Search results for: soil conductivity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3946

Search results for: soil conductivity

3346 Effect of Cadmium and Zinc on Initial Insect Food Chain in Wheat Agroecosystem

Authors: Muhammad Xaaceph Khan, Abida Butt, Farah Kausar

Abstract:

Due to geogenic and anthropogenic factors, heavy metals concentrations increased throughout the world and deposit into soil. Thus available to different plants and travel in different food chains. The present study was designed to achieve bioaccumulation of Cd and Zn in the wheat-aphid-beetle food chain. For this purpose, wheat plants were grown in three different treatments: Cd, Zn, Cd+Zn. Data showed that Cd content in soil and wheat plant increases with increase in Cd concentration while plant weighs, panicle weight, seed number per panicle and seed weight per panicle decreases with increase in Cd content in the soil. Zn content in soil and wheat plant increases with increase in Cd concentration while plant weighs, panicle weight, seed number per panicle, and seed weight per panicle increase with an increase in Zn content in the soil. With the addition of Zn in Cd-treated soil, the uptake of Cd decreases in all parts of wheat plants. Bioaccumulation from wheat plant to aphids and then its predators were also studied. Cd concentration increases from low to high concentration in all arthropods. Same was observed in Zn concentrations, while in Cd+Zn, Cd accumulation decreases but Zn accumulates increases. Health risk index (HRI) also showed that in the presence of Zn, the HRI improves and can help to reduce health risks associated with Cd.

Keywords: aphid, beetle, bioaccumulation, cadmium, wheat, zinc

Procedia PDF Downloads 154
3345 Identification of Accumulated Hydrocarbon Based on Heat Propagation Analysis in Order to Develop Mature Field: Case Study in South Sumatra Basin, Indonesia

Authors: Kukuh Suprayogi, Muhamad Natsir, Olif Kurniawan, Hot Parulian, Bayu Fitriana, Fery Mustofa

Abstract:

The new approach by utilizing the heat propagation analysis carried out by studying and evaluating the effect of the presence of hydrocarbons to the flow of heat that goes from the bottom surface to surface. Heat propagation is determined by the thermal conductivity of rocks. The thermal conductivity of rock itself is a quantity that describes the ability of a rock to deliver heat. This quantity depends on the constituent rock lithology, large porosity, and pore fluid filler. The higher the thermal conductivity of a rock, the more easily the flow of heat passing through these rocks. With the same sense, the heat flow will more easily pass through the rock when the rock is filled with water than hydrocarbons, given the nature of the hydrocarbons having more insulator against heat. The main objective of this research is to try to make the model the heat propagation calculations in degrees Celsius from the subsurface to the surface which is then compared with the surface temperature is measured directly at the point of location. In calculating the propagation of heat, we need to first determine the thermal conductivity of rocks, where the rocks at the point calculation are not composed of homogeneous but consist of strata. Therefore, we need to determine the mineral constituent and porosity values of each stratum. As for the parameters of pore fluid filler, we assume that all the pores filled with water. Once we get a thermal conductivity value of each unit of the rock, then we begin to model the propagation of heat profile from the bottom to the surface. The initial value of the temperature that we use comes from the data bottom hole temperature (BHT) is obtained from drilling results. Results of calculations per depths the temperature is displayed in plotting temperature versus depth profiles that describe the propagation of heat from the bottom of the well to the surface, note that pore fluid is water. In the technical implementation, we can identify the magnitude of the effect of hydrocarbons in reducing the amount of heat that crept to the surface based on the calculation of propagation of heat at a certain point and compared with measurements of surface temperature at that point, assuming that the surface temperature measured is the temperature that comes from the asthenosphere. This publication proves that the accumulation of hydrocarbon can be identified by analysis of heat propagation profile which could be a method for identifying the presence of hydrocarbons.

Keywords: thermal conductivity, rock, pore fluid, heat propagation

Procedia PDF Downloads 107
3344 Effect of Concentration Level and Moisture Content on the Detection and Quantification of Nickel in Clay Agricultural Soil in Lebanon

Authors: Layan Moussa, Darine Salam, Samir Mustapha

Abstract:

Heavy metal contamination in agricultural soils in Lebanon poses serious environmental and health problems. Intensive efforts are employed to improve existing quantification methods of heavy metals in contaminated environments since conventional detection techniques have shown to be time-consuming, tedious, and costly. The implication of hyperspectral remote sensing in this field is possible and promising. However, factors impacting the efficiency of hyperspectral imaging in detecting and quantifying heavy metals in agricultural soils were not thoroughly studied. This study proposes to assess the use of hyperspectral imaging for the detection of Ni in agricultural clay soil collected from the Bekaa Valley, a major agricultural area in Lebanon, under different contamination levels and soil moisture content. Soil samples were contaminated with Ni, with concentrations ranging from 150 mg/kg to 4000 mg/kg. On the other hand, soil with background contamination was subjected to increased moisture levels varying from 5 to 75%. Hyperspectral imaging was used to detect and quantify Ni contamination in the soil at different contamination levels and moisture content. IBM SPSS statistical software was used to develop models that predict the concentration of Ni and moisture content in agricultural soil. The models were constructed using linear regression algorithms. The spectral curves obtained reflected an inverse correlation between both Ni concentration and moisture content with respect to reflectance. On the other hand, the models developed resulted in high values of predicted R2 of 0.763 for Ni concentration and 0.854 for moisture content. Those predictions stated that Ni presence was well expressed near 2200 nm and that of moisture was at 1900 nm. The results from this study would allow us to define the potential of using the hyperspectral imaging (HSI) technique as a reliable and cost-effective alternative for heavy metal pollution detection in contaminated soils and soil moisture prediction.

