. The price rates of forest products fixed by the CFUGs and the distribution records were collected from the respective community forests. Nonetheless, the relation between pricing strategy and community fund collection revealed that the small change in price of forest products could greatly affect in community fund collection and carry out of forest management, community development, and income generation activities in the line of poverty reduction at local level.

Keywords: benefit sharing, community forest, equitable, Nepal

Procedia PDF Downloads 384
5539 Flood Planning Based on Risk Optimization: A Case Study in Phan-Calo River Basin in Vinh Phuc Province, Vietnam

Authors: Nguyen Quang Kim, Nguyen Thu Hien, Nguyen Thien Dung

Abstract:

Flood disasters are increasing worldwide in both frequency and magnitude. Every year in Vietnam, flood causes great damage to people, property, and environmental degradation. The flood risk management policy in Vietnam is currently updated. The planning of flood mitigation strategies is reviewed to make a decision how to reach sustainable flood risk reduction. This paper discusses the basic approach where the measures of flood protection are chosen based on minimizing the present value of expected monetary expenses, total residual risk and costs of flood control measures. This approach will be proposed and demonstrated in a case study for flood risk management in Vinh Phuc province of Vietnam. Research also proposed the framework to find a solution of optimal protection level and optimal measures of the flood. It provides an explicit economic basis for flood risk management plans and interactive effects of options for flood damage reduction. The results of the case study are demonstrated and discussed which would provide the processing of actions helped decision makers to choose flood risk reduction investment options.

Keywords: drainage plan, flood planning, flood risk, residual risk, risk optimization

Procedia PDF Downloads 242
5538 Detecting Impact of Allowance Trading Behaviors on Distribution of NOx Emission Reductions under the Clean Air Interstate Rule

Authors: Yuanxiaoyue Yang

Abstract:

Emissions trading, or ‘cap-and-trade', has been long promoted by economists as a more cost-effective pollution control approach than traditional performance standard approaches. While there is a large body of empirical evidence for the overall effectiveness of emissions trading, relatively little attention has been paid to other unintended consequences brought by emissions trading. One important consequence is that cap-and-trade could introduce the risk of creating high-level emission concentrations in areas where emitting facilities purchase a large number of emission allowances, which may cause an unequal distribution of environmental benefits. This study will contribute to the current environmental policy literature by linking trading activity with environmental injustice concerns and empirically analyzing the causal relationship between trading activity and emissions reduction under a cap-and-trade program for the first time. To investigate the potential environmental injustice concern in cap-and-trade, this paper uses a differences-in-differences (DID) with instrumental variable method to identify the causal effect of allowance trading behaviors on emission reduction levels under the clean air interstate rule (CAIR), a cap-and-trade program targeting on the power sector in the eastern US. The major data source is the facility-year level emissions and allowance transaction data collected from US EPA air market databases. While polluting facilities from CAIR are the treatment group under our DID identification, we use non-CAIR facilities from the Acid Rain Program - another NOx control program without a trading scheme – as the control group. To isolate the causal effects of trading behaviors on emissions reduction, we also use eligibility for CAIR participation as the instrumental variable. The DID results indicate that the CAIR program was able to reduce NOx emissions from affected facilities by about 10% more than facilities who did not participate in the CAIR program. Therefore, CAIR achieves excellent overall performance in emissions reduction. The IV regression results also indicate that compared with non-CAIR facilities, purchasing emission permits still decreases a CAIR participating facility’s emissions level significantly. This result implies that even buyers under the cap-and-trade program have achieved a great amount of emissions reduction. Therefore, we conclude little evidence of environmental injustice from the CAIR program.

Keywords: air pollution, cap-and-trade, emissions trading, environmental justice

Procedia PDF Downloads 150