Search results for: hydrologic soil groups
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9555

Search results for: hydrologic soil groups

9555 Evaluation of SCS-Curve Numbers and Runoff across Varied Tillage Methods

Authors: Umar Javed, Kristen Blann, Philip Adalikwu, Maryam Sahraei, John McMaine

Abstract:

The soil conservation service curve number (SCS-CN) is a widely used method to assess direct runoff depth based on specific rainfall events. “Actual” estimated runoff depth was estimated by subtracting the change in soil moisture from the depth of precipitation for each discrete rain event during the growing seasons from 2021 to 2023. Fields under investigation were situated in a HUC-12 watershed in southeastern South Dakota selected for a common soil series (Nora-Crofton complex and Moody-Nora complex) to minimize the influence of soil texture on soil moisture. Two soil moisture probes were installed from May 2021 to October 2023, with exceptions during planting and harvest periods. For each field, “Textbook” CN estimates were derived from the TR-55 table based on corresponding mapped land use land cover LULC class and hydrologic soil groups from web soil survey maps. The TR-55 method incorporated HSG and crop rotation within the study area fields. These textbook values were then compared to actual CN values to determine the impact of tillage practices on CN and runoff. Most fields were mapped as having a textbook C or D HSG, but the HSG of actual CNs was that of a B or C hydrologic group. Actual CNs were consistently lower than textbook CNs for all management practices, but actual CNs in conventionally tilled fields were the highest (and closest to textbook CNs), while actual CNs in no-till fields were the lowest. Preliminary results suggest that no-till practice reduces runoff compared to conventional till. This research highlights the need to use CNs that incorporate agricultural management to more accurately estimate runoff at the field and watershed scale.

Keywords: curve number hydrology, hydrologic soil groups, runoff, tillage practices

Procedia PDF Downloads 13
9554 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model

Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu

Abstract:

Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studies

Keywords: crop yield, roughness coefficient, PAR, WRM model

Procedia PDF Downloads 377
9553 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model 1: Description

Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu

Abstract:

Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studies.

Keywords: runoff, roughness coefficient, PAR, WRM model

Procedia PDF Downloads 338
9552 Impacts of Hydrologic and Topographic Changes on Water Regime Evolution of Poyang Lake, China

Authors: Feng Huang, Carlos G. Ochoa, Haitao Zhao

Abstract:

Poyang Lake, the largest freshwater lake in China, is located at the middle-lower reaches of the Yangtze River basin. It has great value in socioeconomic development and is internationally recognized as an important lacustrine and wetland ecosystem with abundant biodiversity. Impacted by ongoing climate change and anthropogenic activities, especially the regulation of the Three Gorges Reservoir since 2003, Poyang Lake has experienced significant water regime evolution, resulting in challenges for the management of water resources and the environment. Quantifying the contribution of hydrologic and topographic changes to water regime alteration is necessary for policymakers to design effective adaption strategies. Long term hydrologic data were collected and the back-propagation neural networks were constructed to simulate the lake water level. The impacts of hydrologic and topographic changes were differentiated through scenario analysis that considered pre-impact and post-impact hydrologic and topographic scenarios. The lake water regime was characterized by hydrologic indicators that describe monthly water level fluctuations, hydrologic features during flood and drought seasons, and frequency and rate of hydrologic variations. The results revealed different contributions of hydrologic and topographic changes to different features of the lake water regime.Noticeable changes were that the water level declined dramatically during the period of reservoir impoundment, and the drought was enhanced during the dry season. The hydrologic and topographic changes exerted a synergistic effect or antagonistic effect on different lake water regime features. The findings provide scientific reference for lacustrine and wetland ecological protection associated with water regime alterations.

Keywords: back-propagation neural network, scenario analysis, water regime, Poyang Lake

Procedia PDF Downloads 102
9551 Estimation of the Curve Number and Runoff Height Using the Arc CN-Runoff Tool in Sartang Ramon Watershed in Iran

Authors: L.Jowkar. M.Samiee

Abstract:

Models or systems based on rainfall and runoff are numerous and have been formulated and applied depending on the precipitation regime, temperature, and climate. In this study, the ArcCN-Runoff rain-runoff modeling tool was used to estimate the spatial variability of the rainfall-runoff relationship in Sartang Ramon in Jiroft watershed. In this study, the runoff was estimated from 6-hour rainfall. The results showed that based on hydrological soil group map, soils with hydrological groups A, B, C, and D covered 1, 2, 55, and 41% of the basin, respectively. Given that the majority of the area has a slope above 60 percent and results of soil hydrologic groups, one can conclude that Sartang Ramon Basin has a relatively high potential for producing runoff. The average runoff height for a 6-hour rainfall with a 2-year return period is 26.6 mm. The volume of runoff from the 2-year return period was calculated as the runoff height of each polygon multiplied by the area of the polygon, which is 137913486 m³ for the whole basin.