Keywords: heavy metals, hyperspectral imaging, moisture content, soil contamination

Procedia PDF Downloads 96
3343 Cesium 137 Leaching from Soils of Territories, Polluted by Radionuclides

Authors: S. V. Vasilenkov, O. N. Demina

Abstract:

Chernobyl NPP accident is the biggest in history of nuclear energetic. Bryansk region of Russia was exposed by the most intensive radiation pollution. For that, we made some researches in order to find the methods of soil rehabilitation on territories, polluted by radionuclides with the means of Cesium 137 leaching by watering. For experiments we took the soil from the upper more polluted 10 cm layer of different species. Cesium 137 leaching was made by different methods in washing columns. Washout of Cesium was made by periodical cycles in terms of 4-6 days. In experiments with easy argillaceous soil with start specific radioactivity 4158 bk/kg through 17 cycles the effective reducing was achieved and contained 1512 bk/kg. Besides, results of researches showed, that in the first 6-10 cycles we can see reducing of washing rate but after application of intensificators: ultrasound water processing, aerification, application of fertilizers (KCl), lime, freezing, we can see increasing of Cesium 137 leaching. The experimental investigations in washout of Cesium (Cs) – 137 from the soil were carried out in the field and laboratorial conditions during its freezing and melting. The experiments showed, that washout of Cesium (Cs) – 137 from the soil is rather high after freezing, than non-frozen soil is. And it conforms to washout of Cesium, made under the influence of the intensificaters. This fact allows to recommend chip and easy to construct technically arrangement for regulation of the snow-melt runoff for rehabilitation of the radioactive impoundment.

Keywords: pollution, radiation, Cesium 137 leaching, agriculture

Procedia PDF Downloads 286
3342 Soil-Structure Interaction Models for the Reinforced Foundation System – A State-of-the-Art Review

Authors: Ashwini V. Chavan, Sukhanand S. Bhosale

Abstract:

Challenges of weak soil subgrade are often resolved either by stabilization or reinforcing it. However, it is also practiced to reinforce the granular fill to improve the load-settlement behavior of over weak soil strata. The inclusion of reinforcement in the engineered granular fill provided a new impetus for the development of enhanced Soil-Structure Interaction (SSI) models, also known as mechanical foundation models or lumped parameter models. Several researchers have been working in this direction to understand the mechanism of granular fill-reinforcement interaction and the response of weak soil under the application of load. These models have been developed by extending available SSI models such as the Winkler Model, Pasternak Model, Hetenyi Model, Kerr Model etc., and are helpful to visualize the load-settlement behavior of a physical system through 1-D and 2-D analysis considering beam and plate resting on the foundation respectively. Based on the literature survey, these models are categorized as ‘Reinforced Pasternak Model,’ ‘Double Beam Model,’ ‘Reinforced Timoshenko Beam Model,’ and ‘Reinforced Kerr Model.’ The present work reviews the past 30+ years of research in the field of SSI models for reinforced foundation systems, presenting the conceptual development of these models systematically and discussing their limitations. Special efforts are taken to tabulate the parameters and their significance in the load-settlement analysis, which may be helpful in future studies for the comparison and enhancement of results and findings of physical models.

Keywords: geosynthetics, mathematical modeling, reinforced foundation, soil-structure interaction, ground improvement, soft soil

Procedia PDF Downloads 119
3341 Effect of Land Use on Soil Organic Carbon Stock and Aggregate Dynamics of Degraded Ultisol in Nsukka, Southeastern Nigeria

Authors: Chukwuebuka Vincent Azuka, Chidimma Peace Odoh

Abstract:

Changes in agricultural practices and land use influence the storage and release of soil organic carbon and soil structural dynamics. To investigate this in Nsukka, southeastern Nigeria, soil samples were collected at 0-10 cm, 10-20 cm and 20-30 cm from three locations; Ovoko (OV), Obukpa (OB) and University of Nigeria, Nsukka (UNN) and three land use types; cultivated land (CL), forest land (FL) and grassland (GL)). Data were subjected to analysis of variance (ANOVA) using SPSS. Also, correlations between organic carbon stock, structural stability indices and other soil properties were established. The result showed that Ksat was significantly (p < 0.05) influenced by location with mean values of 68 cmhr⁻¹,121.63 cmhr⁻¹, 8.42 cmhr⁻¹ in OV, OB and UNN respectively. The MWD and aggregate stability (AS) were significantly (p < 0.05) influenced by land use and depth. The mean values of MWD are 0.85 (CL), 1.35 (FL) and 1.45 (GL), and 1.66 at 0-10 cm, 1.08 at 10-20 cm and 0.88 mm at 20-30 cm. The mean values of AS are; 27.66% (CL), 46.39% (FL) and 49.81% (GL), and 53.96% at 0-10cm, 40.22% at 10-20cm and 29.57% at 20-30cm. Clay flocculation (CFI) and dispersion indices (CDI) differed significantly (p < 0.05) among the land use. Soil pH differed significantly (p < 0.05) across the land use and locations with mean values ranging from 3.90-6.14. Soil organic carbon (SOC) significantly (p < 0.05) differed across locations and depths. SOC decreases as depth increases depth with mean values of 15.6 gkg⁻¹, 10.1 gkg⁻¹, and 8.6 gkg⁻¹ at 0-10 cm, 10-20 cm, and 20-30 cm respectively. SOC in the three land use was 8.8 g kg-1, 15.2 gkg⁻¹ and 10.4 gkg⁻¹ at CL, FL, and GL respectively. The highest aggregate-associated carbon was recorded in 0.5 mm across the land use and depth except in cultivated land and at 20-30 cm which recorded their highest SOC at 1mm. SOC stock, total nitrogen (TN) and CEC were significantly (p < 0.05) different across the locations with highest values of 23.43 t/ha, 0.07g/kg and 14.27 Cmol/kg respectively recorded in UNN. SOC stock was significantly (p < 0.05) influenced by depth as follows; 0-10>10-20>20-30 cm. TN was low with mean values ranging from 0.03-0.07 across the locations, land use and depths. The mean values of CEC ranged from 9.96-14.27 Cmol kg⁻¹ across the locations and land use. SOC stock showed correlation with silt, coarse sand, N and CEC (r = 0.40*, -0.39*, -0.65** and 0.64** respectively. AS showed correlation with BD, Ksat, pH in water and KCl, and SOC (r = -0.42*, 0.54**, -0.44*, -0.45* and 0.49** respectively. Thus, land use and location play a significant role in sustainable management of soil resources.

