Search results for: nanofluid and thermal conductivity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4163

Search results for: nanofluid and thermal conductivity

4163 Molecular Dynamics Simulation of the Effect of the Solid Gas Interface Nanolayer on Enhanced Thermal Conductivity of Copper-CO2 Nanofluid

Authors: Zeeshan Ahmed, Ajinkya Sarode, Pratik Basarkar, Atul Bhargav, Debjyoti Banerjee

Abstract:

The use of CO2 in oil recovery and in CO2 capture and storage is gaining traction in recent years. These applications involve heat transfer between CO2 and the base fluid, and hence, there arises a need to improve the thermal conductivity of CO2 to increase the process efficiency and reduce cost. One way to improve the thermal conductivity is through nanoparticle addition in the base fluid. The nanofluid model in this study consisted of copper (Cu) nanoparticles in varying concentrations with CO2 as a base fluid. No experimental data are available on thermal conductivity of CO2 based nanofluid. Molecular dynamics (MD) simulations are an increasingly adopted tool to perform preliminary assessments of nanoparticle (NP) fluid interactions. In this study, the effect of the formation of a nanolayer (or molecular layering) at the gas-solid interface on thermal conductivity is investigated using equilibrium MD simulations by varying NP diameter and keeping the volume fraction (1.413%) of nanofluid constant to check the diameter effect of NP on the nanolayer and thermal conductivity. A dense semi-solid fluid layer was seen to be formed at the NP-gas interface, and the thickness increases with increase in particle diameter, which also moves with the NP Brownian motion. Density distribution has been done to see the effect of nanolayer, and its thickness around the NP. These findings are extremely beneficial, especially to industries employed in oil recovery as increased thermal conductivity of CO2 will lead to enhanced oil recovery and thermal energy storage.

Keywords: copper-CO2 nanofluid, molecular dynamics simulation, molecular interfacial layer, thermal conductivity

Procedia PDF Downloads 302
4162 Estimation of Thermal Conductivity of Nanofluids Using MD-Stochastic Simulation-Based Approach

Authors: Sujoy Das, M. M. Ghosh

Abstract:

The thermal conductivity of a fluid can be significantly enhanced by dispersing nano-sized particles in it, and the resultant fluid is termed as "nanofluid". A theoretical model for estimating the thermal conductivity of a nanofluid has been proposed here. It is based on the mechanism that evenly dispersed nanoparticles within a nanofluid undergo Brownian motion in course of which the nanoparticles repeatedly collide with the heat source. During each collision a rapid heat transfer occurs owing to the solid-solid contact. Molecular dynamics (MD) simulation of the collision of nanoparticles with the heat source has shown that there is a pulse-like pick up of heat by the nanoparticles within 20-100 ps, the extent of which depends not only on thermal conductivity of the nanoparticles, but also on the elastic and other physical properties of the nanoparticle. After the collision the nanoparticles undergo Brownian motion in the base fluid and release the excess heat to the surrounding base fluid within 2-10 ms. The Brownian motion and associated temperature variation of the nanoparticles have been modeled by stochastic analysis. Repeated occurrence of these events by the suspended nanoparticles significantly contributes to the characteristic thermal conductivity of the nanofluids, which has been estimated by the present model for a ethylene glycol based nanofluid containing Cu-nanoparticles of size ranging from 8 to 20 nm, with Gaussian size distribution. The prediction of the present model has shown a reasonable agreement with the experimental data available in literature.

Keywords: brownian dynamics, molecular dynamics, nanofluid, thermal conductivity

Procedia PDF Downloads 352
4161 Effect of Surfactant on Thermal Conductivity of Ethylene Glycol/Silver Nanofluid

Authors: E. C. Muhammed Irshad

Abstract:

Nanofluids are a new class of solid-liquid colloidal mixture consisting of nanometer sized (< 100nm) solid particles suspended in heat transfer fluids such as water, ethylene/propylene glycol etc. Nanofluids offer excellent scope of enhancing thermal conductivity of common heat transfer fluids and it leads to enhancement of the heat transfer coefficient. In the present study, silver nanoparticles are dispersed in ethylene glycol water mixture. Low volume concentrations (0.05%, 0.1% and 0.15%) of silver nanofluids were synthesized. The thermal conductivity of these nanofluids was determined with thermal property analyzer (KD2 pro apparatus) and heat transfer coefficient was found experimentally. Initially, the thermal conductivity and viscosity of nanofluids were calculated with various correlations at different concentrations and were compared. Thermal conductivity of silver nanofluid at 0.02% and 0.1% concentration of silver nanoparticle increased to 23.3% and 27.7% for Sodium Dodecyl Sulfate (SDS) and to 33.6% and 36.7% for Poly Vinyl Pyrrolidone (PVP), respectively. The nanofluid maintains the stability for two days and it starts to settle down due to high density of silver. But it shows good improvement in the thermal conductivity for low volume concentration and it also shows better improvement with Poly Vinyl Pyrrolidone (PVP) surfactant than Sodium Dodecyl Sulfate (SDS).