Keywords: Arc CN-Run off, rain-runoff, return period, watershed

Procedia PDF Downloads 99
9550 Heterogeneity of Soil Moisture and Its Impacts on the Mountainous Watershed Hydrology in Northwest China

Authors: Chansheng He, Zhongfu Wang, Xiao Bai, Jie Tian, Xin Jin

Abstract:

Heterogeneity of soil hydraulic properties directly affects hydrological processes at different scales. Understanding heterogeneity of soil hydraulic properties such as soil moisture is therefore essential for modeling watershed ecohydrological processes, particularly in hard to access, topographically complex mountainous watersheds. This study maps spatial variations of soil moisture by in situ observation network that consists of sampling points, zones, and tributaries, and monitors corresponding hydrological variables of air and soil temperatures, evapotranspiration, infiltration, and runoff in the Upper Reach of the Heihe River Watershed, a second largest inland river (terminal lake) with a drainage area of over 128,000 km² in Northwest China. Subsequently, the study uses a hydrological model, SWAT (Soil and Water Assessment Tool) to simulate the effects of heterogeneity of soil moisture on watershed hydrological processes. The spatial clustering method, Full-Order-CLK was employed to derive five soil heterogeneous zones (Configuration 97, 80, 65, 40, and 20) for soil input to SWAT. Results show the simulations by the SWAT model with the spatially clustered soil hydraulic information from the field sampling data had much better representation of the soil heterogeneity and more accurate performance than the model using the average soil property values for each soil type derived from the coarse soil datasets. Thus, incorporating detailed field sampling soil heterogeneity data greatly improves performance in hydrologic modeling.

Keywords: heterogeneity, soil moisture, SWAT, up-scaling

Procedia PDF Downloads 315
9549 Disaggregation of Coarser Resolution Radiometer Derived Soil Moisture to Finer Scales

Authors: Gurjeet Singh, Rabindra K. Panda

Abstract:

Soil moisture is a key hydrologic state variable and is intrinsically linked to the Earth's water, climate and carbon cycles. On ecological point of view, the soil moisture is a fundamental natural resource providing the transpirable water for plants. Soil moisture varies both temporally and spatially due to spatiotemporal variation in rainfall, vegetation cover, soil properties and topography. Satellite derived soil moisture provides spatio-temporal extensive data. However, the spatial resolution of a typical satellite (L-band radiometry) is of the order of tens of kilometers, which is not good enough for developing efficient agricultural water management schemes at the field scale. In the present study, the soil moisture from radiometer data has been disaggregated using blending approach to achieve higher resolution soil moisture data. The radiometer estimates of soil moisture at a 40 km resolution have been disaggregated to 10 km, 5 km and 1 km resolutions. The disaggregated soil moisture was compared with the observed data, consisting of continuous sensor based soil moisture profile measurements, at three monitoring sites and extensive spatial near-surface soil moisture measurements, concurrent with satellite monitoring in the 500 km2 study watershed in the Eastern India. The estimated soil moisture status at different spatial scales can help in developing efficient agricultural water management schemes to increase the crop production and water use efficiency.

Keywords: disaggregation, eastern India, radiometers, soil moisture, water use efficiency

Procedia PDF Downloads 247
9548 Analysis of the Probable Maximum Flood in Hydrologic Design Using Different Functions of Rainfall-Runoff Transformation

Authors: Evangelos Baltas, Elissavet Feloni, Dimitrios Karpouzos

Abstract:

A crucial issue in hydrologic design is the sizing of structures and flood-control works in areas with limited data. This research work highlights the significant variation in probable maximum flood (PMF) for a design hyetograph, using different theoretical functions of rainfall-runoff transformation. The analysis focuses on seven subbasins with different characteristics in the municipality of Florina, northern Greece. This area is a semi-agricultural one which hosts important activities, such as the operation of one of the greatest fields of lignite for power generation in Greece. Results illustrate the notable variation in estimations among the methodologies used for the examined subbasins.

Keywords: rainfall, runoff, hydrologic design, PMF

Procedia PDF Downloads 234
9547 Runoff Estimation Using NRCS-CN Method

Authors: E. K. Naseela, B. M. Dodamani, Chaithra Chandran

Abstract:

The GIS and remote sensing techniques facilitate accurate estimation of surface runoff from watershed. In the present study an attempt has been made to evaluate the applicability of Natural Resources Service Curve Number method using GIS and Remote sensing technique in the upper Krishna basin (69,425 Sq.km). Landsat 7 (with resolution 30 m) satellite data for the year 2012 has been used for the preparation of land use land cover (LU/LC) map. The hydrologic soil group is mapped using GIS platform. The weighted curve numbers (CN) for all the 5 subcatchments calculated on the basis of LU/LC type and hydrologic soil class in the area by considering antecedent moisture condition. Monthly rainfall data was available for 58 raingauge stations. Overlay technique is adopted for generating weighted curve number. Results of the study show that land use changes determined from satellite images are useful in studying the runoff response of the basin. The results showed that there is no significant difference between observed and estimated runoff depths. For each subcatchment, statistically positive correlations were detected between observed and estimated runoff depth (0.6Keywords: curve number, GIS, remote sensing, runoff

Procedia PDF Downloads 513
9546 The Impact of Land Cover Change on Stream Discharges and Water Resources in Luvuvhu River Catchment, Vhembe District, Limpopo Province, South Africa

Authors: P. M. Kundu, L. R. Singo, J. O. Odiyo

Abstract:

Luvuvhu River catchment in South Africa experiences floods resulting from heavy rainfall of intensities exceeding 15 mm per hour associated with the Inter-tropical Convergence Zone (ITCZ). The generation of runoff is triggered by the rainfall intensity and soil moisture status. In this study, remote sensing and GIS techniques were used to analyze the hydrologic response to land cover changes. Runoff was calculated as a product of the net precipitation and a curve number coefficient. It was then routed using the Muskingum-Cunge method using a diffusive wave transfer model that enabled the calculation of response functions between start and end point. Flood frequency analysis was determined using theoretical probability distributions. Spatial data on land cover was obtained from multi-temporal Landsat images while data on rainfall, soil type, runoff and stream discharges was obtained by direct measurements in the field and from the Department of Water. A digital elevation model was generated from contour maps available at http://www.ngi.gov.za. The results showed that land cover changes had impacted negatively to the hydrology of the catchment. Peak discharges in the whole catchment were noted to have increased by at least 17% over the period while flood volumes were noted to have increased by at least 11% over the same period. The flood time to peak indicated a decreasing trend, in the range of 0.5 to 1 hour within the years. The synergism between remotely sensed digital data and GIS for land surface analysis and modeling was realized, and it was therefore concluded that hydrologic modeling has potential for determining the influence of changes in land cover on the hydrologic response of the catchment.