Keywords: agricultural practices, structural dynamics, sequestration, soil resources, management

Procedia PDF Downloads 137
3340 Effects of Copper and Cobalt Co-Doping on Structural, Optical and Electrical Properties of Tio2 Thin Films Prepared by Sol Gel Method

Authors: Rabah Bensaha, Badreeddine Toubal

Abstract:

Un-doped TiO2, Co single doped TiO2 and (Cu-Co) co-doped TiO2 thin films have been growth on silicon substrates by the sol-gel dip coating technique. We mainly investigated both effects of the dopants and annealing temperature on the structural, optical and electrical properties of TiO2 films using X-ray diffraction (XRD), Raman and FTIR spectroscopy, Atomic force microscopy (AFM), Scanning electron microscopy (SEM), UV–Vis spectroscopy. The chemical compositions of Co-doped and (Cu-Co) co-doped TiO2 films were confirmed by XRD, Raman and FTIR studies. The average grain sizes of CoTiO3-TiO2 nanocomposites were increased with annealing temperature. AFM and SEM reveal a completely the various nanostructures of CoTiO3-TiO2 nanocomposites thin films. The films exhibit a high optical reflectance with a large band gap. The highest electrical conductivity was obtained for the (Cu-Co) co-doped TiO2 films. The polyhedral surface morphology might possibly improve the surface contact between particle sizes and then contribute to better electron mobility as well as conductivity. The obtained results suggest that the prepared TiO2 films can be used for optoelectronic applications.

Keywords: sol-gel, TiO2 thin films, CoTiO3-TiO2 nanocomposites films, Electrical conductivity

Procedia PDF Downloads 440
3339 Total and Leachable Concentration of Trace Elements in Soil towards Human Health Risk, Related with Coal Mine in Jorong, South Kalimantan, Indonesia

Authors: Arie Pujiwati, Kengo Nakamura, Noriaki Watanabe, Takeshi Komai

Abstract:

Coal mining is well known to cause considerable environmental impacts, including trace element contamination of soil. This study aimed to assess the trace element (As, Cd, Co, Cu, Ni, Pb, Sb, and Zn) contamination of soil in the vicinity of coal mining activities, using the case study of Asam-asam River basin, South Kalimantan, Indonesia, and to assess the human health risk, incorporating total and bioavailable (water-leachable and acid-leachable) concentrations. The results show the enrichment of As and Co in soil, surpassing the background soil value. Contamination was evaluated based on the index of geo-accumulation, Igeo and the pollution index, PI. Igeo values showed that the soil was generally uncontaminated (Igeo ≤ 0), except for elevated As and Co. Mean PI for Ni and Cu indicated slight contamination. Regarding the assessment of health risks, the Hazard Index, HI showed adverse risks (HI > 1) for Ni, Co, and As. Further, Ni and As were found to pose unacceptable carcinogenic risk (risk > 1.10-5). Farming, settlement, and plantation were found to present greater risk than coal mines. These results show that coal mining activity in the study area contaminates the soils by particular elements and may pose potential human health risk in its surrounding area. This study is important for setting appropriate countermeasure actions and improving basic coal mining management in Indonesia.

Keywords: coal mine, risk, trace elements, soil

Procedia PDF Downloads 256
3338 Investigation of Enhancement of Heat Transfer in Natural Convection Utilizing of Nanofluids

Authors: S. Etaig, R. Hasan, N. Perera

Abstract:

This paper analyses the heat transfer performance and fluid flow using different nanofluids in a square enclosure. The energy equation and Navier-Stokes equation are solved numerically using finite volume scheme. The effect of volume fraction concentration on the enhancement of heat transfer has been studied icorporating the Brownian motion; the influence of effective thermal conductivity on the enhancement was also investigated for a range of volume fraction concentration. The velocity profile for different Rayleigh number. Water-Cu, water AL2O3 and water-TiO2 were tested.

Keywords: computational fluid dynamics, natural convection, nanofluid and thermal conductivity

Procedia PDF Downloads 424
3337 Synthesis and Characterization of Pure and Doped Li7La3Zr2O12 Li-Ion Conducting Solid Electrolyte for Lithium Batteries

Authors: Shari Ann S. Botin, Ruziel Larmae T. Gimpaya, Rembrant Rockwell Gamboa, Rinlee Butch M. Cervera

Abstract:

In recent years, demand for the use of solid electrolytes as alternatives to liquid electrolytes has increased due to recurring battery safety and stability issues, in addition to an increase in energy density requirement which can be made possible by using solid electrolytes. Among the solid electrolyte systems, Li7La3Zr2O12 (LLZ) is one of the most promising as it exhibits good chemical stability against Li metal and has a relatively high ionic conductivity. In this study, pure and doped LLZ were synthesized via conventional solid state reaction. The precursor chemicals (such as LiOH, La2O3, Ga2O3 and ZrO2) were ground and then calcined at 900 °C, pressed into pellets and finally sintered at 1000 °C to 1200 °C. The microstructure and ionic conductivity of the obtained samples have been investigated. Results show that for pure LLZ, sintering at lower temperature (1000 °C) produced tetragonal LLZ while sintering at higher temperatures (≥ 1150 °C) produced cubic LLZ based from the XRD results. However, doping with Ga produces an easier formation of LLZ with cubic structure at lower sintering duration. On the other hand, the lithium conductivity of the samples was investigated using electrochemical impedance spectroscopy at room temperature. Among the obtained samples, Ga-doped LLZ sintered at 1150 °C obtained the highest ionic conductivity reaching to about 1x10⁻⁴ S/cm at room temperature. In addition, fabrication and initial investigation of an all-solid state Lithium Battery using the synthesized LLZ sample with the use of commercial cathode materials have been investigated.

Keywords: doped LLZ, lithium-ion battery, pure LLZ, solid electrolytes

Procedia PDF Downloads 259
3336 The Evaluation of Shear Modulus (Go) Consistency State of Consolidation Cohesive Soils and Seismic Reflection Survey Using Degree of Soil Consolidation

Authors: Abdul Halim Abdul, Wan Ismail Wan Yusoff

Abstract:

The geological formation at Limau Manis Besar area, are consist of low grade metamorphic rock and undulating mountaineers, rugged terrain and the quite steeply 45 degree slope gradient. The objectives of this paper are present the methods and devices used in measurement of P-wave velocity to estimate the initial Shear Modulus (Go) in steady state and critical state soil consolidation. The relationship between SPT-N values and the Shear Modulus (Go) at very small strain is widely considered to be evaluated. Based on the seismic reflection survey, the constant (K) poroelastic theory, mean effectives stress and primer wave velocity (Vs) increase as the soil depth increase. The steady state and critical state, Degree of Soil Consolidation(U) concept is used to interpret the behavior of Shear Modulus (Go). The relationship between Consolidation Test and Seismic Reflection Survey is also discussed.