Keywords: k-thermal conductivity, sodium dodecyl sulfate, vinyl pyrrolidone, mechatronics engineering

Procedia PDF Downloads 270
4160 Effect of Temperature and CuO Nanoparticle Concentration on Thermal Conductivity and Viscosity of a Phase Change Material

Authors: V. Bastian Aguila, C. Diego Vasco, P. Paula Galvez, R. Paula Zapata

Abstract:

The main results of an experimental study of the effect of temperature and nanoparticle concentration on thermal conductivity and viscosity of a nanofluid are shown. The nanofluid was made by using octadecane as a base fluid and CuO spherical nanoparticles of 75 nm (MkNano). Since the base fluid is a phase change material (PCM) to be used in thermal storage applications, the engineered nanofluid is referred as nanoPCM. Three nanoPCM were prepared through the two-step method (2.5, 5.0 and 10.0%wv). In order to increase the stability of the nanoPCM, the surface of the CuO nanoparticles was modified with sodium oleate, and it was verified by IR analysis. The modified CuO nanoparticles were dispersed by using an ultrasonic horn (Hielscher UP50H) during one hour (amplitude of 180 μm at 50 W). The thermal conductivity was measured by using a thermal properties analyzer (KD2-Pro) in the temperature range of 30ºC to 40ºC. The viscosity was measured by using a Brookfield DV2T-LV viscosimeter to 30 RPM in the temperature range of 30ºC to 55ºC. The obtained results for the nanoPCM showed that thermal conductivity is almost constant in the analyzed temperature range, and the viscosity decreases non-linearly with temperature. Respect to the effect of the nanoparticle concentration, both thermal conductivity and viscosity increased with nanoparticle concentration. The thermal conductivity raised up to 9% respect to the base fluid, and the viscosity increases up to 60%, in both cases for the higher concentration. Finally, the viscosity measurements for different rotation speeds (30 RPM - 80 RPM) exhibited that the addition of nanoparticles modifies the rheological behavior of the base fluid, from a Newtonian to a viscoplastic (Bingham) or shear thinning (power-law) non-Newtonian behavior.

Keywords: NanoPCM, thermal conductivity, viscosity, non-Newtonian fluid

Procedia PDF Downloads 388
4159 Thermal Analysis of Automobile Radiator Using Nanofluids

Authors: S. Sumanth, Babu Rao Ponangi, K. N. Seetharamu

Abstract:

As the technology is emerging day by day, there is a need for some better methodology which will enhance the performance of radiator. Nanofluid is the one area which has promised the enhancement of the radiator performance. Currently, nanofluid has got a well effective solution for enhancing the performance of the automobile radiators. Suspending the nano sized particle in the base fluid, which has got better thermal conductivity value when compared to a base fluid, is preferably considered for nanofluid. In the current work, at first mathematical formulation has been carried out, which will govern the performance of the radiator. Current work is justified by plotting the graph for different parameters. Current work justifies the enhancement of radiator performance using nanofluid.

Keywords: nanofluid, radiator performance, graphene, gamma aluminium oxide (γ-Al2O3), titanium dioxide (TiO2)

Procedia PDF Downloads 214
4158 Application of Response Surface Methodology to Optimize the Thermal Conductivity Enhancement of a Hybrid Nanofluid

Authors: Aminreza Noghrehabadi, Mohammad Behbahani, Ali Pourabbasi

Abstract:

In this experimental work, unlike conventional methods that mix two nanoparticles together, silver nanoparticles have been synthesized on the surface of graphene. In this research, the effect of adding modified graphene nanocomposite-silver nanoparticles to the base fluid (distilled water) was studied. Different transmission electron microscopy (TEM) and field emission scanning electron microscope (FESEM) techniques have been used to examine the surfaces and atomic structure of nanoparticles. An ultrasonic device has been used to disperse the nanocomposite in distilled water. Also, the thermal conductivity coefficient was measured by the transient hot wire method using the KD2-pro device. In addition, the thermal conductivity coefficient was measured in the temperature range of 30°C to 50°C, concentration of 10 ppm to 1000 ppm, and ultrasonic time of 2 minutes to 15 minutes. The results showed that with the increase of all three parameters of temperature, concentration and ultrasonic time, the percentage of increase in thermal conductivity will go up until reaching the optimal point, and after passing the optimal point, the percentage of increase in thermal conductivity will have a downward trend. To calculate the thermal conductivity of this nanofluid, a very accurate experimental equation has been obtained using Design Expert software.