Keywords: catchment, digital elevation model, hydrological model, routing, runoff

Procedia PDF Downloads 535
9545 Nickel and Chromium Distributions in Soil and Plant Influenced by Geogenic Sources

Authors: Mohamad Sakizadeh, Fatemeh Mehrabi Sharafabadi, Hadi Ghorbani

Abstract:

Concentrations of Cr and Ni in 97 plant samples (belonged to eight different plant species) and the associated soil groups were considered in this study. The amounts of Ni in soil groups fluctuated between 26.8 and 36.8 mgkg⁻¹ whereas the related levels of chromium ranged from 67.7 to 94.3mgkg⁻¹. The index of geoaccumulation indicated that 87 percents of the studied soils for chromium and 98.8 percents for nickel are located in uncontaminated zone. The results of Mann-Whitney U-test proved that agricultural practices have not significantly influenced the values of Ni and Cr. In addition, tillage had also little impact on the Ni and Cr transfer in the surface soil. Ni showed higher accumulation and soil-to-plant transfer factor compared with that of chromium in the studied plants. There was a high similarity between the accumulation pattern of Cr and Fe in most of the plant species.

Keywords: bioconcentration factor, chromium, geoaccumulation index, nickel

Procedia PDF Downloads 323
9544 Derivation of Runoff Susceptibility Map Using Slope-Adjusted SCS-CN in a Tropical River Basin

Authors: Abolghasem Akbari

Abstract:

The Natural Resources Conservation Service Curve Number (NRCS-CN) method is widely used for predicting direct runoff from rainfall. It employs the hydrologic soil groups and land use information along with period soil moisture conditions to derive NRCS-CN. This method has been well documented and available in popular rainfall-runoff models such as HEC-HMS, SWAT, SWMM and much more. Despite all benefits and advantages of this well documented and easy-to-use method, it does not take into account the effect of terrain slope and drainage area. This study aimed to first investigate the effect of slope on CN and then slope-adjusted runoff potential map is generated for Kuantan River Basin, Malaysia. The Hanng method was used to adjust CN values provided in National Handbook of Engineering and The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) version 2 is used to derive slope map with the spatial resolution of 30 m for Kuantan River Basin (KRB). The study significantly enhanced the application of GIS tools and recent advances in earth observation technology to analyze the hydrological process.

Keywords: Kuantan, ASTER-GDEM, SCS-CN, runoff

Procedia PDF Downloads 261
9543 Stabilization of Clay Soil Using A-3 Soil

Authors: Mohammed Mustapha Alhaji, Sadiku Salawu

Abstract:

A clay soil which classified under A-7-6 soil according to AASHTO soil classification system and CH according to the unified soil classification system was stabilized using A-3 soil (AASHTO soil classification system). The clay soil was replaced with 0%, 10%, 20% to 100% A-3 soil, compacted at both the BSL and BSH compaction energy level and using unconfined compressive strength as evaluation criteria. The MDD of the compactions at both the BSL and BSH compaction energy levels showed increase in MDD from 0% A-3 soil replacement to 40% A-3 soil replacement after which the values reduced to 100% A-3 soil replacement. The trend of the OMC with varied A-3 soil replacement is similar to that of MDD but in a reversed order. The OMC reduced from 0% A-3 soil replacement to 40% A-3 soil replacement after which the values increased to 100% A-3 soil replacement. This trend was attributed to the observed reduction in the void ratio from 0% A-3 soil replacement to 40% A-3 soil replacement after which the void ratio increased to 100% A-3 soil replacement. The maximum UCS for clay at varied A-3 soil replacement increased from 272 and 770kN/m2 for BSL and BSH compaction energy level at 0% A-3 soil replacement to 295 and 795kN/m2 for BSL and BSH compaction energy level respectively at 10% A-3 soil replacement after which the values reduced to 22 and 60kN/m2 for BSL and BSH compaction energy level respectively at 70% A-3 soil replacement. Beyond 70% A-3 soil replacement, the mixture cannot be moulded for UCS test.