Keywords: geological setting, shear modulus, poroelastic theory, steady state and none steady state degree of soil consolidation, consolidation test

Procedia PDF Downloads 471
3335 Comparative Evaluation of Root Uptake Models for Developing Moisture Uptake Based Irrigation Schedules for Crops

Authors: Vijay Shankar

Abstract:

In the era of water scarcity, effective use of water via irrigation requires good methods for determining crop water needs. Implementation of irrigation scheduling programs requires an accurate estimate of water use by the crop. Moisture depletion from the root zone represents the consequent crop evapotranspiration (ET). A numerical model for simulating soil water depletion in the root zone has been developed by taking into consideration soil physical properties, crop and climatic parameters. The governing differential equation for unsaturated flow of water in the soil is solved numerically using the fully implicit finite difference technique. The water uptake by plants is simulated by using three different sink functions. The non-linear model predictions are in good agreement with field data and thus it is possible to schedule irrigations more effectively. The present paper describes irrigation scheduling based on moisture depletion from the different layers of the root zone, obtained using different sink functions for three cash, oil and forage crops: cotton, safflower and barley, respectively. The soil is considered at a moisture level equal to field capacity prior to planting. Two soil moisture regimes are then imposed for irrigated treatment, one wherein irrigation is applied whenever soil moisture content is reduced to 50% of available soil water; and other wherein irrigation is applied whenever soil moisture content is reduced to 75% of available soil water. For both the soil moisture regimes it has been found that the model incorporating a non-linear sink function which provides best agreement of computed root zone moisture depletion with field data, is most effective in scheduling irrigations. Simulation runs with this moisture uptake function result in saving 27.3 to 45.5% & 18.7 to 37.5%, 12.5 to 25% % &16.7 to 33.3% and 16.7 to 33.3% & 20 to 40% irrigation water for cotton, safflower and barley respectively, under 50 & 75% moisture depletion regimes over other moisture uptake functions considered in the study. Simulation developed can be used for an optimized irrigation planning for different crops, choosing a suitable soil moisture regime depending upon the irrigation water availability and crop requirements.

Keywords: irrigation water, evapotranspiration, root uptake models, water scarcity

Procedia PDF Downloads 329
3334 Influence of Nonlinearity of Concrete and Reinforcement Using Micropiles on the Seismic Interaction of Soil-Piles-Bridge

Authors: Mohanad Alfach, Amjad Al Helwani

Abstract:

Post-seismic observations of recent devastating earthquakes have shown that the behavior of the soil-pile-structure shows strong nonlinearity of soil and concrete under intensive seismic loading. Many of pile ruptures recently observed after the strong earthquake due to structural reasons (development of plastic hinges in the piles). The most likely reason for this rupture is the exceeding of maximum bending moment supported by the pile at several points. An analysis of these problems is necessary to take into account the nonlinearity of concrete, the strategy of strengthening the damaged piles and the interaction of these piles with the proposed strengthening by using micropiles. This study aims to investigate the interaction aspects for soil-piles- micropiles-structure using a global approach with a three dimensional finite difference code Flac 3D (Fast lagrangian analysis of continua in 3 dimensions).

Keywords: interaction, piles, micropiles, concrete, seismic, nonlinear, three-dimensional

Procedia PDF Downloads 257
3333 Improvement of Bearing Capacity of Soft Clay Using Geo-Cells

Authors: Siddhartha Paul, Aman Harlalka, Ashim K. Dey

Abstract:

Soft clayey soil possesses poor bearing capacity and high compressibility because of which foundations cannot be directly placed over soft clay. Normally pile foundations are constructed to carry the load through the soft soil up to the hard stratum below. Pile construction is costly and time consuming. In order to increase the properties of soft clay, many ground improvement techniques like stone column, preloading with and without sand drains/band drains, etc. are in vogue. Time is a constraint for successful application of these improvement techniques. Another way to improve the bearing capacity of soft clay and to reduce the settlement possibility is to apply geocells below the foundation. The geocells impart rigidity to the foundation soil, reduce the net load intensity on soil and thus reduce the compressibility. A well designed geocell reinforced soil may replace the pile foundation. The present paper deals with the applicability of geocells on improvement of the bearing capacity. It is observed that a properly designed geocell may increase the bearing capacity of soft clay up to two and a half times.

Keywords: bearing capacity, geo-cell, ground improvement, soft clay

Procedia PDF Downloads 316
3332 A Comparative Study: Influences of Polymerization Temperature on Phosphoric Acid Doped Polybenzimidazole Membranes

Authors: Cagla Gul Guldiken, Levent Akyalcin, Hasan Ferdi Gercel

Abstract:

Fuel cells are electrochemical devices which convert the chemical energy of hydrogen into the electricity. Among the types of fuel cells, polymer electrolyte membrane fuel cells (PEMFCs) are attracting considerable attention as non-polluting power generators with high energy conversion efficiencies in mobile applications. Polymer electrolyte membrane (PEM) is one of the essential components of PEMFCs. Perfluorosulfonic acid based membranes known as Nafion® is widely used as PEMs. Nafion® membranes water dependent proton conductivity which limits the operating temperature below 100ᵒC. At higher temperatures, proton conductivity and mechanical stability of these membranes decrease because of dehydration. Polybenzimidazole (PBI), which has good anhydrous proton conductivity after doped with acids, as well as excellent thermal stability, shows great potential in the application of high temperature PEMFCs. In the present study, PBI polymers were synthesized by solution polycondensation at 190 and 210ᵒC. The synthesized polymers were characterized by FTIR, 1H NMR, and TGA. Phosphoric acid doped PBI membranes were prepared and tested in a PEMFC. The influences of reaction temperature on structural properties of synthesized polymers were investigated. Mechanical properties, acid-doping level, proton conductivity, and fuel cell performances of prepared phosphoric acid doped PBI membranes were evaluated. The maximum power density was found as 32.5 mW/cm² at 120ᵒC.