Keywords: thermal conductivity, nanofluids, enhancement, silver nano particle, optimal point

Procedia PDF Downloads 49
4157 A Mathematical Study of Magnetic Field, Heat Transfer and Brownian Motion of Nanofluid over a Nonlinear Stretching Sheet

Authors: Madhu Aneja, Sapna Sharma

Abstract:

Thermal conductivity of ordinary heat transfer fluids is not adequate to meet today’s cooling rate requirements. Nanoparticles have been shown to increase the thermal conductivity and convective heat transfer to the base fluids. One of the possible mechanisms for anomalous increase in the thermal conductivity of nanofluids is the Brownian motions of the nanoparticles in the basefluid. In this paper, the natural convection of incompressible nanofluid over a nonlinear stretching sheet in the presence of magnetic field is studied. The flow and heat transfer induced by stretching sheets is important in the study of extrusion processes and is a subject of considerable interest in the contemporary literature. Appropriate similarity variables are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary (similarity) differential equations. For computational purpose, Finite Element Method is used. The effective thermal conductivity and viscosity of nanofluid are calculated by KKL (Koo – Klienstreuer – Li) correlation. In this model effect of Brownian motion on thermal conductivity is considered. The effect of important parameter i.e. nonlinear parameter, volume fraction, Hartmann number, heat source parameter is studied on velocity and temperature. Skin friction and heat transfer coefficients are also calculated for concerned parameters.

Keywords: Brownian motion, convection, finite element method, magnetic field, nanofluid, stretching sheet

Procedia PDF Downloads 177
4156 Thermal Conductivity of Al2O3/Water-Based Nanofluids: Revisiting the Influences of pH and Surfactant

Authors: Nizar Bouguerra, Ahmed Khabou, Sébastien Poncet, Saïd Elkoun

Abstract:

The present work focuses on the preparation and the stabilization of Al2O3-water based nanofluids. Though they have been widely considered in the past, to the best of our knowledge, there is no clear consensus about a proper way to prepare and stabilize them by the appropriate surfactant. In this paper, a careful experimental investigation is performed to quantify the combined influence of pH and the surfactant on the stability of Al2O3-water based nanofluids. Two volume concentrations of nanoparticles and three nanoparticle sizes have been considered. The good preparation and stability of these nanofluids are evaluated through thermal conductivity measurements. The results show that the optimum value for the thermal conductivity is obtained mainly by controlling the pH of the mixture and surfactants are not necessary to stabilize the solution.

Keywords: nanofluid, thermal conductivity, pH, transient hot wire, surfactant, Al2O3, stability, dispersion, preparation

Procedia PDF Downloads 321
4155 Effect of Particles Size and Volume Fraction Concentration on the Thermal Conductivity and Thermal Diffusivity of Al2O3 Nanofluids Measured Using Transient Hot–Wire Laser Beam Deflection Technique

Authors: W. Mahmood Mat Yunus, Faris Mohammed Ali, Zainal Abidin Talib

Abstract:

In this study we present new data for the thermal conductivity enhancement in four nanofluids containing 11, 25, 50, 63 nm diameter aluminum oxide (Al2O3) nanoparticles in distilled water. The nanofluids were prepared using single step method (i.e. by dispersing nanoparticle directly in base fluid) which was gathered in ultrasonic device for approximately 7 hours. The transient hot-wire laser beam displacement technique was used to measure the thermal conductivity and thermal diffusivity of the prepared nanofluids. The thermal conductivity and thermal diffusivity were obtained by fitting the experimental data to the numerical data simulated for aluminum oxide in distilled water. The results show that the thermal conductivity and thermal diffusivity of nanofluids increases in non-linear behavior as the particle size increases. While, the thermal conductivity and thermal diffusivity of Al2O3 nanofluids was observed increasing linearly with concentration as the volume fraction concentration increases. We believe that the interfacial layer between solid/fluid is the main factor for the enhancement of thermal conductivity and thermal diffusivity of Al2O3 nanofluids in the present work.

Keywords: transient hot wire-laser beam technique, Al2O3 nanofluid, particle size, volume fraction concentration

Procedia PDF Downloads 515
4154 Determination of Thermophysical Properties of Water Based Magnetic Nanofluids

Authors: Eyüphan Manay, Bayram Sahin, Emre Mandev, Ibrahim Ates, Tuba Yetim

Abstract:

In this study, it was aimed to determine the thermophysical properties of two different magnetic nanofluids (NiFe2O4-water and CoFe2O4-water). Magnetic nanoparticles were dispersed into the pure water at different volume fractions from 0 vol.% to 4 vol.%. The measurements were performed in the temperature range of 15 oC-55 oC. In order to get better idea on the temperature dependent thermophysical properties of magnetic nanofluids (MNFs), viscosity and thermal conductivity measurements were made. SEM images of both NiFe2O4 and CoFe2O4 nanoparticles were used in order to confirm the average dimensions. The measurements showed that the thermal conductivity of MNFs increased with an increase in the volume fraction as well as viscosity. Increase in the temperature of both MNFs resulted in an increase in the thermal conductivity and a decrease in the viscosity. Based on the measured data, the correlations for both the viscosity and the thermal conductivity were presented with respect to solid volume ratio and temperature. Effective thermal conductivity of the prepared MNFs was also calculated. The results indicated that water based NiFe2O4 nanofluid had higher thermal conductivity than that of the CoFe2O4. Once the viscosity values of both MNFs were compared, almost no difference was observed.