Keywords: A-3 soil, clay minerals, pozzolanic action, stabilization

Procedia PDF Downloads 396
9542 Multi-Indicator Evaluation of Agricultural Drought Trends in Ethiopia: Implications for Dry Land Agriculture and Food Security

Authors: Dawd Ahmed, Venkatesh Uddameri

Abstract:

Agriculture in Ethiopia is the main economic sector influenced by agricultural drought. A simultaneous assessment of drought trends using multiple drought indicators is useful for drought planning and management. Intra-season and seasonal drought trends in Ethiopia were studied using a suite of drought indicators. Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), Palmer Drought Severity Index (PDSI), and Z-index for long-rainy, dry, and short-rainy seasons are used to identify drought-causing mechanisms. The Statistical software package R version 3.5.2 was used for data extraction and data analyses. Trend analysis indicated shifts in late-season long-rainy season precipitation into dry in the southwest and south-central portions of Ethiopia. Droughts during the dry season (October–January) were largely temperature controlled. Short-term temperature-controlled hydrologic processes exacerbated rainfall deficits during the short rainy season (February–May) and highlight the importance of temperature- and hydrology-induced soil dryness on the production of short-season crops such as tef. Droughts during the long-rainy season (June–September) were largely driven by precipitation declines arising from the narrowing of the intertropical convergence zone (ITCZ). Increased dryness during long-rainy season had severe consequences on the production of corn and sorghum. PDSI was an aggressive indicator of seasonal droughts suggesting the low natural resilience to combat the effects of slow-acting, moisture-depleting hydrologic processes. The lack of irrigation systems in the nation limits the ability to combat droughts and improve agricultural resilience. There is an urgent need to monitor soil moisture (a key agro-hydrologic variable) to better quantify the impacts of meteorological droughts on agricultural systems in Ethiopia.

Keywords: autocorrelation, climate change, droughts, Ethiopia, food security, palmer z-index, PDSI, SPEI, SPI, trend analysis

Procedia PDF Downloads 105
9541 Mapping Soils from Terrain Features: The Case of Nech SAR National Park of Ethiopia

Authors: Shetie Gatew

Abstract:

Current soil maps of Ethiopia do not represent accurately the soils of Nech Sar National Park. In the framework of studies on the ecology of the park, we prepared a soil map based on field observations and a digital terrain model derived from SRTM data with a 30-m resolution. The landscape comprises volcanic cones, lava and basalt outflows, undulating plains, horsts, alluvial plains and river deltas. SOTER-like terrain mapping units were identified. First, the DTM was classified into 128 terrain classes defined by slope gradient (4 classes), relief intensity (4 classes), potential drainage density (2 classes), and hypsometry (4 classes). A soil-landscape relation between the terrain mapping units and WRB soil units was established based on 34 soil profile pits. Based on this relation, the terrain mapping units were either merged or split to represent a comprehensive soil and terrain map. The soil map indicates that Leptosols (30 %), Cambisols (26%), Andosols (21%), Fluvisols (12 %), and Vertisols (9%) are the most widespread Reference Soil Groups of the park. In contrast, the harmonized soil map of Africa derived from the FAO soil map of the world indicates that Luvisols (70%), Vertisols (14%) and Fluvisols (16%) would be the most common Reference Soil Groups. However, these latter mapping units are not consistent with the topography, nor did we find such extensive areas occupied by Luvisols during the field survey. This case study shows that with the now freely available SRTM data, it is possible to improve current soil information layers with relatively limited resources, even in a complex terrain like Nech Sar National Park.

Keywords: andosols, cambisols, digital elevation model, leptosols, soil-landscaps relation

Procedia PDF Downloads 53
9540 Development of National Scale Hydropower Resource Assessment Scheme Using SWAT and Geospatial Techniques

Authors: Rowane May A. Fesalbon, Greyland C. Agno, Jodel L. Cuasay, Dindo A. Malonzo, Ma. Rosario Concepcion O. Ang

Abstract:

The Department of Energy of the Republic of the Philippines estimates that the country’s energy reserves for 2015 are dwindling– observed in the rotating power outages in several localities. To aid in the energy crisis, a national hydropower resource assessment scheme is developed. Hydropower is a resource that is derived from flowing water and difference in elevation. It is a renewable energy resource that is deemed abundant in the Philippines – being an archipelagic country that is rich in bodies of water and water resources. The objectives of this study is to develop a methodology for a national hydropower resource assessment using hydrologic modeling and geospatial techniques in order to generate resource maps for future reference and use of the government and other stakeholders. The methodology developed for this purpose is focused on two models – the implementation of the Soil and Water Assessment Tool (SWAT) for the river discharge and the use of geospatial techniques to analyze the topography and obtain the head, and generate the theoretical hydropower potential sites. The methodology is highly coupled with Geographic Information Systems to maximize the use of geodatabases and the spatial significance of the determined sites. The hydrologic model used in this workflow is SWAT integrated in the GIS software ArcGIS. The head is determined by a developed algorithm that utilizes a Synthetic Aperture Radar (SAR)-derived digital elevation model (DEM) which has a resolution of 10-meters. The initial results of the developed workflow indicate hydropower potential in the river reaches ranging from pico (less than 5 kW) to mini (1-3 MW) theoretical potential.

Keywords: ArcSWAT, renewable energy, hydrologic model, hydropower, GIS

Procedia PDF Downloads 281
9539 The Use of Optical-Radar Remotely-Sensed Data for Characterizing Geomorphic, Structural and Hydrologic Features and Modeling Groundwater Prospective Zones in Arid Zones

Authors: Mohamed Abdelkareem

Abstract:

Remote sensing data contributed on predicting the prospective areas of water resources. Integration of microwave and multispectral data along with climatic, hydrologic, and geological data has been used here. In this article, Sentinel-2, Landsat-8 Operational Land Imager (OLI), Shuttle Radar Topography Mission (SRTM), Tropical Rainfall Measuring Mission (TRMM), and Advanced Land Observing Satellite (ALOS) Phased Array Type L‐band Synthetic Aperture Radar (PALSAR) data were utilized to identify the geological, hydrologic and structural features of Wadi Asyuti which represents a defunct tributary of the Nile basin, in the eastern Sahara. The image transformation of Sentinel-2 and Landsat-8 data allowed characterizing the different varieties of rock units. Integration of microwave remotely-sensed data and GIS techniques provided information on physical characteristics of catchments and rainfall zones that are of a crucial role for mapping groundwater prospective zones. A fused Landsat-8 OLI and ALOS/PALSAR data improved the structural elements that difficult to reveal using optical data. Lineament extraction and interpretation indicated that the area is clearly shaped by the NE-SW graben that is cut by NW-SE trend. Such structures allowed the accumulation of thick sediments in the downstream area. Processing of recent OLI data acquired on March 15, 2014, verified the flood potential maps and offered the opportunity to extract the extent of the flooding zone of the recent flash flood event (March 9, 2014), as well as revealed infiltration characteristics. Several layers including geology, slope, topography, drainage density, lineament density, soil characteristics, rainfall, and morphometric characteristics were combined after assigning a weight for each using a GIS-based knowledge-driven approach. The results revealed that the predicted groundwater potential zones (GPZs) can be arranged into six distinctive groups, depending on their probability for groundwater, namely very low, low, moderate, high very, high, and excellent. Field and well data validated the delineated zones.

Keywords: GIS, remote sensing, groundwater, Egypt

Procedia PDF Downloads 70
9538 Robust Method for Evaluation of Catchment Response to Rainfall Variations Using Vegetation Indices and Surface Temperature

Authors: Revalin Herdianto

Abstract:

Recent climate changes increase uncertainties in vegetation conditions such as health and biomass globally and locally. The detection is, however, difficult due to the spatial and temporal scale of vegetation coverage. Due to unique vegetation response to its environmental conditions such as water availability, the interplay between vegetation dynamics and hydrologic conditions leave a signature in their feedback relationship. Vegetation indices (VI) depict vegetation biomass and photosynthetic capacity that indicate vegetation dynamics as a response to variables including hydrologic conditions and microclimate factors such as rainfall characteristics and land surface temperature (LST). It is hypothesized that the signature may be depicted by VI in its relationship with other variables. To study this signature, several catchments in Asia, Australia, and Indonesia were analysed to assess the variations in hydrologic characteristics with vegetation types. Methods used in this study includes geographic identification and pixel marking for studied catchments, analysing time series of VI and LST of the marked pixels, smoothing technique using Savitzky-Golay filter, which is effective for large area and extensive data. Time series of VI, LST, and rainfall from satellite and ground stations coupled with digital elevation models were analysed and presented. This study found that the hydrologic response of vegetation to rainfall variations may be shown in one hydrologic year, in which a drought event can be detected a year later as a suppressed growth. However, an annual rainfall of above average do not promote growth above average as shown by VI. This technique is found to be a robust and tractable approach for assessing catchment dynamics in changing climates.

Keywords: vegetation indices, land surface temperature, vegetation dynamics, catchment

Procedia PDF Downloads 257
9537 Effects of Organic Amendments on Primary Nutrients (N, P and K) in a Sandy Soil

Authors: Nejib Turki, Karima Kouki Khalfallah

Abstract:

The effect of six treatments of organic amendments were evaluated on a sandy soil in the region of Soukra in Tunisia. T1: cattle manure 55 t.ha-1, T2: commercial compost from Germany to 1 t.ha-1, T3: a mixture of 27.5 t.ha-1 of T1 with 0.5 t. ha-1 of T2, T4: commercial compost from France 2 t.ha-1, T5: a Tunisian commercial compost to 10 t.ha-1 and T0: control without treatment. The nitrogen in the soil increase to 0.029 g.kg-1 of soil treatment for the T1 and 0.021 g. kg-1 of soil treatment for the T3. The highest content of P2O5 has been registered by the T3 treatment that 0.44 g kg-1 soil with respect to the control (T0), which shows a content of 0.36 g.kg-1 soil. The soil was initially characterized by a potassium content of 0.8 g kg-1 soil, K2O exchangeable rate varied between 0.63 g.Kg-1 and 0.71 g.kg-1 soil respectively T2 and T1.

Keywords: compost, organic amendement, Ntot, P2O5, K2O

Procedia PDF Downloads 593
9536 A Review of Soil Stabilization Techniques

Authors: Amin Chegenizadeh, Mahdi Keramatikerman

Abstract:

Soil stabilization is a crucial issue that helps to remove of risks associated with the soil failure. As soil has applications in different industries such as construction, pavement and railways, the means of stabilizing soil are varied. This paper will focus on the techniques of stabilizing soils. It will do so by gathering useful information on the state of the art in the field of soil stabilization, investigating both traditional and advanced methods. To inquire into the current knowledge, the existing literature will be divided into categories addressing the different techniques.

Keywords: review, soil, stabilization, techniques

Procedia PDF Downloads 510
9535 The Pile Group Efficiency for Different Embedment Lengths in Dry Sand

Authors: Mohamed M. Shahin

Abstract:

This study investigated the design of the pile foundation to support heavy structures-especially bridges for highways-in the Sahara, which contains many dunes of medium dense sand in different levels, where the foundation is supposed to be piles. The base resistance of smooth model pile groups in sand under static loading is investigated experimentally in a pile soil test apparatus. Improvement were made to the sand around the piles in order to increase the shaft resistance of the single pile and the pile groups, and also base resistance especially for the central pile in pile groups. The study outlines the behaviour of a single-pile, 4-, 5-, and 9- pile groups arranged in a doubly symmetric [square] layout with different embedment lengths and pile spacing in loose dry sand [normal] and dense dry sand [compacted] around the piles. This study evaluate the variation of the magnitude and the proportion of end bearing capacity of individual piles in different pile groups. Also to investigate the magnitude of the efficiency coefficient in the case of different pile groups.