Keywords: fuel cell, high temperature polymer electrolyte membrane, polybenzimidazole, proton exchange membrane fuel cell

Procedia PDF Downloads 180
3331 Evaluation of SCS-Curve Numbers and Runoff across Varied Tillage Methods

Authors: Umar Javed, Kristen Blann, Philip Adalikwu, Maryam Sahraei, John McMaine

Abstract:

The soil conservation service curve number (SCS-CN) is a widely used method to assess direct runoff depth based on specific rainfall events. “Actual” estimated runoff depth was estimated by subtracting the change in soil moisture from the depth of precipitation for each discrete rain event during the growing seasons from 2021 to 2023. Fields under investigation were situated in a HUC-12 watershed in southeastern South Dakota selected for a common soil series (Nora-Crofton complex and Moody-Nora complex) to minimize the influence of soil texture on soil moisture. Two soil moisture probes were installed from May 2021 to October 2023, with exceptions during planting and harvest periods. For each field, “Textbook” CN estimates were derived from the TR-55 table based on corresponding mapped land use land cover LULC class and hydrologic soil groups from web soil survey maps. The TR-55 method incorporated HSG and crop rotation within the study area fields. These textbook values were then compared to actual CN values to determine the impact of tillage practices on CN and runoff. Most fields were mapped as having a textbook C or D HSG, but the HSG of actual CNs was that of a B or C hydrologic group. Actual CNs were consistently lower than textbook CNs for all management practices, but actual CNs in conventionally tilled fields were the highest (and closest to textbook CNs), while actual CNs in no-till fields were the lowest. Preliminary results suggest that no-till practice reduces runoff compared to conventional till. This research highlights the need to use CNs that incorporate agricultural management to more accurately estimate runoff at the field and watershed scale.

Keywords: curve number hydrology, hydrologic soil groups, runoff, tillage practices

Procedia PDF Downloads 43
3330 Geotechnical and Mineralogical Properties of Clay Soils in the Second Organized Industrial Region, Konya, Turkey

Authors: Mustafa Yıldız, Ali Ulvi Uzer, Murat Olgun

Abstract:

In this study, geotechnical and mineralogical properties of gypsum containing clay basis which form the ground of Second Organized Industrial Zone in Konya province have been researched through comprehensive field and laboratory experiments. Although sufficient geotechnical research has not been performed yet, an intensive structuring in the region continues at present. The study area consists of mid-lake sediments formed by gypsum containing soft silt-clay basis which evolves to a large area. To determine the soil profile and geotechnical specifications; 18 drilling holes were opened and disturbed / undisturbed soil samples have been taken through shelby tubes within 1.5m intervals. Tests have been performed on these samples to designate the index and strength properties of soil. Besides, at all drilling holes Standart Penetration Tests have been done within 1.5m intervals. For the purpose of determining the mineralogical characteristics of the soil; all rock and X-RD analysis have been carried out on 6 samples which were taken from various depths through the soil profile. Strength and compressibility characteristics of the soil were defined with correlations using laboratory and field test results. Unconfined compressive strength, undrained cohesion, compression index varies between 16 kN/m2 and 405.4 kN/m2, 6.5 kN/m2 and 72 kN/m2, 0.066 and 0.864, respectively.

Keywords: Konya second organized industrial region, strength, compressibility, soft clay

Procedia PDF Downloads 306
3329 Immobilization of Lead in Contaminated Soil Using Enzyme Induced Calcite Precipitation (EİCP) Along with Coconut Fiber Biochar (CFB)

Authors: Kaniz Roksana, Aluthgun Hewage Shaini, Cheng Zhu

Abstract:

Lead is environmentally hazardous because it may persist for a long time in soil, water, and air, and it can travel large distances when carried by wind or water. Lead is toxic to many different species of organisms and has the potential to disrupt ecosystem stability. Moreover, lead can contaminate crops and livestock, which can then have an adverse effect on human health. This study was conducted to use the enzyme-induced calcium carbonate precipitation (EICP) technique from soybean crude extract urease along coconut fiber derived biochar’s (CFB) to bioremediate lead. To study the desorption rates of heavy metals from the soil, lead (Pb) was added to the soil at load ratios of 50 and 100 mg/kg. There were five separate treatment soil columns created: control sample, only CFB, only EICP, EICP with 2% (w/w) CFB, and EICP with 4% (w/w) CFB. Laboratory scale experiment demonstrates significant lead removal from soil. The amount of CaCO₃ precipitated in the soil was measured using a gravimetric acid digestion test, which related heavy metal desorption to the amount of precipitated calcium carbonate. These findings were validated using a scanning electron microscope (SEM), which revealed calcium carbonate and lead coprecipitation. As a result, the study reveals that the EICP technique, in conjunction with coconut fiber biochar, could be an efficient alternative in the remediation of heavy metal ion-contaminated soils.

Keywords: enzyme induced calcium carbonate precipitation (EICP), coconut fiber derived biochar’s (CFB), bioremediation, heavy metal

Procedia PDF Downloads 71
3328 Determination of the Thermophysical Characteristics of the Composite Material Clay Cement Paper

Authors: A. Ouargui, N. Belouaggadia, M. Ezzine

Abstract:

In Morocco, the building sector is largely responsible for the evolution of energy consumption. The control of energy in this sector remains a major issue despite the rise of renewable energies. The design of an environmentally friendly building requires mastery and knowledge of energy and bioclimatic aspects. This implies taking into consideration of all the elements making up the building and the way in which energy exchanges take place between these elements. In this context, thermal insulation seems to be an ideal starting point for reducing energy consumption and greenhouse gas emissions. In this context, thermal insulation seems to be an ideal starting point for reducing energy consumption and greenhouse gas emissions. The aim of this work is to provide some solutions to reduce energy consumption while maintaining thermal comfort in the building. The objective of our work is to present an experimental study on the characterization of local materials used in the thermal insulation of buildings. These are paper recycling stabilized with cement and clay. The thermal conductivity of these materials, which were constituted based on sand, clay, cement; water, as well as treated paper, was determined by the guarded-hot-plate method. It involves the design of two materials that will subsequently be subjected to thermal and mechanical tests to determine their thermophysical properties. The results show that the thermal conductivity decreases as well in the case of the paper-cement mixture as that of the paper-clay and seems to stabilize around 40%. Measurements of mechanical properties such as flexural strength have shown that the enrichment of the studied material with paper makes it possible to reduce the flexural strength by 20% while optimizing the conductivity.