Keywords: magnetic nanofluids, thermal conductivity, viscosity, nife2o4-water, cofe2o4-water

Procedia PDF Downloads 225
4153 Evaluation of Heat Transfer and Entropy Generation by Al2O3-Water Nanofluid

Authors: Houda Jalali, Hassan Abbassi

Abstract:

In this numerical work, natural convection and entropy generation of Al2O3–water nanofluid in square cavity have been studied. A two-dimensional steady laminar natural convection in a differentially heated square cavity of length L, filled with a nanofluid is investigated numerically. The horizontal walls are considered adiabatic. Vertical walls corresponding to x=0 and x=L are respectively maintained at hot temperature, Th and cold temperature, Tc. The resolution is performed by the CFD code "FLUENT" in combination with GAMBIT as mesh generator. These simulations are performed by maintaining the Rayleigh numbers varied as 103 ≤ Ra ≤ 106, while the solid volume fraction varied from 1% to 5%, the particle size is fixed at dp=33 nm and a range of the temperature from 20 to 70 °C. We used models of thermophysical nanofluids properties based on experimental measurements for studying the effect of adding solid particle into water in natural convection heat transfer and entropy generation of nanofluid. Such as models of thermal conductivity and dynamic viscosity which are dependent on solid volume fraction, particle size and temperature. The average Nusselt number is calculated at the hot wall of the cavity in a different solid volume fraction. The most important results is that at low temperatures (less than 40 °C), the addition of nanosolids Al2O3 into water leads to a decrease in heat transfer and entropy generation instead of the expected increase, whereas at high temperature, heat transfer and entropy generation increase with the addition of nanosolids. This behavior is due to the contradictory effects of viscosity and thermal conductivity of the nanofluid. These effects are discussed in this work.

Keywords: entropy generation, heat transfer, nanofluid, natural convection

Procedia PDF Downloads 243
4152 Conjugate Free Convection in a Square Cavity Filled with Nanofluid and Heated from Below by Spatial Wall Temperature

Authors: Ishak Hashim, Ammar Alsabery

Abstract:

The problem of conjugate free convection in a square cavity filled with nanofluid and heated from below by spatial wall temperature is studied numerically using the finite difference method. Water-based nanofluid with copper nanoparticles are chosen for the investigation. Governing equations are solved over a wide range of nanoparticle volume fraction (0 ≤ φ ≤ 0.2), wave number ((0 ≤ λ ≤ 4) and thermal conductivity ratio (0.44 ≤ Kr ≤ 6). The results presented for values of the governing parameters in terms of streamlines, isotherms and average Nusselt number. It is found that the flow behavior and the heat distribution are clearly enhanced with the increment of the non-uniform heating.

Keywords: conjugate free convection, square cavity, nanofluid, spatial temperature

Procedia PDF Downloads 325
4151 The Influence of Fiber Volume Fraction on Thermal Conductivity of Pultruded Profile

Authors: V. Lukášová, P. Peukert, V. Votrubec

Abstract:

Thermal conductivity in the x, y and z-directions was measured on a pultruded profile that was manufactured by the technology of pulling from glass fibers and a polyester matrix. The results of measurements of thermal conductivity showed considerable variability in different directions. The caused variability in thermal conductivity was expected due fraction variations. The cross-section of the pultruded profile was scanned. An image analysis illustrated an uneven distribution of the fibers and the matrix in the cross-section. The distribution of these inequalities was processed into a Voronoi diagram in the observed area of the pultruded profile cross-section. In order to verify whether the variation of the fiber volume fraction in the pultruded profile can affect its thermal conductivity, the numerical simulations in the ANSYS Fluent were performed. The simulation was based on the geometry reconstructed from image analysis. The aim is to quantify thermal conductivity numerically. Above all, images with different volume fractions were chosen. The results of the measured thermal conductivity were compared with the calculated thermal conductivity. The evaluated data proved a strong correlation between volume fraction and thermal conductivity of the pultruded profile. Based on presented results, a modification of production technology may be proposed.