Keywords: pile group, base resistance, efficiency coefficient, pile spacing, pile-soil interaction

Procedia PDF Downloads 328
9534 Effect of Tissue Preservation Chemicals on Decomposition in Different Soil Types

Authors: Onyekachi Ogbonnaya Iroanya, Taiye Abdullahi Gegele, Frank Tochukwu Egwuatu

Abstract:

Introduction: Forensic taphonomy is a multifaceted area that incorporates decomposition, chemical and biological cadaver exposure in post-mortem event chronology and reconstruction to predict the Post Mortem Interval (PMI). The aim of this study was to evaluate the integrity of DNA extracted from the remains of embalmed decomposed Sus domesticus tissues buried in different soil types. Method: A total of 12 limbs of Sus domesticus weighing between 0.7-1.4 kg were used. Each of the samples across the groups was treated with 10% formaldehyde, absolute methanol and 50% Pine oil for 24 hours before burial except the control samples, which were buried immediately. All samples were buried in shallow simulated Clay, Sandy and Loamy soil graves for 12 months. The DNA for each sample was extracted and quantified with Nanodrop Spectrophotometer (6305 JENWAY spectrometers). The rate of decomposition was examined through the modified qualitative decomposition analysis. Extracted DNA was amplified through PCR and bands visualized via gel electrophoresis. A biochemical enzyme assay was done for each burial grave soil. Result: The limbs in all burial groups had lost weight over the burial period. There was a significant increase in the soil urease level in the samples preserved in formaldehyde across the 3 soil type groups (p≤0.01). Also, the control grave soils recorded significantly higher alkaline phosphatase, dehydrogenase and calcium carbonate values compared to experimental grave soils (p≤0.01). The experimental samples showed a significant decrease in DNA concentration and purity when compared to the control groups (p≤0.01). Obtained findings of the soil biochemical analysis showed the embalming treatment altered the relationship between organic matter decomposition and soil biochemical properties as observed in the fluctuations that were recorded in the soil biochemical parameters. The PCR amplified DNA showed no bands on the gel electrophoresis plates. Conclusion: In criminal investigations, factors such as burial grave soil, grave soil biochemical properties, antemortem exposure to embalming chemicals should be considered in post-mortem interval (PMI) determination.

Keywords: forensic taphonomy, post-mortem interval (PMI), embalmment, decomposition, grave soil

Procedia PDF Downloads 134
9533 Rhizosphere Microbiome Involvement in the Natural Suppression of Soybean Cyst Nematode in Disease Suppressive Soil

Authors: M. Imran Hamid, Muzammil Hussain, Yunpeng Wu, Meichun Xiang, Xingzhong Liu

Abstract:

The rhizosphere microbiome elucidate multiple functioning in the soil suppressiveness against plant pathogens. Soybean rhizosphere microbial communities may involve in the natural suppression of soybean cyst nematode (SCN) populations in disease suppressive soils. To explore these ecological mechanisms of microbes, a long term monoculture suppressive soil were taken into account for further investigation to test the disease suppressive ability by using different treatments. The designed treatments are as, i) suppressive soil (S), ii) conducive soil (C), iii) conducive soil mixed with 10% (w/w) suppressive soil (CS), iv) suppressive soil treated at 80°C for 1 hr (S80), and v) suppressive soil treated with formalin (SF). By using an ultra-high-throughput sequencing approach, we identified the key bacterial and fungal taxa involved in SCN suppression. The Phylum-level investigation of bacteria revealed that Actinobacteria, Bacteroidetes, and Proteobacteria in the rhizosphere soil of soybean seedlings were more abundant in the suppressive soil than in the conducive soil. The phylum-level analysis of fungi in rhizosphere soil indicated that relative abundance of Ascomycota was higher in suppressive soil than in the conducive soil, where Basidiomycota was more abundant. Transferring suppressive soil to conducive soil increased the population of Ascomycota in the conducive soil by lowering the populations of Basidiomycota. The genera, such as, Pochonia, Purpureocillium, Fusarium, Stachybotrys that have been well documented as bio-control agents of plant nematodes were far more in the disease suppressive soils. Our results suggested that the plants engage a subset of functional microbial groups in the rhizosphere for initial defense upon nematode attack and protect the plant roots later on by nematodes to response for suppression of SCN in disease-suppressive soils.

Keywords: disease suppressive soil, high-throughput sequencing, rhizosphere microbiome, soybean cyst nematode

Procedia PDF Downloads 124
9532 Behaviour of Laterally Loaded Pile Groups in Cohesionless Soil

Authors: V. K. Arora, Suraj Prakash

Abstract:

Pile foundations are provided to transfer the vertical and horizontal loads of superstructures like high rise buildings, bridges, offshore structures etc. to the deep strata in the soil. These vertical and horizontal loads are due to the loads coming from the superstructure and wind, water thrust, earthquake, and earth pressure, respectively. In a pile foundation, piles are used in groups. Vertical piles in a group of piles are more efficient to take vertical loads as compared to horizontal loads and when the horizontal load per pile exceeds the bearing capacity of the vertical piles in that case batter piles are used with vertical piles because batter piles can take more lateral loads than vertical piles. In this paper, a model study was conducted on three vertical pile group with single positive and negative battered pile subjected to lateral loads. The batter angle for battered piles was ±35◦ with the vertical axis. Piles were spaced at 2.5d (d=diameter of pile) to each other. The soil used for model test was cohesionless soil. Lateral loads were applied in three stages on all the pile groups individually and it was found that under the repeated action of lateral loading, the deflection of the piles increased under the same loading. After comparing the results, it was found that the pile group with positive batter pile fails at 28 kgf and the pile group with negative batter pile fails at 24 kgf so it shows that positive battered piles are stronger than the negative battered piles.