Keywords: building, composite material, insulation, thermal conductivity, paper residue

Procedia PDF Downloads 124
3327 Compression Index Estimation by Water Content and Liquid Limit and Void Ratio Using Statistics Method

Authors: Lizhou Chen, Abdelhamid Belgaid, Assem Elsayed, Xiaoming Yang

Abstract:

Compression index is essential in foundation settlement calculation. The traditional method for determining compression index is consolidation test which is expensive and time consuming. Many researchers have used regression methods to develop empirical equations for predicting compression index from soil properties. Based on a large number of compression index data collected from consolidation tests, the accuracy of some popularly empirical equations were assessed. It was found that primary compression index is significantly overestimated in some equations while it is underestimated in others. The sensitivity analyses of soil parameters including water content, liquid limit and void ratio were performed. The results indicate that the compression index obtained from void ratio is most accurate. The ANOVA (analysis of variance) demonstrates that the equations with multiple soil parameters cannot provide better predictions than the equations with single soil parameter. In other words, it is not necessary to develop the relationships between compression index and multiple soil parameters. Meanwhile, it was noted that secondary compression index is approximately 0.7-5.0% of primary compression index with an average of 2.0%. In the end, the proposed prediction equations using power regression technique were provided that can provide more accurate predictions than those from existing equations.

Keywords: compression index, clay, settlement, consolidation, secondary compression index, soil parameter

Procedia PDF Downloads 157
3326 Estimation of Geotechnical Parameters by Comparing Monitoring Data with Numerical Results: Case Study of Arash–Esfandiar-Niayesh Under-Passing Tunnel, Africa Tunnel, Tehran, Iran

Authors: Aliakbar Golshani, Seyyed Mehdi Poorhashemi, Mahsa Gharizadeh

Abstract:

The under passing tunnels are strongly influenced by the soils around. There are some complexities in the specification of real soil behavior, owing to the fact that lots of uncertainties exist in soil properties, and additionally, inappropriate soil constitutive models. Such mentioned factors may cause incompatible settlements in numerical analysis with the obtained values in actual construction. This paper aims to report a case study on a specific tunnel constructed by NATM. The tunnel has a depth of 11.4 m, height of 12.2 m, and width of 14.4 m with 2.5 lanes. The numerical modeling was based on a 2D finite element program. The soil material behavior was modeled by hardening soil model. According to the field observations, the numerical estimated settlement at the ground surface was approximately four times more than the measured one, after the entire installation of the initial lining, indicating that some unknown factors affect the values. Consequently, the geotechnical parameters are accurately revised by a numerical back-analysis using laboratory and field test data and based on the obtained monitoring data. The obtained result confirms that typically, the soil parameters are conservatively low-estimated. And additionally, the constitutive models cannot be applied properly for all soil conditions.

Keywords: NATM tunnel, initial lining, laboratory test data, numerical back-analysis

Procedia PDF Downloads 358
3325 A Simple Computational Method for the Gravitational and Seismic Soil-Structure-Interaction between New and Existent Buildings Sites

Authors: Nicolae Daniel Stoica, Ion Mierlus Mazilu

Abstract:

This work is one of numerical research and aims to address the issue of the design of new buildings in a 3D location of existing buildings. In today's continuous development and congestion of urban centers is a big question about the influence of the new buildings on an already existent vicinity site. Thus, in this study, we tried to focus on how existent buildings may be affected by any newly constructed buildings and in how far this influence is really decreased. The problem of modeling the influence of interaction between buildings is not simple in any area in the world, and neither in Romania. Unfortunately, most often the designers not done calculations that can determine how close to reality these 3D influences nor the simplified method and the more superior methods. In the most literature making a "shield" (the pilots or molded walls) is absolutely sufficient to stop the influence between the buildings, and so often the soil under the structure is ignored in the calculation models. The main causes for which the soil is neglected in the analysis are related to the complexity modeling of interaction between soil and structure. In this paper, based on a new simple but efficient methodology we tried to determine for a lot of study cases the influence, in terms of assessing the interaction land structure on the behavior of structures that influence a new building on an existing one. The study covers additional subsidence that may occur during the execution of new works and after its completion. It also highlighted the efforts diagrams and deflections in the soil for both the original case and the final stage. This is necessary to see to what extent the expected impact of the new building on existing areas.

Keywords: soil, structure, interaction, piles, earthquakes

Procedia PDF Downloads 288
3324 The Dynamic Cone Penetration Test: A Review of Its Correlations and Applications

Authors: Abdulrahman M. Hamid

Abstract:

Dynamic Cone Penetration Test (DCPT) is widely used for field quality assessment of soils. Its application to predict the engineering properties of soil is globally promoted by the fact that it is difficult to obtain undisturbed soil samples, especially when loose or submerged sandy soil is encountered. Detailed discussion will be presented on the current development of DCPT correlations with resilient modulus, relative density, California Bearing Ratio (CBR), unconfined compressive strength and shear strength that have been developed for different materials in both the laboratory and field, as well as on the usage of DCPT in quality control of compaction of earth fills and performance evaluation of pavement layers. In addition, the relationship of the DCPT with other instruments such as falling weight deflectometer, nuclear gauge, soil stiffens gauge, and plate load test will be reported. Lastely, the application of DCPT in Saudi Arabia in recent years will be addressed in this manuscript.