Keywords: pultrusion profile, volume fraction, thermal conductivity, numerical simulation

Procedia PDF Downloads 310
4150 Comparing the Experimental Thermal Conductivity Results Using Transient Methods

Authors: Sofia Mylona, Dale Hume

Abstract:

The main scope of this work is to compare the experimental thermal conductivity results of fluids between devices using transient techniques. A range of different liquids within a range of viscosities was measured with two or more devices, and the results were compared between the different methods and the reference equations wherever it was available. The liquids selected are the most commonly used in academic or industrial laboratories to calibrate their thermal conductivity instruments having a variety of thermal conductivity, viscosity, and density. Three transient methods (Transient Hot Wire, Transient Plane Source, and Transient Line Source) were compared for the thermal conductivity measurements taken by using them. These methods have been chosen as the most accurate and because they all follow the same idea; as a function of the logarithm of time, the thermal conductivity is calculated from the slope of a plot of sensor temperature rise. For all measurements, the selected temperature range was at the atmospheric level from 10 to 40 ° C. Our results are coming with an agreement with the objections of several scientists over the reliability of the results of a few popular devices. The observation was surprising that the device used in many laboratories for fast measurements of liquid thermal conductivity display deviations of 500 percent which can be very poorly reproduced.

Keywords: accurate data, liquids, thermal conductivity, transient methods.

Procedia PDF Downloads 123
4149 Measurement of VIP Edge Conduction Using Vacuum Guarded Hot Plate

Authors: Bongsu Choi, Tae-Ho Song

Abstract:

Vacuum insulation panel (VIP) is a promising thermal insulator for buildings, refrigerator, LNG carrier and so on. In general, it has the thermal conductivity of 2~4 mW/m•K. However, this thermal conductivity is that measured at the center of VIP. The total effective thermal conductivity of VIP is larger than this value due to the edge conduction through the envelope. In this paper, the edge conduction of VIP is examined theoretically, numerically and experimentally. To confirm the existence of the edge conduction, numerical analysis is performed for simple two-dimensional VIP model and a theoretical model is proposed to calculate the edge conductivity. Also, the edge conductivity is measured using the vacuum guarded hot plate and the experiment is validated against numerical analysis. The results show that the edge conductivity is dependent on the width of panel and thickness of Al-foil. To reduce the edge conduction, it is recommended that the VIP should be made as big as possible or made of thin Al film envelope.

Keywords: envelope, edge conduction, thermal conductivity, vacuum insulation panel

Procedia PDF Downloads 375
4148 Thermal, Chemical, and Mineralogical Properties of Soil Building Blocks Reinforced with Cement

Authors: Abdelmalek Ammari

Abstract:

This paper represents an experimental study to determine the effect between thermal conductivity of Compressed Earth Block Stabilized (CEBs) by cement and the mineralogical and chemical analyses of soil, all the samples of CEB in the dry state and with different content of cement, the samples made by soil stabilized by Portland Cement. The soil used collected from fez city in Morocco. That determination of the thermal conductivity of CEBs plays an important role when considering its suitability for energy saving insulation. The measurement technique used to determine thermal conductivity is called hot ring method, the thermal conductivity of the tested samples is strongly affected by the quantity of the cement added. The soil of Fez, mainly composed of calcite, quartz, and dolomite, improved the behaviour of the material by the addition of cement. The findings suggest that to manufacture lightweight samples with high thermal insulation properties, it is advisable to use clays that contain quartz. . In addition, quartz has high thermal conductivity.

Keywords: compressed earth blocks, thermal conductivity, mineralogical, chemical, temperature

Procedia PDF Downloads 121
4147 Three-Dimensional Generalized Thermoelasticity with Variable Thermal Conductivity

Authors: Hamdy M. Youssef, Mowffaq Oreijah, Hunaydi S. Alsharif

Abstract:

In this paper, a three-dimensional model of the generalized thermoelasticity with one relaxation time and variable thermal conductivity has been constructed. The resulting non-dimensional governing equations together with the Laplace and double Fourier transforms techniques have been applied to a three-dimensional half-space subjected to thermal loading with rectangular pulse and traction free in the directions of the principle co-ordinates. The inverses of double Fourier transforms, and Laplace transforms have been obtained numerically. Numerical results for the temperature increment, the invariant stress, the invariant strain, and the displacement are represented graphically. The variability of the thermal conductivity has significant effects on the thermal and the mechanical waves.