Keywords: vertical piles, positive battered piles, negative battered piles, cohesionless soil, lateral loads, model test

Procedia PDF Downloads 376
9531 Physico-Chemical Analysis of the Reclaimed Land Area of Kasur

Authors: Shiza Zafar

Abstract:

The tannery effluents contaminated about 400 acres land area in Kasur, Pakistan, has been reclaimed by removing polluted water after the long term effluent logging from the nearby tanneries. In an effort to describe the status of reclaimed soil for agricultural practices, the results of physicochemical analysis of the soil are reported in this article. The concentrations of the parameters such as pH, Electrical Conductivity (EC), Organic Matter (OM), Organic Carbon (OC), Available Phosphorus (P), Potassium (K), and Sodium (Na) were determined by standard methods of analysis and results were computed and compared with various international standards for agriculture recommended by international organizations, groups of experts and or individual researchers. The results revealed that pH, EC, OM, OC, K, and Na are in accordance with the prescribed limits but P in soil exceeds the satisfactory range of P in agricultural soil. Thus, the reclaimed soil in Kasur can be inferred fit for the purpose of agricultural activities.

Keywords: soil toxicity, agriculture, reclaimed land, physico-chemical analysis

Procedia PDF Downloads 349
9530 Farmers' Perspective on Soil Health in the Indian Punjab: A Quantitative Analysis of Major Soil Parameters

Authors: Sukhwinder Singh, Julian Park, Dinesh Kumar Benbi

Abstract:

Although soil health, which is recognized as one of the key determinants of sustainable agricultural development, can be measured by a range of physical, chemical and biological parameters, the widely used parameters include pH, electrical conductivity (EC), organic carbon (OC), plant available phosphorus (P) and potassium (K). Soil health is largely affected by the occurrence of natural events or human activities and can be improved by various land management practices. A database of 120 soil samples collected from farmers’ fields spread across three major agro-climatic zones of Punjab suggested that the average pH, EC, OC, P and K was 8.2 (SD = 0.75, Min = 5.5, Max = 9.1), 0.27 dS/m (SD = 0.17, Min = 0.072 dS/m, Max = 1.22 dS/m), 0.49% (SD = 0.20, Min = 0.06%, Max = 1.2%), 19 mg/kg soil (SD = 22.07, Min = 3 mg/kg soil, Max = 207 mg/kg soil) and 171 mg/kg soil (SD = 47.57, Min = 54 mg/kg soil, Max = 288 mg/kg soil), respectively. Region-wise, pH, EC and K were the highest in south-western district of Ferozpur whereas farmers in north-eastern district of Gurdaspur had the best soils in terms of OC and P. The soils in the central district of Barnala had lower OC, P and K than the respective overall averages while its soils were normal but skewed towards alkalinity. Besides agro-climatic conditions, the size of landholding and farmer education showed a significant association with Soil Fertility Index (SFI), a composite index calculated using the aforementioned parameters’ normalized weightage. All the four stakeholder groups cited the current cropping patterns, burning of rice crop residue, and imbalanced use of chemical fertilizers for change in soil health. However, the current state of soil health in Punjab is unclear, which needs further investigation based on temporal data collected from the same field to see the short and long-term impacts of various crop combinations and varied cropping intensity levels on soil health.

Keywords: soil health, punjab agriculture, sustainability, soil fertility index

Procedia PDF Downloads 333
9529 Effects of Drought on Microbial Activity in Rhizosphere, Soil Hydrophobicity and Leaching of Mineral Nitrogen from Arable Soil Depending on Method of Fertilization

Authors: Jakub Elbl, Lukáš Plošek, Antonín Kintl, Jaroslav Hynšt, Soňa Javoreková, Jaroslav Záhora, Libor Kalhotka, Olga Urbánková, Ivana Charousová

Abstract:

This work presents the first results from the long-term laboratory experiment dealing with impact of drought on soil properties. Three groups of the treatment (A, B and C) with different regime of irrigation were prepared. The soil water content was maintained at 70 % of soil water holding capacity in group A, at 40 % in group B. In group C, soil water regime was maintained in the range of wilting point. Each group of the experiment was divided into three variants (A1 = B1, C1; A2 = B2, C2 etc.) with three repetitions: Variants A1 (B1, C1) were controls without addition of another fertilizer. Variants A2 (B2, C2) were fertilized with mineral nitrogen fertilizer DAM 390 (0.140 Mg of N per ha) and variants A3 (B3, C3) contained 45 g of Cp per a pot. The significant differences (ANOVA, P<0.05) in the leaching of mineral nitrogen and values of saturated hydraulic conductivity (Ksat) were found. The highest values of Ksat were found in variants (within each group) with addition of compost (A3, B3, C3). Conversely, the lowest values of Ksat were found in variants with addition of mineral nitrogen. Low values of Ksat indicate an increased level of hydrophobicity in individual groups of the experiment. Moreover, all variants with compost addition showed lower amount of mineral nitrogen leaching and high level of microbial activity than variants without. This decrease of mineral nitrogen leaching was about 200 % in comparison with the control variant and about 300 % with variant, where mineral nitrogen was added. Based on these results, we can conclude that changes of soil water content directly have impact on microbial activity, soil hydrophobicity and loss of mineral nitrogen from the soil.