Keywords: dynamic cone penetration test, falling weight deflectometer, nuclear gauge, soil stiffens gauge, plate load test, automated dynamic cone penetration

Procedia PDF Downloads 428
3323 Study on Energy Transfer in Collapsible Soil During Laboratory Proctor Compaction Test

Authors: Amritanshu Sandilya, M. V. Shah

Abstract:

Collapsible soils such as loess are a common geotechnical challenge due to their potential to undergo sudden and severe settlement under certain loading conditions. The need for filling engineering to increase developing land has grown significantly in recent years, which has created several difficulties in managing soil strength and stability during compaction. Numerous engineering problems, such as roadbed subsidence and pavement cracking, have been brought about by insufficient fill strength. Therefore, strict control of compaction parameters is essential to reduce these distresses. Accurately measuring the degree of compaction, which is often represented by compactness is an important component of compaction control. For credible predictions of how collapsible soils will behave under complicated loading situations, the accuracy of laboratory studies is essential. Therefore, this study aims to investigate the energy transfer in collapsible soils during laboratory Proctor compaction tests to provide insights into how energy transfer can be optimized to achieve more accurate and reliable results in compaction testing. The compaction characteristics in terms of energy of loess soil have been studied at moisture content corresponding to dry of optimum, at the optimum and wet side of optimum and at different compaction energy levels. The hammer impact force (E0) and soil bottom force (E) were measured using an impact load cell mounted at the bottom of the compaction mould. The variation in energy consumption ratio (E/ E0) was observed and compared with the compaction curve of the soil. The results indicate that the plot of energy consumption ratio versus moisture content can serve as a reliable indicator of the compaction characteristics of the soil in terms of energy.

Keywords: soil compaction, proctor compaction test, collapsible soil, energy transfer

Procedia PDF Downloads 81
3322 Disaster Mitigation from an Analysis of a Condemned Building Erected over Collapsible Clay Soil in Brazil

Authors: Marcelo Jesus Kato Avila, Joao Da Costa Pantoja

Abstract:

Differential settlement of foundations is a serious pathology in buildings that put at risk lives and property. A common reason for the occurrence of this specific pathology in central Brazil is the presence of collapsible clay, a typical soil in the region. In this study, the foundation of a condemned building erected above this soil is analyzed. The aim is to prevent problems in new constructions, to predict which buildings may be subjected to damages, and to make possible a more precise treatment in less advanced differential settlements observed in the buildings of the vicinity, which includes a hospital, a Military School, an indoor sporting arena, the Police Academy, and the Military Police Headquarters. The methodology consists of visual inspection, photographic report of the main pathologies, analysis of the existing foundations, determination of the soil properties, the study of the cracking level and assessment of structural failure risk of the building. The findings show that the presence of water weaken the soil structure on which the foundation rest, being the main cause of the pathologic settlement, indicating that even in a one store building it was necessary to consider deeper digging, other categories of foundations, and more elaborated and detailed foundation plans when the soil presents this behavior.

Keywords: building cracks, collapsible clay, differential settlement, structural failure risk

Procedia PDF Downloads 251
3321 Family of Density Curves of Queensland Soils from Compaction Tests, on a 3D Z-Plane Function of Moisture Content, Saturation, and Air-Void Ratio

Authors: Habib Alehossein, M. S. K. Fernando

Abstract:

Soil density depends on the volume of the voids and the proportion of the water and air in the voids. However, there is a limit to the contraction of the voids at any given compaction energy, whereby additional water is used to reduce the void volume further by lubricating the particles' frictional contacts. Hence, at an optimum moisture content and specific compaction energy, the density of unsaturated soil can be maximized where the void volume is minimum. However, when considering a full compaction curve and permutations and variations of all these components (soil, air, water, and energy), laboratory soil compaction tests can become expensive, time-consuming, and exhausting. Therefore, analytical methods constructed on a few test data can be developed and used to reduce such unnecessary efforts significantly. Concentrating on the compaction testing results, this study discusses the analytical modelling method developed for some fine-grained and coarse-grained soils of Queensland. Soil properties and characteristics, such as full functional compaction curves under various compaction energy conditions, were studied and developed for a few soil types. Using MATLAB, several generic analytical codes were created for this study, covering all possible compaction parameters and results as they occur in a soil mechanics lab. These MATLAB codes produce a family of curves to determine the relationships between the density, moisture content, void ratio, saturation, and compaction energy.

Keywords: analytical, MATLAB, modelling, compaction curve, void ratio, saturation, moisture content

Procedia PDF Downloads 84
3320 Effects of Soil Neutron Irradiation in Soil Carbon Neutron Gamma Analysis

Authors: Aleksandr Kavetskiy, Galina Yakubova, Nikolay Sargsyan, Stephen A. Prior, H. Allen Torbert

Abstract:

The carbon sequestration question of modern times requires the development of an in-situ method of measuring soil carbon over large landmasses. Traditional chemical analytical methods used to evaluate large land areas require extensive soil sampling prior to processing for laboratory analysis; collectively, this is labor-intensive and time-consuming. An alternative method is to apply nuclear physics analysis, primarily in the form of pulsed fast-thermal neutron-gamma soil carbon analysis. This method is based on measuring the gamma-ray response that appears upon neutron irradiation of soil. Specific gamma lines with energies of 4.438 MeV appearing from neutron irradiation can be attributed to soil carbon nuclei. Based on measuring gamma line intensity, assessments of soil carbon concentration can be made. This method can be done directly in the field using a specially developed pulsed fast-thermal neutron-gamma system (PFTNA system). This system conducts in-situ analysis in a scanning mode coupled with GPS, which provides soil carbon concentration and distribution over large fields. The system has radiation shielding to minimize the dose rate (within radiation safety guidelines) for safe operator usage. Questions concerning the effect of neutron irradiation on soil health will be addressed. Information regarding absorbed neutron and gamma dose received by soil and its distribution with depth will be discussed in this study. This information was generated based on Monte-Carlo simulations (MCNP6.2 code) of neutron and gamma propagation in soil. Received data were used for the analysis of possible induced irradiation effects. The physical, chemical and biological effects of neutron soil irradiation were considered. From a physical aspect, we considered neutron (produced by the PFTNA system) induction of new isotopes and estimated the possibility of increasing the post-irradiation gamma background by comparisons to the natural background. An insignificant increase in gamma background appeared immediately after irradiation but returned to original values after several minutes due to the decay of short-lived new isotopes. From a chemical aspect, possible radiolysis of water (presented in soil) was considered. Based on stimulations of radiolysis of water, we concluded that the gamma dose rate used cannot produce gamma rays of notable rates. Possible effects of neutron irradiation (by the PFTNA system) on soil biota were also assessed experimentally. No notable changes were noted at the taxonomic level, nor was functional soil diversity affected. Our assessment suggested that the use of a PFTNA system with a neutron flux of 1e7 n/s for soil carbon analysis does not notably affect soil properties or soil health.