Keywords: thermoelasticity, thermal conductivity, Laplace transforms, Fourier transforms

Procedia PDF Downloads 193
4146 Thermal Conductivity and Optical Absorption of GaInAsSb/GaSb Laser Structure: Impact of Annealing Time

Authors: Soufiene Ilahi, Noureddine Yacoubi

Abstract:

GaInAsSb grown on GaSb substrate is an interesting material employed as an active layer in vertical-cavity surface-emitting lasers (VCSELs) operating in mid-infrared emission. This material presents some advantages like highs optical absorption coefficient and good thermal conductivity, which is very desirable for VCSEL application. In this paper, we have investigated the effects of thermal annealing on optical properties and thermal conductivity of GaInAsSb/GaSb. The studies are carried out by means of the photo thermal deflection spectroscopy technique (PDS). In fact, optical absorption spectrum and thermal conductivity have been determined by a comparison between the experimental and theoretical phases of the PDS signal. We have found that thermal conductivity increased significantly to 13 W/m.K for GaInAsSb annealed during 60 min. In addition, we have found that bandgap energy is blue-shifted around 30 meV. The amplitudes signal of PDS reveals multiple reflections as a function of annealing time, which reflect the high crystalline quality of the layer.

Keywords: thermal conductivity, bandgap energy of GaInAsSb, GaInAsSb active layer, optical absorption

Procedia PDF Downloads 115
4145 Investigation of Enhancement of Heat Transfer in Natural Convection Utilizing of Nanofluids

Authors: S. Etaig, R. Hasan, N. Perera

Abstract:

This paper analyses the heat transfer performance and fluid flow using different nanofluids in a square enclosure. The energy equation and Navier-Stokes equation are solved numerically using finite volume scheme. The effect of volume fraction concentration on the enhancement of heat transfer has been studied icorporating the Brownian motion; the influence of effective thermal conductivity on the enhancement was also investigated for a range of volume fraction concentration. The velocity profile for different Rayleigh number. Water-Cu, water AL2O3 and water-TiO2 were tested.

Keywords: computational fluid dynamics, natural convection, nanofluid and thermal conductivity

Procedia PDF Downloads 400
4144 Thermal Properties of the Ground in Cyprus and Their Correlations and Effect on the Efficiency of Ground Heat Exchangers

Authors: G. A. Florides, E. Theofanous, I. Iosif-Stylianou, P. Christodoulides, S. Kalogirou, V. Messarites, Z. Zomeni, E. Tsiolakis, P. D. Pouloupatis, G. P. Panayiotou

Abstract:

Ground Coupled Heat Pumps (GCHPs) exploit effectively the heat capacity of the ground, with the use of Ground Heat Exchangers (GHE). Depending on the mode of operation of the GCHPs, GHEs dissipate or absorb heat from the ground. For sizing the GHE the thermal properties of the ground need to be known. This paper gives information about the density, thermal conductivity, specific heat and thermal diffusivity of various lithologies encountered in Cyprus with various relations between these properties being examined through comparison and modeling. The results show that the most important correlation is the one encountered between thermal conductivity and thermal diffusivity with both properties showing similar response to the inlet and outlet flow temperature of vertical and horizontal heat exchangers.

Keywords: ground heat exchangers, ground thermal conductivity, ground thermal diffusivity, ground thermal properties

Procedia PDF Downloads 351
4143 Estimation of Uncertainty of Thermal Conductivity Measurement with Single Laboratory Validation Approach

Authors: Saowaluck Ukrisdawithid

Abstract:

The thermal conductivity of thermal insulation materials are measured by Heat Flow Meter (HFM) apparatus. The components of uncertainty are complex and difficult on routine measurement by modelling approach. In this study, uncertainty of thermal conductivity measurement was estimated by single laboratory validation approach. The within-laboratory reproducibility was 1.1%. The standard uncertainty of method and laboratory bias by using SRM1453 expanded polystyrene board was dominant at 1.4%. However, it was assessed that there was no significant bias. For sample measurement, the sources of uncertainty were repeatability, density of sample and thermal conductivity resolution of HFM. From this approach to sample measurements, the combined uncertainty was calculated. In summary, the thermal conductivity of sample, polystyrene foam, was reported as 0.03367 W/m·K ± 3.5% (k = 2) at mean temperature 23.5 °C. The single laboratory validation approach is simple key of routine testing laboratory for estimation uncertainty of thermal conductivity measurement by using HFM, according to ISO/IEC 17025-2017 requirements. These are meaningful for laboratory competent improvement, quality control on products, and conformity assessment.

Keywords: single laboratory validation approach, within-laboratory reproducibility, method and laboratory bias, certified reference material

Procedia PDF Downloads 104
4142 Annular Hyperbolic Profile Fins with Variable Thermal Conductivity Using Laplace Adomian Transform and Double Decomposition Methods

Authors: Yinwei Lin, Cha'o-Kuang Chen

Abstract:

In this article, the Laplace Adomian transform method (LADM) and double decomposition method (DDM) are used to solve the annular hyperbolic profile fins with variable thermal conductivity. As the thermal conductivity parameter ε is relatively large, the numerical solution using DDM become incorrect. Moreover, when the terms of DDM are more than seven, the numerical solution using DDM is very complicated. However, the present method can be easily calculated as terms are over seven and has more precisely numerical solutions. As the thermal conductivity parameter ε is relatively large, LADM also has better accuracy than DDM.