Keywords: drought, microbial activity, mineral nitrogen, soil hydrophobicity

Procedia PDF Downloads 354
9528 Development of an Automatic Calibration Framework for Hydrologic Modelling Using Approximate Bayesian Computation

Authors: A. Chowdhury, P. Egodawatta, J. M. McGree, A. Goonetilleke

Abstract:

Hydrologic models are increasingly used as tools to predict stormwater quantity and quality from urban catchments. However, due to a range of practical issues, most models produce gross errors in simulating complex hydraulic and hydrologic systems. Difficulty in finding a robust approach for model calibration is one of the main issues. Though automatic calibration techniques are available, they are rarely used in common commercial hydraulic and hydrologic modelling software e.g. MIKE URBAN. This is partly due to the need for a large number of parameters and large datasets in the calibration process. To overcome this practical issue, a framework for automatic calibration of a hydrologic model was developed in R platform and presented in this paper. The model was developed based on the time-area conceptualization. Four calibration parameters, including initial loss, reduction factor, time of concentration and time-lag were considered as the primary set of parameters. Using these parameters, automatic calibration was performed using Approximate Bayesian Computation (ABC). ABC is a simulation-based technique for performing Bayesian inference when the likelihood is intractable or computationally expensive to compute. To test the performance and usefulness, the technique was used to simulate three small catchments in Gold Coast. For comparison, simulation outcomes from the same three catchments using commercial modelling software, MIKE URBAN were used. The graphical comparison shows strong agreement of MIKE URBAN result within the upper and lower 95% credible intervals of posterior predictions as obtained via ABC. Statistical validation for posterior predictions of runoff result using coefficient of determination (CD), root mean square error (RMSE) and maximum error (ME) was found reasonable for three study catchments. The main benefit of using ABC over MIKE URBAN is that ABC provides a posterior distribution for runoff flow prediction, and therefore associated uncertainty in predictions can be obtained. In contrast, MIKE URBAN just provides a point estimate. Based on the results of the analysis, it appears as though ABC the developed framework performs well for automatic calibration.

Keywords: automatic calibration framework, approximate bayesian computation, hydrologic and hydraulic modelling, MIKE URBAN software, R platform

Procedia PDF Downloads 274
9527 Review of Hydrologic Applications of Conceptual Models for Precipitation-Runoff Process

Authors: Oluwatosin Olofintoye, Josiah Adeyemo, Gbemileke Shomade

Abstract:

The relationship between rainfall and runoff is an important issue in surface water hydrology therefore the understanding and development of accurate rainfall-runoff models and their applications in water resources planning, management and operation are of paramount importance in hydrological studies. This paper reviews some of the previous works on the rainfall-runoff process modeling. The hydrologic applications of conceptual models and artificial neural networks (ANNs) for the precipitation-runoff process modeling were studied. Gradient training methods such as error back-propagation (BP) and evolutionary algorithms (EAs) are discussed in relation to the training of artificial neural networks and it is shown that application of EAs to artificial neural networks training could be an alternative to other training methods. Therefore, further research interest to exploit the abundant expert knowledge in the area of artificial intelligence for the solution of hydrologic and water resources planning and management problems is needed.

Keywords: artificial intelligence, artificial neural networks, evolutionary algorithms, gradient training method, rainfall-runoff model

Procedia PDF Downloads 417
9526 Soil and the Gut Microbiome: Supporting the 'Hygiene Hypothesis'

Authors: Chris George, Adam Hamlin, Lily Pereg, Richard Charlesworth, Gal Winter

Abstract:

Background: According to the ‘hygiene hypothesis’ the current rise in allergies and autoimmune diseases stems mainly from reduced microbial exposure due, amongst other factors, to urbanisation and distance from soil. However, this hypothesis is based on epidemiological and not biological data. Useful insights into the underlying mechanisms of this hypothesis can be gained by studying our interaction with soil. Soil microbiota may be directly ingested or inhaled by humans, enter the body through skin-soil contact or using plants as vectors. This study aims to examine the ability of soil microbiota to colonise the gut, study the interaction of soil microbes with the immune system and their potential protective activity. Method: The nutrition of the rats was supplemented daily with fresh or autoclaved soil for 21 days followed by 14 days of no supplementations. Faecal samples were collected throughout and analysed using 16S sequencing. At the end of the experiment rats were sacrificed and tissues and digesta were collected. Results/Conclusion: Results showed significantly higher richness and diversity following soil supplementation even after recovery. Specific soil microbial groups identified as able to colonise the gut. Of particular interest was the mucosal layer which emerged as a receptive host for soil microorganisms. Histological examination revealed innate and adaptive immune activation. Findings of this study reinforce the ‘hygiene hypothesis’ by demonstrating the ability of soil microbes to colonise the gut and activate the immune system. This paves the way for further studies aimed to examine the interaction of soil microorganisms with the immune system.

Keywords: gut microbiota, hygiene hypothesis, microbiome, soil

Procedia PDF Downloads 220