Keywords: carbon sequestration, neutron gamma analysis, radiation effect on soil, Monte-Carlo simulation

Procedia PDF Downloads 138
3319 Impact of Long Term Application of Municipal Solid Waste on Physicochemical and Microbial Parameters and Heavy Metal Distribution in Soils in Accordance to Its Agricultural Uses

Authors: Rinku Dhanker, Suman Chaudhary, Tanvi Bhatia, Sneh Goyal

Abstract:

Municipal Solid Waste (MSW), being a rich source of organic materials, can be used for agricultural applications as an important source of nutrients for soil and plants. This is also an alternative beneficial management practice for MSW generated in developing countries. In the present study, MSW treated soil samples from last four to six years at farmer’s field in Rohtak and Gurgaon states (Haryana, India) were collected. The samples were analyzed for all-important agricultural parameters and compared with the control untreated soil samples. The treated soil at farmer’s field showed increase in total N by 48 to 68%, P by 45.7 to 51.3%, and K by 60 to 67% compared to untreated soil samples. Application of sewage sludge at different sites led to increase in microbial biomass C by 60 to 68% compared to untreated soil. There was significant increase in total Cu, Cr, Ni, Fe, Pb, and Zn in all sewage sludge amended soil samples; however, concentration of all the metals were still below the current permitted (EU) limits. To study the adverse effect of heavy metals accumulation on various soil microbial activities, the sewage sludge samples (from wastewater treatment plant at Gurgaon) were artificially contaminated with heavy metal concentration above the EU limits. They were then applied to soil samples with different rates (0.5 to 4.0%) and incubated for 90 days under laboratory conditions. The samples were drawn at different intervals and analyzed for various parameters like pH, EC, total N, P, K, microbial biomass C, carbon mineralization, and diethylenetriaminepentaacetic acid (DTPA) exactable heavy metals. The results were compared to the uncontaminated sewage sludge. The increasing level of sewage sludge from 0.5 to 4% led to build of organic C and total N, P and K content at the early stages of incubation. But, organic C was decreased after 90 days because of decomposition of organic matter. Biomass production was significantly increased in both contaminated and uncontaminated sewage soil samples, but also led to slight increases in metal accumulation and their bioavailability in soil. The maximum metal concentrations were found in treatment with 4% of contaminated sewage sludge amendment.

Keywords: heavy metal, municipal sewage sludge, sustainable agriculture, soil fertility and quality

Procedia PDF Downloads 282
3318 Mechanical Soil: Effects of the Passage of Tractors on Agricultural Land

Authors: Anis Eloud, Ben Salah Nahla, Sayed Chehaibi

Abstract:

In order to improve and develop the Tunisian agriculture, the government has encouraged the introduction of modern technologies and has also promoted the adoption of innovative practices cultures. Indeed, the extensive use of mechanization can increase crop productivity but its inadequate application also has a negative impact on the ground caused by the phenomenon of compaction. Which will cause the loss of soil fertility and increased production costs. This problem is accentuated with increase the stress on contact wheel / ground. For this reason, the objective of this study is to simulate the footprint of the ground contact / tire two types of tractor after their passage. The method of this work is based on a simulation including passages from two different tractors on soil with similar characteristics. Simulation parameters were based on the choice of two tractors masses of 6500 kg and 4400 kg of soil and sandy loam in nature. The analysis was performed using specific software. The main results showed that the heaviest tractor caused a constraint wheel / rear floor exceeding 100 kPa. For cons, the second tractor has caused stress wheel / rear floor of 50 kPa. The comparison of the two results showed that 6500 kg tractor made a serious and excessive compaction which generated a negative impact on soil quality and crop yields.

Keywords: compaction, soil, resistance to penetration, crop yields

Procedia PDF Downloads 430
3317 Application of Neutron-Gamma Technologies for Soil Elemental Content Determination and Mapping

Authors: G. Yakubova, A. Kavetskiy, S. A. Prior, H. A. Torbert

Abstract:

In-situ soil carbon determination over large soil surface areas (several hectares) is required in regard to carbon sequestration and carbon credit issues. This capability is important for optimizing modern agricultural practices and enhancing soil science knowledge. Collecting and processing representative field soil cores for traditional laboratory chemical analysis is labor-intensive and time-consuming. The neutron-stimulated gamma analysis method can be used for in-situ measurements of primary elements in agricultural soils (e.g., Si, Al, O, C, Fe, and H). This non-destructive method can assess several elements in large soil volumes with no need for sample preparation. Neutron-gamma soil elemental analysis utilizes gamma rays issued from different neutron-nuclei interactions. This process has become possible due to the availability of commercial portable pulse neutron generators, high-efficiency gamma detectors, reliable electronics, and measurement/data processing software complimented by advances in state-of-the-art nuclear physics methods. In Pulsed Fast Thermal Neutron Analysis (PFTNA), soil irradiation is accomplished using a pulsed neutron flux, and gamma spectra acquisition occurs both during and between pulses. This method allows the inelastic neutron scattering (INS) gamma spectrum to be separated from the thermal neutron capture (TNC) spectrum. Based on PFTNA, a mobile system for field-scale soil elemental determinations (primarily carbon) was developed and constructed. Our scanning methodology acquires data that can be directly used for creating soil elemental distribution maps (based on ArcGIS software) in a reasonable timeframe (~20-30 hectares per working day). Created maps are suitable for both agricultural purposes and carbon sequestration estimates. The measurement system design, spectra acquisition process, strategy for acquiring field-scale carbon content data, and mapping of agricultural fields will be discussed.

Keywords: neutron gamma analysis, soil elemental content, carbon sequestration, carbon credit, soil gamma spectroscopy, portable neutron generators, ArcMap mapping

Procedia PDF Downloads 87