Keywords: fins, thermal conductivity, Laplace transform, Adomian, nonlinear

Procedia PDF Downloads 305
4141 Stagnation Point Flow Over a Stretching Cylinder with Variable Thermal Conductivity and Slip Conditions

Authors: M. Y. Malik, Farzana Khan

Abstract:

In this article, we discuss the behavior of viscous fluid near stagnation point over a stretching cylinder with variable thermal conductivity. The effects of slip conditions are also encountered. Thermal conductivity is considered as a linear function of temperature. By using homotopy analysis method and Fehlberg method we compare the graphical results for both momentum and energy equations. The effect of different parameters on velocity and temperature fields are shown graphically.

Keywords: slip conditions, stretching cylinder, heat generation/absorption, stagnation point flow, variable thermal conductivity

Procedia PDF Downloads 390
4140 Effect of Nanoparticle Diameter of Nano-Fluid on Average Nusselt Number in the Chamber

Authors: A. Ghafouri, N. Pourmahmoud, I. Mirzaee

Abstract:

In this numerical study, effects of using Al2O3-water nanofluid on the rate of heat transfer have been investigated numerically. The physical model is a square enclosure with insulated top and bottom horizontal walls while the vertical walls are kept at different constant temperatures. Two appropriate models are used to evaluate the viscosity and thermal conductivity of nanofluid. The governing stream-vorticity equations are solved using a second order central finite difference scheme, coupled to the conservation of mass and energy. The study has been carried out for the nanoparticle diameter 30, 60, and 90 nm and the solid volume fraction 0 to 0.04. Results are presented by average Nusselt number and normalized Nusselt number in the different range of φ and D for mixed convection dominated regime. It is found that different heat transfer rate is predicted when the effect of nanoparticle diameter is taken into account.

Keywords: nanofluid, nanoparticle diameter, heat transfer enhancement, square enclosure, Nusselt number

Procedia PDF Downloads 365
4139 Study on the Thermal Conductivity about Porous Materials in Wet State

Authors: Han Yan, Jieren Luo, Qiuhui Yan, Xiaoqing Li

Abstract:

The thermal conductivity of porous materials is closely related to the thermal and moisture environment and the overall energy consumption of the building. The study of thermal conductivity of porous materials has great significance for the realization of low energy consumption building and economic construction building. Based on the study of effective thermal conductivity of porous materials at home and abroad, the thermal conductivity under a variety of different density of polystyrene board (EPS), plastic extruded board (XPS) and polyurethane (PU) and phenolic resin (PF) in wet state through theoretical analysis and experimental research has been studied. Initially, the moisture absorption and desorption properties of specimens had been discussed under different density, which led a result indicates the moisture absorption of four porous materials all have three stages, fast, stable and gentle. For the moisture desorption, there are two types. One is the existence of the rapid phase of the stage, such as XPS board, PU board. The other one does not have the fast desorption, instead, it is more stabilized, such as XPS board, PF board. Furthermore, the relationship between water content and thermal conductivity of porous materials had been studied and fitted, which figured out that in the wake of the increasing water content, the thermal conductivity of porous material is continually improving. At the same time, this result also shows, in different density, when the same kind of materials decreases, the saturated moisture content increases. Finally, the moisture absorption and desorption properties of the four kinds of materials are compared comprehensively, and it turned out that the heat preservation performance of PU board is the best, followed by EPS board, XPS board, PF board.

Keywords: porous materials, thermal conductivity, moisture content, transient hot-wire method

Procedia PDF Downloads 147
4138 An Attempt to Improve Student´s Understanding on Thermal Conductivity Using Thermal Cameras

Authors: Mariana Faria Brito Francisquini

Abstract:

Many thermal phenomena are present and play a substantial role in our daily lives. This presence makes the study of this area at both High School and University levels a very widely explored topic in the literature. However, a lot of important concepts to a meaningful understanding of the world are neglected at the expense of a traditional approach with senseless algebraic problems. In this work, we intend to show how the introduction of new technologies in the classroom, namely thermal cameras, can work in our favor to make a clearer understanding of many of these concepts, such as thermal conductivity. The use of thermal cameras in the classroom tends to diminish the everlasting abstractness in thermal phenomena as they enable us to visualize something that happens right before our eyes, yet we cannot see it. In our study, we will provide the same amount of heat to metallic cylindrical rods of the same length, but different materials in order to study the thermal conductivity of each one. In this sense, the thermal camera allows us to visualize the increase in temperature along each rod in real time enabling us to infer how heat is being transferred from one part of the rod to another. Therefore, we intend to show how this approach can contribute to the exposure of students to more enriching, intellectually prolific, scenarios than those provided by traditional approaches.

Keywords: teaching physics, thermal cameras, thermal conductivity, thermal physics

Procedia PDF Downloads 247
4137 Using the Transient Plane Source Method for Measuring Thermal Parameters of Electroceramics

Authors: Peter Krupa, Svetozár Malinarič

Abstract:

Transient plane source method has been used to measure the thermal diffusivity and thermal conductivity of a compact isostatic electro-ceramics at room temperature. The samples were fired at temperatures from 100 up to 1320 degrees Celsius in steps of 50. Bulk density and specific heat capacity were also measured with their corresponding standard uncertainties. The results were compared with further thermal analysis (dilatometry and thermogravimetry). Structural processes during firing were discussed.

Keywords: TPS method, thermal conductivity, thermal diffusivity, thermal analysis, electro-ceramics, firing

Procedia PDF Downloads 443
4136 Degradation of Irradiated UO2 Fuel Thermal Conductivity Calculated by FRAPCON Model Due to Porosity Evolution at High Burn-Up

Authors: B. Roostaii, H. Kazeminejad, S. Khakshournia

Abstract:

The evolution of volume porosity previously obtained by using the existing low temperature high burn-up gaseous swelling model with progressive recrystallization for UO2 fuel is utilized to study the degradation of irradiated UO2 thermal conductivity calculated by the FRAPCON model of thermal conductivity. A porosity correction factor is developed based on the assumption that the fuel morphology is a three-phase type, consisting of the as-fabricated pores and pores due to intergranular bubbles whitin UO2 matrix and solid fission products. The predicted thermal conductivity demonstrates an additional degradation of 27% due to porosity formation at burn-up levels around 120 MWd/kgU which would cause an increase in the fuel temperature accordingly. Results of the calculations are compared with available data.

Keywords: irradiation-induced recrystallization, matrix swelling, porosity evolution, UO₂ thermal conductivity

Procedia PDF Downloads 267
4135 Numerical Heat Transfer Performance of Water-Based Graphene Nanoplatelets

Authors: Ahmad Amiri, Hamed K. Arzani, S. N. Kazi, B. T. Chew

Abstract:

Since graphene nanoplatelet (GNP) is a promising material due to desirable thermal properties, this paper is related to the thermophysical and heat transfer performance of covalently functionalized GNP-based water/ethylene glycol nanofluid through an annular channel. After experimentally measuring thermophysical properties of prepared samples, a computational fluid dynamics study has been carried out to examine the heat transfer and pressure drop of well-dispersed and stabilized nanofluids. The effect of concentration of GNP and Reynolds number at constant wall temperature boundary condition under turbulent flow regime on convective heat transfer coefficient has been investigated. Based on the results, for different Reynolds numbers, the convective heat transfer coefficient of the prepared nanofluid is higher than that of the base fluid. Also, the enhancement of convective heat transfer coefficient and thermal conductivity increase with the increase of GNP concentration in base-fluid. Based on the results of this investigation, there is a significant enhancement on the heat transfer rate associated with loading well-dispersed GNP in base-fluid.

Keywords: nanofluid, turbulent flow, forced convection flow, graphene, annular, annulus

Procedia PDF Downloads 331
4134 Mapping Thermal Properties Using Resistivity, Lithology and Thermal Conductivity Measurements

Authors: Riccardo Pasquali, Keith Harlin, Mark Muller

Abstract:

The ShallowTherm project is focussed on developing and applying a methodology for extrapolating relatively sparsely sampled thermal conductivity measurements across Ireland using mapped Litho-Electrical (LE) units. The primary data used consist of electrical resistivities derived from the Geological Survey Ireland Tellus airborne electromagnetic dataset, GIS-based maps of Irish geology, and rock thermal conductivities derived from both the current Irish Ground Thermal Properties (IGTP) database and a new programme of sampling and laboratory measurement. The workflow has been developed across three case-study areas that sample a range of different calcareous, arenaceous, argillaceous, and volcanic lithologies. Statistical analysis of resistivity data from individual geological formations has been assessed and integrated with detailed lithological descriptions to define distinct LE units. Thermal conductivity measurements from core and hand samples have been acquired for every geological formation within each study area. The variability and consistency of thermal conductivity measurements within each LE unit is examined with the aim of defining a characteristic thermal conductivity (or range of thermal conductivities) for each LE unit. Mapping of LE units, coupled with characteristic thermal conductivities, provides a method of defining thermal conductivity properties at a regional scale and facilitating the design of ground source heat pump closed-loop collectors.

Keywords: thermal conductivity, ground source heat pumps, resistivity, heat exchange, shallow geothermal, Ireland

Procedia PDF Downloads 142